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Abstract While the ultra‐low velocity zones (ULVZs) may hold key information about deep Earth
dynamics, their elusive state and origin remain enigmatic. Recent high‐pressure experiments suggest that
ULVZs may originate from the B2 FeSi crystallization from the outer core. Understanding the conductivity of
the B2 phase can shed light on its role in deep mantle dynamics and serve as a test for its presence at the core‐
mantle boundary (CMB). Here, we calculated the thermal and electrical conductivities of B2 Fe1‐xSix at 127 GPa
and up to 4,500 K using first‐principles molecular dynamics. Our results show that under CMB conditions, the
thermal and electrical conductivities of B2 FeSi are significantly higher than those of lower‐mantle minerals.
The exceptionally high conductivities of B2 FeSi would enhance heat transfer and elevate temperatures within
ULVZs, if B2 FeSi is present, thereby promoting the core dynamo and powering hotspots, consistent with
seismic observations of ULVZs.

Plain Language Summary The ultra‐low velocity zones (ULVZs) are anomalies at the core‐mantle
boundary (CMB), identified by their extremely low seismic velocities. However, their origins and conductive
properties remain uncertain. Recent high‐pressure experiments suggest that ULVZs may form from the B2 FeSi
phase, crystallized from the outer core containing hydrogen and silicon. To better understand the conductive
properties of B2 FeSi and its impact, we used first‐principles calculations to determine its thermal and electrical
conductivities under CMB conditions. Our results show that B2 FeSi has the highest thermal conductivity
compared to mantle minerals. This makes ULVZs heat anomalies characterized by high thermal conductivity,
high temperature, and high heat flux. Consequently, ULVZs could act as cooling spots at the top of the outer
core, driving convection in the outer core and helping maintain the Earth's dynamo and geomagnetic field.

1. Introduction
Ultra‐low velocity zones (ULVZs) are distinguished by their exceptionally low shear and compressional wave
velocities compared to the surrounding mantle rocks (Brown et al., 2015; Idehara, 2011). These smaller‐scale
ULVZs are scattered throughout the D″ layer, particularly around the Large Low Shear Velocity Provinces,
and are found near subduction zones, intraplate hotspots, and other geological features (Yu & Garnero, 2018).
Typically ranging from tens to a few dozen kilometers in size, ULVZs are potentially widespread throughout the
D″ layer but are difficult to detect precisely due to their thinness (Cottaar & Romanowicz, 2012). The origin of
ULVZs is perplexing, but could offer valuable insights into the evolution of the lower mantle.

The densities of ULVZs are higher than their surroundings, leading to hypotheses that they are enriched in iron,
partially molten, or a combination of both. Various scenarios have been proposed for the iron enrichment:
entrainment of iron from the core, accumulation from past subduction events (Dobson & Brodholt, 2005; Hirose
et al., 2005), remnants of a basal magma ocean (Pachhai et al., 2022), Fe‐bearing materials from the interactions
with the outer core (Knittle & Jeanloz, 1991; J. Liu et al., 2017; Mao et al., 2006; Mergner et al., 2021; Wicks
et al., 2017). On the other hand, temperature may play an important role in the formation of ULVZs. Many studies
indicate that ULVZs are correlated with partial melting, likely due to higher temperature (Berryman, 2000;
Garnero & Vidale, 1999; Havens & Revenaugh, 2001; Reasoner & Revenaugh, 2000; Rost et al., 2006; Williams
& Garnero, 1996). In addition, the association of ULVZs' locations with hotspots feeding mantle plumes also
implies high temperature of ULVZs (Cottaar & Romanowicz, 2012; Garnero, 2000;Williams et al., 1998), but the
origin of temperature anomaly is also mysterious.
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Recently, high‐pressure experiments (Fu et al., 2023) proposed an alternative origin for ULVZs based on in-
teractions involving an Fe‐Si‐H outer core melt—a composition whose plausibility is supported by subsequent
studies identifying hydrogen and silicon as preferred light elements in the core (T. Liu & Jing, 2024a). Fu
et al. (2023) found that B2 FeSi crystallized from such melts in the presence of hydrogen within the outer core's
temperature‐pressure conditions near the core‐mantle boundary (CMB). The low density of B2 FeSi relative to the
surrounding liquid causes it to rise buoyantly toward the CMB. Furthermore, the study reveals that B2 FeSi
crystallized from Fe‐Si‐H melts in the outer core exhibits an almost perfect 1:1 ratio of iron to silicon. This
remarkable stoichiometry distinguishes it from previously studied Fe‐Si alloys. Presence of B2 FeSi can explain
the seismic characters of ULVZs, and the content of FeSi in ULVZs could be as high as 27–39 vol% (T. Liu &
Jing, 2024b).

The conductivity of B2 FeSi under CMB conditions is then becoming crucial for understanding the origin of
temperature anomalies of ULVZs: can B2 FeSi heat up ULVZs and induce higher temperatures, or must other
mechanism be invoked? Additionally, the thermal and electrical conductivities of B2 FeSi are important for
evaluating the impact of FeSi on heat transfer, the geodynamo, and mantle dynamics. These properties also serve
as a test for the existence of B2 FeSi in ULVZs. Previous studies indicate that Si incorporation into Fe signifi-
cantly reduces thermal conductivity under core conditions (De Koker et al., 2012), challenging the possible
existence of the B2 phase in ULVZs. Besides, studies at lower temperatures suggest that B2 FeSi behaves as a
semiconductor (Zhao et al., 2011), which imply low conductivities of B2 FeSi. But it may undergo a band gap
narrowing or even transition to a conductive state at high pressure and high temperature.

In this work, we employed Ab initio molecular dynamics (AIMD) and the Kubo‐Greenwood equation to calculate
electrical and thermal conductivities of B2 FeSi under different stoichiometries and temperatures at 127 GPa. We
then compared the thermal conductivities of B2 FeSi with mantle and core materials, and investigated their impact
on heat transfer and heat structure at CMB.

2. Methods
Ab initio calculations of transport properties based on density functional theory have been widely used in the past
decades due to their high accuracy comparable with experiments, and lack of limitations on pressure and tem-
perature. Following previous studies, we used AIMD and the Kubo‐Greenwood formula to calculate conduc-
tivities. AIMD was performed using the VASP code (Blöchl, 1994; Kresse & Joubert, 1999). Based on previous
studies and our tests, we considered system sizes of 128 atoms for the B2 phase Fe1‐xSix. The exchange‐
correlation potential is represented in the generalized gradient approximation (GGA‐PBE) (Perdew
et al., 1996), with valence electrons represented as planewaves with a cutoff of 600 eV (this converges the
transport properties to an accuracy of 0.01%) in the projector augmented wave formalism (Kresse & Furth-
müller, 1996; Kresse & Hafner, 1993). We used valence electron configuration 3d74s1 for Fe and 3s23p2 for Si.
The 8‐electron pseudopotential of Fe produces results closer to experiments (Sun et al., 2018) and there is
basically no difference between the electronic states around Fermi level calculated by different pseudopotentials
(see Figure S1 in Supporting Information S1). In our study, only the most iron‐rich Fe5Si3 is magnetic. But, there
is basically no difference between the spinpolarized and non‐spinpolarized calculations for thermal conductivity
(Figure S2 in Supporting Information S1). Simulations were performed in the NVT ensemble with average
pressure of 127 GPa, and temperatures of 3,500, 4,000, and 4,500 K, and run over at least 7 ps of simulation time
after equilibration. The time dependent mean square displacement was used to check that systems are indeed in
the solid state.

From each AIMD trajectory, we extracted atomic configuration snapshots every 500 fs from the last 5 ps to
compute the electrical and thermal conductivity. The velocity autocorrelation functions for our simulations decay
within 200 fs, indicating that a 500 fs time separation is sufficient for individual snapshots to be uncorrelated. This
approach provides a representative sampling of the solid structure at each composition‐temperature point. We
tested the number of k points from 8, 16, 32, and 64–96, and found the conductivities will converge when the
number of k points reaches 64 (see Figure S3 in Supporting Information S1). For each snapshot from the AIMD,
we chose 12 specific k points from the 96 k points to reduce the amount of calculations, and make sure the
difference is within 3% (the values from the special 12 k points and their average are the closest to the average
value from the 96 k points).
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We consider only the electronic contribution to represent the total thermal conductivity. Previous studies have
shown that, under core conditions, the ionic contribution to the thermal conductivity of iron is merely 2.5–
4 W m− 1 K− 1, accounting for only about 1%–2% of the electronic contribution (Pozzo et al., 2012). Electronic
transport properties σel and kel were computed using the Kubo‐Greenwood equation, as implemented in the
KG4VASP code (Di Paola et al., 2020). σel and kel are expressed as

σel = L11 (1)

kel =
1
e2T

(L22 −
L212
L11
) (2)

where Lij are the Onsager coefficients (i,j = 1 or 2), which are

Lij = (− 1)(i+j)
he2

Vcell
∑

kʹ ,k
lim
ϵ→0

f (ϵkʹ ) − f (ϵk)
ϵ

δ(ϵkʹ − ϵk − ϵ) × ⟨ψk|v̂|ψkʹ ⟩⟨ψkʹ |v̂|ψk⟩(ϵkʹ − ϵF)i− 1(ϵk − ϵF) j− 1 (3)

where ϵF is the Fermi energy; ψk, ϵk, and f(ϵk) are the wave function, eigenvalue, and Fermi‐Dirac occupation of
eigenstate k, respectively; v̂ is the velocity operator; and Vcell is the simulation cell volume. For a given snapshot,
the self‐consistent electronic relaxation was performed with electronic states populated according to the Mermin
functional (Mermin, 1965). ψk and ϵk are represented by the Kohn‐Sham eigenfunctions and eigenvalues for each
given snapshot, while v̂ is computed from the Hamiltonian gradient, hv̂ = 2π ∂ Ĥ/ ∂ k. Regarding the electron‐
electron scattering not fully accounted for in the Kubo‐Greenwood approach, previous studies on the thermal
conductivity of Fe and Fe‐Si alloys (Zhang et al., 2020, 2022) have shown that electron‐electron scattering can
contribute to an increase of up to 10% in the thermal conductivity of pure hcp Fe, but this contribution decreases
rapidly with increasing Si content. In our study, the lowest Si content is approximately 40 wt%, a level at which
electron‐electron scattering can be reasonably neglected.

The Wiedemann‐Franz law states that the ratio of the electronic contribution of the thermal conductivity to the
electrical conductivity of a metal is proportional to the temperature (T ),

kel
σel
= LT (4)

where L, known as the Lorenz number, is theoretically equal to 2.44 × 10− 8 W Ω K− 2.

To simulate the heat flux and temperature gradient at the CMB, we need to use the heat equations,

∂u
∂t
=

κ
cpρ

∇2u =
κ
cpρ
(
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2
) (5)

q = − κ∇u (6)

where u = u(x,y,z,t) is the temperature as a function of space and time, κ is the thermal conductivity, cp is the
specific heat capacity, ρ is the mass density, and q = q(x,y,z,t) is a vector field that represents the magnitude and
direction of the heat flow. Equations 5 and 6 describe how heat diffuses through a given region. By giving proper
boundary conditions, we can use finite element method to solve the problem.

3. Results and Discussion
3.1. Calculated Thermal and Electrical Conductivities

We calculated the thermal and electrical conductivities of B2 FeSi at CMB conditions. Besides, to elucidate the
compositional effects and facilitate a comparison with previous studies, we also considered two non-
stoichiometric compositions of B2 structure: Fe5Si3 enriched in Fe and Fe3Si5 enriched in Si. The symmetrical
crystal structures for the nonstoichiometric compositions were used. The calculated conductivities and Lorenz
number are shown in Figure 1.
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As shown in Figure 1b, our results at 4,000 K indicate that the electrical and thermal conductivities of the Fe‐rich
and Si‐rich compositions are similar. In contrast, the FeSi composition, adhering to the stoichiometric ratio,
significantly outperforms the other two. In addition, a composition‐based symmetry is observed in Figure 1b,
which has also been observed in previous studies on B2‐type aluminides (Terada et al., 2002). Specifically, the
electrical conductivity of FeSi reaches approximately 0.99 × 106 Ω− 1 m− 1, nearly twice that of the other com-
positions. The thermal conductivity of FeSi is approximately 109 W m− 1 K− 1, 50% higher than the other two.

To further explore these properties, we invoke the Wiedemann‐Franz law, which posits that the ratio of thermal
conductivity to electrical conductivity in metals is directly proportional to temperature. This ratio, known as the
Lorenz number, theoretically equals 2.44 × 10− 8 W Ω K− 2. However, deviations from this ideal value occur due
to varying interactions within different materials. Our computed Lorenz numbers of 3.33 × 10− 8, 2.77× 10− 8, and
3.28 × 10− 8 W ΩK− 2 for all three compositions at 4,000 K exhibit a little bit deviation from the theoretical value.

As shown in Figure 1a, the thermal conductivity of B2 FeSi experiences a modest increase with rising temper-
ature. It increases from approximately 108Wm− 1 K− 1 at 3,500 K to 117Wm− 1 K− 1 at 4,500 K. Remarkably, B2
FeSi maintains high thermal conductivity across a substantial temperature range. By contrast, the electrical
conductivity of B2 FeSi exhibits a moderate decline as temperature increases. It decreases from approximately
1.1 × 106 Ω− 1 m− 1 at 3,500 K to 0.92 × 106 Ω− 1 m− 1 at 4,500 K. Consequently, the Lorenz number experiences a
slight increase from 3,500 to 4,500 K. The contrasting temperature dependencies of thermal and electrical
conductivities likely arise from distinct conduction mechanisms. As temperature increases, electron excitation
intensifies, but the mean free path for both electrons and phonons decrease due to increased scattering. This
decrease in mean free path significantly reduces electrical conductivity, while it has a smaller impact on thermal
conductivity because phonon‐mediated heat transfer can still be efficient. Consequently, the thermal and elec-
trical conductivities exhibit different dependencies on temperature.

As a comparative validation, we also computed the thermal conductivity of hcp Fe at 4,000 K and ∼127 GPa,
yielding approximately 140 W m− 1 K− 1, a value consistent with literature references (Kleinschmidt et al., 2023).
These results collectively reinforce the validity of our findings.

To further analyze the anomalous high conductivity of B2 FeSi, we computed the density of states (DOS) of B2
FeSi, Fe3Si5, Fe5Si3, and hcp Fe at different temperatures. As previously mentioned, B2 FeSi exhibits a semi-
conducting behavior at low pressures and temperatures, characterized by a band gap in the DOS near the highest

Figure 1. Electrical and thermal conductivities of the B2 FeSi phase and the corresponding Lorenz number with (a) different temperatures and (b) compositions.
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occupied state (Fermi level). This gap prevents electrons from freely transitioning to unoccupied states above the
Fermi level, thereby impeding electrical and thermal conduction. However, B2 FeSi at CMB conditions has a
closed bandgap and displays metallic properties as shown in Figure 2, indicating a semiconducting‐to‐metallic
transition under pressures.

Figure 2a illustrates the DOS for the four materials, including the individual DOS for Fe and Si as well as the total
DOS. We have shifted the DOS to align the Fermi level with the energy zero point. The DOS of hcp Fe
significantly differs from those of the other three materials. Fe predominantly shapes the DOS in the B2 FeSi,
Fe3Si5, and Fe5Si3, and Si contributes minimally to the total DOS. However, the Si content significantly impacts
the DOS shape. Comparing B2 FeSi, Fe3Si5, and Fe5Si3, Fe3Si5 exhibits a DOS shape similar to B2 FeSi, with a
narrow peak below the Fermi level. By contrast, Fe5Si3 displays a flatter DOS profile. Among the three, B2 FeSi's
total DOS exhibits the sharpest peak just below the Fermi level, indicating a higher concentration of states
immediately adjacent to the Fermi level and thus enhanced conduction properties. We also compare the DOS of
B2 FeSi at three temperatures: 3,500, 4,000, and 4,500 K (Figure 2b). Although subtle, the DOS shift slightly
toward higher energies with increasing temperature. At 4,500 K, more states aggregate just below the Fermi level,
contributing to improved thermal conductivity. In summary, the DOS analysis sheds light on the underlying
mechanisms driving B2 FeSi's exceptional conductivity. Its unique DOS distribution near the Fermi level,
combined with temperature effects, contributes to its enhanced thermal and electrical properties.

3.2. Implications to the Deep Earth

Having established the exceptional conductivity of B2 FeSi, we now seek to understand its implications within the
deep Earth. To this end, we have compiled thermal conductivity data from both experiments and theoretical
calculations, covering various compositional scenarios. Figure 3 includes those relevant to the lower mantle (such
as MgSiO3 perovskite and post‐perovskite, as well as MgO with and without Fe), and also compositions relevant
to core ranging from pure Fe to Fe‐Si, Fe‐O, and Fe‐Si‐O alloys and liquids.

As shown in Figure 3, most studies consistently observe a gradual increase of thermal conductivity with rising
temperature—a trend that aligns with our calculation results for B2 FeSi. At 4,000 K, the thermal conductivities of
various Fe alloys and liquids (including Fe‐Si‐O) cluster around 100 W m− 1 K− 1. Notably, our calculated values
for B2 FeSi closely match literature data. The Fe‐Si‐O melts and liquid Fe, representing conditions near the CMB,
exhibit slightly higher thermal conductivities in the range of 140–160 W m− 1 K− 1. Most mantle minerals fall
within the 5–20 W m− 1 K− 1 range, with the exception of MgO, which boasts an exceptionally high thermal
conductivity of 76.8 W m− 1 K− 1. In summary, our study indicates that under the CMB conditions, B2 FeSi not
only surpasses other mantle minerals in thermal conductivity but even approaches that of liquid outer core.
Consequently, B2 FeSi‐containing ULVZs could emerge as potential contributors to thermal anomalies at
the CMB.

Previous studies suggest that blending approximately 8 vol% of B2 FeSi can account for the reduced seismic wave
velocities observed in ULVZs relative to the surrounding mantle (Mergner et al., 2021), but also a more recent

Figure 2. The density of states (DOS) of B2 FeSi, Fe3Si5, Fe5Si3, and hcp Fe. (a) The total and partial DOSs at 4,000 K and (b) the total DOS at different temperatures.
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study suggests a much higher ratio of 27–39 vol% B2 FeSi (T. Liu & Jing, 2024b). Furthermore, the addition of
high‐conductivity B2 FeSi would correspondingly elevate the thermal conductivity of ULVZs. The thermal
conductivity of mixtures involving B2 FeSi and mantle minerals can be calculated by using the Hashin‐Shtrikman
theory, from which the upper and lower bounds of the mixture's thermal conductivity are as follows

κlower = κ1 +
f2

(κ2 − κ1)− 1 + f1(3κ1)
− 1 (7)

κupper = κ2 +
f1

(κ1 − κ2)− 1 + f2(3κ2)
− 1 (8)

Here κupper and κlower represent the upper and lower limits of the mixture's thermal conductivity, respectively. The
composition‐dependent factors f1 and f2 denote the volume fractions of the initial components. κ1 and κ2 corre-
spond to the thermal conductivities of the two initial constituents. Our calculations, assuming a mantle mineral
thermal conductivity of 10 W m− 1 K− 1 and B2 FeSi's thermal conductivity of 109 W m− 1 K− 1, yield a thermal
conductivity of 12–16Wm− 1 K− 1 when B2 FeSi constitutes 8 vol% of the mixture. And if we use the latest results
of 27–39 vol% B2 FeSi, the thermal conductivity of the ULVZs could reach to about 18–41 W m− 1 K− 1.

We built a simple model of heat transport to quantify the influence of the B2 FeSi in the ULVZs. Based on the heat
equation and boundary conditions. Assuming the temperature anomaly caused by the ULVZs is limited in the D″
layer, then the lower and upper boundaries of the temperature anomaly area are about 2,900 and 2,700 km. The
boundary temperatures are fixed values and are set to 3,500 and 2,500 K, respectively. Then we set the thermal

Figure 3. Comparison of the calculated thermal conductivity of B2 FeSi with literature data (De Koker et al., 2012; Dekura & Tsuchiya, 2019; Haigis et al., 2012; Hsieh
et al., 2020; Pozzo et al., 2012; Wang et al., 2023; Xu et al., 2018; Zhang et al., 2022). Different marker shapes represent various studies, while colors denote distinct
materials. Solid and hollow markers differentiate between different states.
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conductivity of the mantle to 10 W m− 1 K− 1, and that of ULVZs to 14 and 31 W m− 1 K− 1, respectively, rep-
resenting the midpoints between the upper and lower bounds of the mixture as predicted by the Hashin‐Shtrikman
theory. The thickness of ULVZs is 50 km. We use the Finite Element Method Magnetics (Meeker, 2010) code to
solve the heat flow problem, and the results are shown in Figure 4. The thermal anomaly at the top of ULVZs is
about 50–100 K higher. The heat flux through ULVZs is about 1.2–1.8 times higher than the mantle. Thus, the
presence of B2 FeSi supports the formation of heat anomalies in ULVZs. The absence of heat anomalies only
occurs when we used the lowest fraction of B2 FeSi and the highest reported thermal conductivity of mantle
minerals (see Figure S4 in Supporting Information S1).

In the core dynamics, buoyancy drives convection due to density variations as a result of compositional and
temperature differences. On one hand, the precipitation of relatively lighter B2 FeSi increases the melt's density,
promoting subsidence and convection. On the other hand, the high thermal conductivity of ULVZs enhances heat
flux, facilitating heat dissipation and convection within the outer core. At the same time, this increased heat flux
may impact estimates of heat flow across the CMB. Although currently detected ULVZs constitute only a small
portion of the D″ layer, they could significantly influence heat flow across the CMB if widespread thin layers of
ULVZs exist within the D″ layer.

4. Conclusions
We calculated the thermal and electrical conductivities of both stoichiometric and nonstoichiometric B2 FeSi
under CMB conditions using ab initio methods. Unlike its semiconducting behavior at low pressures, B2 FeSi
becomes metallic and exhibits high thermal and electrical conductivities under CMB conditions. The thermal
conductivity of stoichiometric B2 FeSi is about 80% of outer core components and 11 times of those of lower‐
mantle minerals. The presence of B2 FeSi in ULVZs can create heat anomalies at the CMB, drive core con-
vection, and power mantle plumes. This supports the proposal that B2 FeSi constitutes ULVZs, which could be
further verified by using our calculated electrical conductivities in future electromagnetic induction studies.

Data Availability Statement
Ab initio molecular dynamics data are deposited in the repository Mendeley Data (Huang, 2025).
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