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We applied quantum Monte Carlo techniques to compute the equation of state of hexagonal closed packed
iron in the range of pressure relevant to Earth’s core. We used an accurate iron pseudopotential with a frozen
Ne core. Trial wave functions have been obtained from density-functional theory �DFT� plane-wave calcula-
tions and expanded in systematically improvable B splines. Tests with various exchange-correlation functionals
showed that the B3LYP functional is the one that provided the best trial wave functions. Diffusion Monte Carlo
calculations were carried out using simulation cells with up to 96 atoms �1536 electrons�, with some attempts
to use up to 150 atoms, and corrected for finite-size errors using the scheme of Chiesa et al. �Phys. Rev. Lett.
97, 076404 �2006�� and Kwee et al. �Phys. Rev. Lett. 100, 126404 �2008��. The calculated equation of state
agrees closely with the experiments of Mao et al. �J. Geophys. Res. 95, 21737 �1990�� and those of Dewaele
et al. �Phys. Rev. Lett. 97, 215504 �2006��. It also agrees with the DFT data of Söderlind et al. �Phys. Rev. B
53, 14063 �1996�� and Alfè et al. �Phys. Rev. B 61, 132 �2000��, and therefore, reinforces those previous
calculations.
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I. INTRODUCTION

Many studies on iron under high pressures have been pub-
lished in the last decades.1–22 The interest in this system has
its origin on the fact that iron is the main constituent of
Earth’s core, and therefore knowledge of its thermodynamic
properties under high pressure and high temperature is of
great importance to our understanding of Earth’s deep inte-
rior. Several groups have experimentally measured the room-
temperature equation of state �EOS� of hexagonal close
packed �hcp� iron at pressures ranging from 16 up to 300
GPa.1,2 However, at Earth’s core conditions iron is subjected
not just to high pressure but also to high temperatures rang-
ing from �4000 at the top of the core to over �6000 K at
the center of the planet. Performing experiments under these
extreme conditions is challenging, and yet they are important
to understand the properties of Earth’s interior.

A long-standing controversy on the physics of iron at
Earth’s core conditions is its melting curve. This is a particu-
larly interesting property because at a depth of 5125 km the
outer liquid core freezes, and therefore at the boundary be-
tween the outer core and the solid inner �the ICB� the tem-
perature must be the liquidus temperature of what the core is
made of. Since over 90% of the core is made of Fe, its
melting temperature at the pressure of the ICB gives a close
estimate of the temperature of the Earth at that depth. This
idea has been exploited for over 20 years, with a number of
experimental groups trying to measure the high-pressure
melting curve of Fe. Two main classes of experimental tech-
niques exist: �i� static high-pressure experiments performed
using diamond-anvil cells �DACs�, where the sample is em-
bedded in a pressure medium and compressed between two
anvils made of diamond, and �ii� shock wave �SW� experi-
ments, where a high velocity impactor �with a speed of the

order of �5–10 km /s� is fired at the sample, and upon im-
pact it generates high pressure and increases the temperature
of the sample. Fast optics are used to follow the behavior of
the shock wave which propagates inside the sample. In DAC
experiments the sample can be heated by lasers shone
through the diamonds, and the temperature can be measured
using pyrometric techniques. Melting of the sample is usu-
ally detected by visual inspection or by x-ray spectroscopy.
SW experiments naturally provide a typical pressure vs vol-
ume curve known as the Hugoniot, which is the locus of
points satisfying the Rankine-Hugoniot relation.23 Informa-
tion is extracted by measuring the speed of the shock, which
depends on the speed of the impactor and the physical prop-
erties of the target. In particular, the onset of melting can be
easily detected by the appearance of a discontinuity in the
speed of sound of the sample. Temperature is not usually
measured in SW experiments but is deduced by integrating
the appropriate thermodynamic equation using estimates for
the specific heat and the Grüneisen parameter.9

Because of the extreme conditions of pressures and tem-
peratures, it is not surprising that different groups reported
significantly different melting points.5–10 An alternative ap-
proach followed by us13–15 and others16,17 was to calculate
the melting curve of Fe using theoretical methods based on
the formulation of quantum mechanics known as density-
functional theory �DFT�. Using DFT, we computed the free
energy of solid �Gs� and liquid �Gl� Fe and obtained the
melting curve as the locus of points in �p ,T� space defined
by the relation Gl�p ,T�=Gs�p ,T�.13–15 The other theoretical
works used DFT to fit classical potentials and then computed
the melting curves of these classical potentials.16,17

Although we argued that the DFT melting curve of Fe
should be reliable, especially at the pressure of the ICB, we
recognize that the lack of solid experimental data makes it
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difficult to validate those early results,13–15 particularly in
light of the fact that the practical use of DFT requires the
introduction of an uncontrolled approximation, the
exchange-correlation �XC� functional.

Here we try to prepare the ground to go beyond those
early DFT calculations by setting the stage for the applica-
tion of a much more accurate quantum mechanics technique,
namely, quantum Monte Carlo �QMC�. In particular, as a
preliminary step toward the QMC calculation of the melting
point of Fe at ICB pressure, we report the calculation of the
room-temperature equation of state of hcp Fe from 0 to 400
GPa. Previous DFT calculations3,4 using the generalized gra-
dient approximation �GGA� corrections known as PW91
�Ref. 24� for the XC energy were in good agreement with
experimental data, so we would not expect a worsening of
these results with the current use of QMC. In fact, QMC has
recently been successfully used to compute equation of states
of a number of materials, including insulators such as MgO,
MgH2, and diamond,25–28 semiconductor Si,29 metals such as
Mg �Ref. 27� and Al,30 transition-metal oxide such as FeO,31

and even the noble gas Ne.32 In most of these cases the
calculated structural parameters and the cohesive energy
were in very good agreement with the available experimental
data, where the latter is usually very difficult to obtain with
DFT techniques.

This paper is organized as follows. In Sec. II we provide
a brief description of QMC and the technical details used in
our calculations. Finite-size effects are discussed in more
detail in Sec. III. Section IV contains the main results and the
equation of state of hcp Fe. Finally, in Sec. V we report the
main conclusions of the work.

II. TECHNICAL DETAILS

Quantum Monte Carlo techniques have been described at
length in previous papers,33,34 so here we briefly review only
the main issues relevant to our calculations. The most popu-
lar implementations of QMC are the variational Monte Carlo
�VMC� method and the diffusion Monte Carlo �DMC�
method. The former is a stochastic way to evaluate integrals,
in particular the expectation value of the Hamiltonian of the
system. The latter is a stochastic method to solve the
Schrödinger equation in imaginary time. DMC is an exact
method to project out the ground state of the system in the
limit of long imaginary time; however, when dealing with
fermions such as the electrons of a collection of atoms, prac-
tical calculations require the introduction of two approxima-
tions. The first is related to the antisymmetry of the wave
function, which divides the space into adjacent pockets
where the wave function changes sign, with these pockets
being separated by the nodal surface. The presence of a
nodal surface represents a problem for the stochastic evolu-
tion of the Schrödinger equation, the solution of which is
usually presented in terms of the so-called fixed-node ap-
proximation �FNA�,33,35–38 in which the nodal surface is
fixed to that of a known trial wave function, which is pro-
vided at the outset of calculations. The FNA represents a
constraint, and because of this the DMC energy becomes
only an upper bound to the true ground-state energy of the

system. The second approximation is due to the need of re-
placing the Coulomb potential generated by the nuclei of
heavy atoms with a pseudopotential, and in particular, by the
introduction of the so-called locality approximation39 to deal
with the presence of nonlocal pseudopotentials. The locality
approximation introduces an uncontrollable error, with re-
spect to which the DMC energy is nonvariational. An alter-
native method to deal with nonlocal pseudopotentials in a
consistent variational scheme was recently proposed by
Casula.40 DMC calculations with the FNA and the locality
approximations become exact if the trial wave function is
exact, and the errors in the DMC energy due to both approxi-
mations grows only quadratically with an error in the trial
wave function.

It is generally believed, and indeed shown in a number of
cases as mentioned in Sec. I, that despite the FNA and the
locality approximation, DMC is much more accurate than
DFT with the current XC functionals; however, it is also
103–104 times more expensive, and for this reason DMC
applications are not yet numerous. This is of course set to
change, thanks to the availability of faster and faster com-
puters and in particular to the fact that QMC techniques
adapt naturally to massively parallel computers.

The trial wave functions used in this work are of the
Jastrow-Slater-type,

�T�R� = eJ�R�D↑�R�D↓�R� . �1�

The eJ�R� term in Eq. �1� is the so-called Jastrow factor and
describes the electron-electron and electron-nucleus correla-
tions ensuring that the cusp conditions are satisfied. Param-
eters appearing in this term are optimized using VMC by
minimizing the variance of the local energy, EL�R�
=�T

−1�R�H�T�R�, where H is the Hamiltonian of the system
and R represents the collections of the coordinates of all the
electrons in the system. The terms D↑�R� and D↓�R� are
Slater determinants of spin-up and spin-down single-electron
orbitals. These Slater determinants set the nodal surface and
ensure that �T�R� is antisymmetric with respect to the swap-
ping of the coordinates of any two electrons with the same
spin.

The single-particle orbitals were obtained by plane-wave
DFT calculations using the PWSCF �Ref. 41� code. We used a
plane-wave cutoff of 75 hartree and re-expanded the single-
particle orbitals in systematically improvable B splines29 us-
ing a grid spacing given by a= 2

3� /Gmax, where Gmax is the
length of the largest vector employed in the PW calculations,
i.e., a grid 1.5 times finer than what is commonly referred to
as the “natural” grid spacing.

Single-particle orbitals were initially produced with dif-
ferent XC functionals. We used the local-density approxima-
tion �LDA� �Ref. 42� and the PBE,43 the hybrids B3LYP
�Refs. 44 and 45� and PBE0,46 and also the Hartree-Fock
�HF� calculations. The calculated VMC and DMC energies
and their variances are reported in Table I for a hcp Fe crys-
tal containing two atoms with a volume of 8 Å3 /atom. The
B3LYP functional provides one of the lowest variances and
also the lowest DMC energy, and as a result we decided to
use this functional to build up our trial wave functions for the
rest of the work. All single-particle orbitals were constructed
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using a single zone-boundary point �the point �1/2, 1/2, 1/2�
in lattice vectors units� in the Brillouin zone of the corre-
sponding supercell.

We used the usual short-time approximation to evolve the
Schrödinger equation in imaginary time. We tested different
time steps, ranging from 0.0003 to 0.02 a.u, and repeating
calculations on simulation cells containing two atoms at
three different volumes V=6.5, 7.5, and 8 Å3 /atom. The
conclusion from these tests was that using a time step of 0.01
a.u. gives rise to a volume-independent error, and therefore
this is what we chose to use. All present calculations were
performed using the CASINO code.47

III. FINITE-SIZE CORRECTIONS

Since QMC is a many-body theory, calculations on peri-
odic systems need to ensure that the simulation cell is big
enough so that electron-electron correlations have decayed
away. However, periodicity also brings the additional prob-
lem that the true Coulomb interaction between the electrons
has to be replaced by the Ewald interaction, which makes the
QMC energy depend strongly on the size of the simulation
cell. The problem comes from the interaction between the
electrons and their exchange-correlation holes, which instead
of having the correct 1 /r behavior is replaced by a periodic
interaction. For solids, this error can be shown to have a
leading term which is inversely proportional to the volume of
the system. This problem has been addressed in the past by
various authors.48–53 The solution of Fraser et al.50–52 was to
replace the Ewald interaction with a model periodic Cou-
lomb �MPC� potential, which maintains the correct Ewald
interaction for the evaluation of the Hartree energy but uses a
periodically repeated potential based on the 1 /r form for the
interactions between the electrons and their exchange-
correlation holes. The method of Chiesa, Ceperley, Martin,
and Holzmann �CCMH� �Ref. 48� was based on the assump-
tion that the correlation factor does not depend on the size of
the simulation cell, and therefore the dominant finite-size
errors on the potential and the kinetic energy are integration

errors. These errors can be estimated from the behavior of
the charge structure factor and from the Jastrow factor at low
k vector, which can be calculated within a QMC simulation
using highly accurate trial wave functions. These two meth-
ods address the problem of the so-called two-body finite-size
corrections. Once these two-body corrections are taken into
account, there is an additional one-body-like correction
equivalent to the k-point sampling error in single-particle
calculations such as DFT. This one-body correction can be
estimated using standard DFT. Recently, Kwee, Zhang, and
Krakauer �KZK� �Ref. 49� proposed to compute the two-
body corrections in a very simple way. They suggested to
correct the QMC calculations with a finite-size DFT-LDA
calculation, in which the standard LDA XC energy is re-
placed by a finite-size LDA energy, computed with the same
supercell used in the QMC calculations. To do this, they
repeated the early calculations of Ceperley and Alder54 for
the homogeneous electron gas at a series of values for the
electron density and for different volumes. The standard
LDA functional is obtained by extrapolating these results to
infinite size, but Kwee et al.49 produced a family of function-
als, which depend on the number of electrons �or the vol-
ume� of the system. They showed that the method works
very well for bulk silicon, and it is extremely simple; it does
not require any modification of the QMC code as it is a
postprocessing correction, and as such is much more
straightforward to apply. Kwee et al.49 only developed their
corrections for cubic cells; however, they showed that their
method worked equally well also for noncubic systems. Here
we reinforce their findings by showing that the method
works well also for hexagonal closed packed iron. One of us
has implemented the KZK method in the PWSCF code, and
here we show results obtained both with the KZK and the
CCMH methods.

We should note that the KZK correction is expected to
work well in systems where DFT LDA performs reasonably
well, similar to metallic iron in the present case or bulk sili-
con in the original work of Kwee et al.49 However, for
strongly correlated systems such as Mott insulators the DFT-
LDA performance can be poor, so it is not clear if in those
systems the KZK correction might perform equally well. The
CCMH method is based on the structure factor calculated
within DMC, and therefore should have a wider range of
applicability.

In Fig. 1 we show DMC calculations for cells containing
8, 36, 54, 64, 96, and 150 atoms at two different volumes,
V=7 and 8 Å3 /atom. As mentioned in Sec. II, most DMC
simulations were run for at least 5000 steps, but the calcula-
tions with 150 atoms were only run for 1000 steps due to
their very large cost, so we put less weight on the results
obtained with this cell size, which we only show for com-
pleteness. Besides the raw DMC data, we also show DMC
+one-body corrections and DMC+one-body+two-body cor-
rections, with the two-body terms computed using KZK and
CCMH. It is clear that both the KZK and the CCMH meth-
ods work equally well. More importantly, since we are inter-
ested in the EOS, the relevant physical quantities of interest
are relative energies, which are expected to converge to in-
finite size earlier than absolute energies. In Fig. 1 we show
the differences between the DMC energies at V=7 and

TABLE I. VMC and DMC energies per atom �hartree units� for
hexagonal closed packed iron at V=8 Å3 /atom, calculated with
trial wave functions obtained from DFT with the LDA, PBE,
B3LYP, and PBE0 functionals and with HF calculations. All single-
particle orbitals were obtained using the plane-wave code PWSCF,
with a plane-wave cutoff energy of 75 hartree and expanded in B
splines with a grid spacing 1.5 times finer than the natural one �see
text�. Also reported is the variance of the VMC calculations.

Model

VMC DMC

E /atom
�hartree�

Variance/atom
�hartree2�

E /atom
�hartree�

PBE −122.2722�4� 2.99�1� −122.4789�2�
LDA −122.2608�4� 3.14�1� −122.4738�2�
HF −122.3427�4� 2.53�1� −122.4854�2�
B3LYP −122.3385�4� 2.61�1� −122.4964�2�
PBE0 −122.3353�4� 2.72�2� −122.4963�2�
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8 Å3 /atom, and we can see that once both one-body and
two-body corrections are introduced finite-size effects are
very small. In fact, there is not much to be gained by using
cells containing more than 36 atoms, and even 8 atoms seem
to be enough. However, we decided to use cells containing
36 atoms for the rest of the calculations.

IV. EQUATION OF STATE OF hcp Fe

We performed nine DMC calculations with volume be-
tween 6.25 and 11 Å3 /atom, covering the range of pressures
relevant to Earth’s core. Each value has been calculated us-
ing 1280 walkers and 5000 DMC steps, ensuring in all cases
that the local energy was well behaved. With these choices,
all energies were obtained with errors of �0.6 mhartree /
atom �one standard deviation�.

Each DMC value presented in this section has been ob-
tained using 128 computers in parallel. Around 1000 s are
necessary to evolve all the walkers 20 Monte Carlo time
steps on a Cray-XT4 machine.

Hexagonal closed packed Fe has an additional degree of
freedom, which is the value of the ratio between the lattice
vector perpendicular to the basal plane and one of the lattice
vectors in the basal plane, the c /a ratio. Using DFT PBE, we
explored the dependence of the energy with respect to c /a at
different volumes and found that the optimal c /a varies be-
tween 1.54 and 1.60 in the range of volumes investigated
here. However, by taking the constant value c /a=1.57, we
found that the equation of state is essentially unchanged, and
therefore all our DMC calculations were performed with this
choice of c /a.

Since the available experimental data for the EOS of Fe
have been taken at room temperature, we added on the cal-
culated DMC energies the free energies calculated at 298 K
using quasiharmonic calculations performed with DFT.15,55

Room-temperature thermal expansion is small but it reaches
almost 3 GPa at a pressure of 300 GPa, so it is not com-
pletely negligible.

Figure 2 shows these room-temperature DMC free ener-
gies for different volumes, both using the KZK and the
CCMH finite-size corrections, together with a fit to a third-
order Birch-Murnaghan equation.56 There is a small energy
shift between the KZK and the CCMH corrected DMC re-
sults, but this shift is essentially constant throughout the en-
tire volume range, and therefore does not affect the pressure
and structural properties such as the equilibrium lattice pa-
rameter and the zero pressure bulk modulus. For comparison,
we also plot the earlier DFT-PW91 results of Söderlind et
al.,3 offset by a constant for convenience and corrected with
the same room-temperature quasiharmonic free energies. It is
clear that these early DFT results and the present DMC re-
sults are very similar, so it is not surprising that the pressure
versus volume curves are also very similar. These are plotted
in Fig. 3, where the statistical errors associated with the pa-
rameters of the Birch-Murnaghan fit are responsible for a
band error of the DMC pressure vs volume curve. As the
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FIG. 1. Finite-size-corrected DMC energies �in units of hartree/
atom� for various simulation cell sizes. Curves show the uncor-
rected DMC energy �circles—dashed line�, DMC+one-body cor-
rections �open square—double point line�, and DMC+one-body
+two-body corrections using CCMH �triangle—points line� and
KZK �diamonds—solid line�. Top and central figures report calcu-
lations at volumes V=7 and 8 Å3 /atom, respectively. Bottom fig-
ure shows energy differences between the two volumes.
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figure shows, the DMC equation of state in the high-pressure
region of the phase diagram agrees closely with the experi-
ments carried out by Mao et al.1 and Dewaele et al.,2 as well
as with the DFT-PW91 calculations.3 The discontinuity in the
results of Dewaele et al.2 was due to the hexagonal close
packed to body-centered-cubic phase transition in solid iron
around �10 GPa. The agreement between the calculations
and the experiments worsens at low pressure due to the onset

of magnetism which is not taken into account in the present
calculations;57 however, for present and future purposes our
concern confines to high pressure, in which the agreement
between our calculations and the experiments is indeed very
good.

V. CONCLUSIONS

We have calculated the equation of state of iron in the
hexagonal closed packed structure up to pressures relevant to
Earth’s core using highly accurate diffusion Monte Carlo
techniques. We showed that the recently proposed treatment
of finite-size effects in quantum Monte Carlo by Kwee et
al.49 is very efficient and easy to use compared to more so-
phisticated schemes developed in the past few years,48,50 and
a direct comparison with the scheme developed by Chiesa et
al.48 has confirmed this. Our calculations employed pseudo-
potentials with the locality approximation and the standard
fixed-node approximation. The calculated equation of state in
the high-pressure region of the phase diagram is found to be
in good agreement with the available experimental data,1,2

and therefore lends support to the reliability of DMC tech-
niques on this system. This work establishes the basis for
future developments aimed at the calculation of high-
temperature properties of iron, and in particular its melting
temperature at inner-core boundary condition, which will be
reported in due course.
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