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Abstract

Ab initio finite temperature molecular dynamics simulations have been used to calculate the free energy and elasticity of face-centred
cubic (fcc) iron at a state point representative of the Earth's inner core. Whilst the free energy of this phase is found to be higher than that of
hexagonal-close-packed (hcp) iron, the difference is only 14 meV/atom. It is possible that this difference might be overcome by the presence
of light elements, as previous calculations at zero Kelvin have shown that the addition of elements such as silicon stabilise fcc-Fe with
respect to hcp-Fe by at least 40 meV/atom. The calculated elastic constants at core pressures and temperatures of pure fcc-Fe, and of alloys
of Fe with sulphur and nickel (Fe3S and Fe3Ni) derived from the fcc structure, lead to average shear wave velocities that are considerably
higher than those inferred from seismology; however, these mineralogical and seismological results could be reconciled by the presence of
partial melt in the inner core. The calculated P-wave anisotropy of fcc-Fe is comparable with the seismological values, but only if there is a
high degree of crystal alignment, although the necessity for alignment can be reduced if a layered model for the inner core is invoked. The
results presented in this paper therefore suggest that fcc-Fe cannot be ruled out as a candidate for the dominant phase of the Earth's inner
core.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

It is generally assumed that the Earth's inner core is made of
iron alloyed with ~5 wt.% nickel and a few percent light
elements such as sulphur or silicon (Birch, 1964), yet the
structural state of iron in the Earth's inner core is still unknown.
Until recently the hexagonal-close-packed (hcp) phase of iron
has been favoured because experiments have shown it to be the
stable phase at relatively modest pressure and temperature
conditions (e.g., Nguyen and Holmes, 2004) and theoretical
calculations from both quasi-harmonic lattice dynamics (Voča-
dlo et al., 2000) and finite temperature molecular dynamics

(Vočadlo et al., 2003a,b,) have shown it to have the lowest free
energy at core conditions with respect to other candidate phases.
However, the free energy difference between hcp-Fe and the
body-centred-cubic (bcc) phase of iron is very small (~35 meV)
when compared to the thermal energy at core conditions
(~500 meV) and so it is plausible that this difference might be
overcome by the presence of alloying elements. It has been
shown both experimentally (Lin et al., 2002a) and theoretically
(Vočadlo et al., 2003a,b; Côté et al., 2008, in press) that the
presence of light elements stabilises bcc-structured phases with
respect to hcp-structured phases and, on the basis of these
results, evidence has recently been mounting for an inner core
made predominantly of iron in the bcc structure. However, very
recently, calculations at core pressures and temperatures of the
elasticity of the hcp and bcc phases of iron, together with the
light element end members, FeS and FeSi (Vočadlo, 2007),
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showed that while the predicted compressional wave velocities
were in excellent agreement with those extrapolated from
experiments (Badro et al., 2007), the shear wave velocities of
all of the phases studied were significantly higher than those
inferred from seismology. Indeed, Vočadlo (2007) suggested that
the mineralogical model could only match the seismic model if
the inner core was partially molten, containing ~8% liquid.

Another possible explanation for the discrepancy between
the observed shear wave velocities and those predicted from
calculations is that the structural state of the inner core is a
different phase from those previously studied and, in view of the
factors discussed with regard to the relative stability of the hcp
and bcc phases, it is logical to investigate also the face-centred
cubic (fcc) phase of iron. Although naive arguments might
suggest the fcc structure to be a likely candidate (being the
closest packed structure of highest symmetry), it has, until now,
received little attention. The fcc phase is a particularly attractive
candidate as experiments show that nickel crystallises in the fcc
structure and stabilises fcc-Fe–Ni alloys relative to pure Fe
(e.g., Huang et al., 1988, 1992; Lin et al., 2002b; Mao et al.,
2006); furthermore, both Lin et al. (2002b) and Mao et al.
(2006) have found regions of fcc and hcp phase coexistence in
Fe–Ni alloys at high pressures and temperatures. In order to
establish whether the fcc phase is a viable candidate for the
structure of iron in the inner core, we present here the first ab
initio calculations performed at inner core conditions to obtain
both the free energy and elastic properties of fcc-Fe, Fe3Ni and
Fe3S for comparison both with previous calculations and with
seismological observations.

2. Calculation methodology

The calculations presented here are based on Density
Functional Theory (DFT) (Hohenberg and Kohn, 1964) within
the Generalised Gradient Approximation (Wang and Perdew,
1991) implemented in the code VASP (Kresse and Furthmüller,
1996), with the Projected Augmented Wave method (Blöchl,
1994) used to calculate the total energy of each system The
main advantage of this code is that the ab initio energy of the
system can be combined with molecular dynamics methods to
simulate simultaneously the high pressure and temperature
properties of iron. In ab initio molecular dynamics, the ions in
the system are treated as classical particles and, for each set of
atomic positions, the electronic energy and forces on the ions
are calculated, within the DFT approximation, which includes
the thermal excitations of the electrons. The calculations were
performed without spin polarisation as fcc iron has no magnetic
moment at the pressures and temperatures of the inner core.

2.1. Free energy calculations

The free energy of the fcc phase was obtained using the
method of thermodynamic integration which allows us to
calculate the difference in free energy, F−F0, between our ab
initio fcc system and a reference system whose potential
energies are U1 and U0 respectively. Adopting the dynamical
method described by Watanabe and Reinhardt (1990), a mixing

parameter λ, which depends on time, is slowly (adiabatically)
switched from 0 to 1 during a single simulation. The switching
rate has to be slow enough so that the system remains in
thermodynamic equilibrium and adiabatically transforms from
the reference system to the ab initio system. The change in free
energy is then given by:

DF ¼
Z T

0
dt
dk
dt

U1 � U0ð Þ ð1Þ

where T is the total simulation time; λ(t) is an arbitrary function
of t with the property of being continuous and differentiable for
0b tb1, λ(0)=0, and λ(T)=1.

We have successfully used this method to calculate ab initio
the melting behaviour of iron (Alfè et al., 1999) and aluminium
(Vočadlo and Alfe, 2002) as a function of pressure, and have
also reported results for the free energies of bcc and hcp-Fe at
core conditions (Vočadlo et al., 2003a,b). Following the meth-
odology described previously (Alfè et al., 1999, 2001; Vočadlo
and Alfe, 2002; Vočadlo et al., 2003a,b) we use as a reference
system a simple inverse power potential which takes the form
U=4ε(Г / r)α, where ε=1 eV, Γ=1.77 Å and α=5.86. The final
result is totally independent of the choice of reference system,
but it is desirable to choose a reference system as close to the ab
initio system as possible in order to maximise the efficiency of
the calculation. To be directly comparable to the free energy
calculations presented before (Vočadlo et al., 2003a,b) the
present calculations were performed on a 64 atom supercell
(4×4×4 primitive cells) with a 3×3×3 k-point grid with a
volume of 7.2 Å3 per atom and at a temperature of 6000 K. The
error in free energies is calculated to be b10 meV per atom.

2.2. Elasticity calculations

The elasticity calculations were performed with 1 k-point in
the Brillouin zone on a 108-atom supercell of fcc-Fe, Fe3Ni and
Fe3S; the Fe3Ni and Fe3S structures were produced by
substituting Ni/S for the Fe atom at 0,0,0 in the fcc cubic
subcell, leading to a primitive cubic structure. For fcc-Fe and
Fe3Ni the unit cell volumes were chosen so that the calculations
were performed at a density of 13,155 kg m−3 so as to be
directly comparable with the results presented previously for
hcp and bcc Fe (Vočadlo, 2007). Similarly, in all cases a
temperature of 5500 K was used to ensure comparability with
previous results for hcp-Fe, bcc-Fe, FeS and FeSi (Vočadlo,
2007). The elastic constants were determined from the cal-
culated equilibrated stresses associated with strains applied to
the supercells. To obtain the three non-zero elastic constants of
the cubic cells (namely, c11, c12 and c44) the deformation matrix
shown below was applied with distortions, δ, of ±2% and ±4%:

1þ d d=2 0
d=2 0 0
0 0 1

0
@

1
A

Simulation times of ~7.5 ps were used, allowing (after
equilibration) a statistical analysis over 5–6 ps. Using the time
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averaged stresses from the calculations, the elastic constants
were then obtained by the standard relations σij=cijklεkl. From
these elastic constants it is straightforward to determine the
isothermal incompressibility, KT, for a polycrystalline aggregate
by using the Voigt average for a cubic crystal, given by:

KT ¼ c11 þ 2c12
3

The adiabatic incompressibility can then be obtained from:

KS ¼ KT 1þ agTð Þ
The necessary values of the volumetric thermal expansion

coefficient and of the Grüneisen parameter were taken from
earlier calculations on the hcp phase of iron (Vočadlo et al.,
2003b: α=1×10−5 K−1 and γ=1.5).

The Voigt average for the shear modulus of the cubic system
is given by:

G ¼ c11 � c12 þ 3c44
5

The P-wave velocity, VP, shear wave velocity, VS, and bulk
sound velocity, VΦ, are then readily obtained from standard
relations.

3. Results

The free energies for the hcp and bcc phases of Fe (at a
density of 13,155 kg m−3 and a temperature of 5500 K)
calculated previously (Vočadlo et al., 2003a,b) are Fhcp=
−10.668 eV, Fbcc=−10.633 eV; thus, ΔFbcc− hcp=35 meV. For
the fcc phase of Fe the calculations in the present work result in
Ffcc=−10.654 eVand therefore ΔFfcc− hcp=14 meV. While it is
clear, therefore, that the hcp phase remains the most stable
structure in an inner core made of pure iron, the free energy
difference between this and the other two phases is very small.
Through calculations at zero Kelvin, Vočadlo et al. (2003a,b)
and Côté et al. (2008, in press) have already suggested that the
free energy difference between hcp and bcc iron could be
overcome with the addition of light elements such as silicon; the

free energy difference between hcp and fcc iron is even smaller.
Indeed, very recently, indicative calculations at zero K (Côté,
2007) at the same volume (7.2 Å3 per atom) have shown that the
addition of 8 at.% silicon to the fcc phase increases its stability
with respect to the hcp phase by 40 meV per atom, an amount
almost three times greater than that required to overcome the free
energy difference at core conditions.

The calculated elastic properties for the fcc phase of iron are
shown in Table 1 together with those at high density and the
same temperature for the bcc-Fe, hcp-Fe, FeS and FeSi phases
calculated previously (Vočadlo, 2007). Since we know that the
Earth's inner core contains some nickel as well as light ele-
ments, we have also calculated the elastic properties of Fe3Ni
and Fe3S, both of which have topologically equivalent struc-
tures to fcc-Fe. For comparison with these mineralogical results,
selected values of VP and VS from PREM (Dziewonski and
Anderson, 1981) are also shown in the table. It is clear that for
all phases studied, the calculated average shear wave velocities
are considerably higher than the seismologically determined
values. There are a number of mechanisms by which the min-
eralogical and seismological results might be reconciled. Firstly,
in an earlier paper (Vočadlo, 2007), the effects of anelasticity
were considered but it was shown that this should result in a
decrease in the shear wave velocity of only 0.5–1.5%, much
less than that required; a similar reduction would obtain here.
Secondly, there is evidence from laboratory work on olivine
which suggests that grain size may be an important factor in
determining seismic velocity; it was found that reduction in
grain size reduced the shear wave velocity (Faul and Jackson,
2005). However, ab initio calculations on mantle phases (e.g.
Oganov et al., 2001) do not show large discrepancies between
the predicted velocities and those from seismic reference
models. If grain size was a large factor, it might be expected that
its effect should be even more apparent in the mantle. The fact
that we do not see this therefore suggests that this mechanism
cannot be invoked for the shear wave velocity disparity seen in
the core. Thirdly, it has been suggested previously that the
discrepancy could be explained by melt pockets in the inner
core (Vočadlo, 2007). The amount of melt can be estimated by
taking the Hashin–Shtrikman bound for the effective shear

Table 1
Isothermal (adiabatic) elastic constants and sound velocities of fcc-Fe (this work), hcp-Fe and bcc-Fe (Vočadlo, 2007), together with those of Fe3S, Fe3Ni (this work),
FeSi and FeS (Vočadlo, 2007); also shown are values taken from PREM at the core–mantle boundary and at the centre of the inner core (Dziewonski and Anderson,
1981)

ρ
(kg m−3)

T
(K)

c11 GPa c12 GPa c44 GPa c23 GPa c33 GPa VP km s−1 VS km s−1

fcc 13155 5500 1397 (1499) 1247 (1349) 423 11.64 4.64
hcp 13155 5500 1631 (1730) 1232 (1331) 159 983 (1074) 1559 (1642) 11.14 4.01
bcc 13155 5500 1505 (1603) 1160 (1258) 256 11.29 4.11
FeSi 10212 5500 1643 (1732) 1030 (1119) 462 13.53 6.26
FeS 10353 5500 1294 (1371) 1050 (1127) 257 12.02 4.43
Fe3S 12097 5500 1377 (1478) 1281 (1382) 321 11.87 4.18
Fe3Ni 13155 5500 1296 (1386) 1175 (1265) 406 11.28 4.51
PREM 12760 11.02 3.5

13090 11.26 3.67

To obtain the adiabatic elastic constants, the isothermal elastic stiffnesses (cij) were first converted into isothermal compliances (sij) and then transformed into adiabatic
compliances (as described in Nye, 1985) using a linear thermal expansion coefficient of (1 /3)×10−5 K−1 and a heat capacity of 5 kB/atom (Vočadlo et al., 2003b);
these compliances were then transformed back into elastic stiffnesses. Uncertainties in VP and VS are ~1%.
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modulus of two-phase media (Hashin and Shtrikman, 1963); in
Vočadlo (2007) the minimum amount of melt in the inner core
for either an hcp or bcc-structured phase was estimated to be
~8%. The results from this present work, using a similar
analysis, suggest that a much greater melt fraction for fcc-Fe
(N25%) is required and that the amount of melt is not
significantly reduced by the presence of either nickel or sulphur.

In order to be a viable candidate for the inner core phase, the
fcc structure must also be consistent with the observed P-wave
anisotropy of ~3% (Creager, 1992; Song, 1997; Ouzounis and
Creager, 2001). Fig. 1a shows the P-wave velocities, calculated
from the elastic constants of fcc-Fe as a function of propagation
direction; for comparison, the corresponding figures for bcc-Fe
and hcp-Fe are also given in Fig. 1b and c respectively. The
equivalent plots for the fcc-derived alloys, Fe3Ni and Fe3S, are
very similar to that for pure fcc-Fe, and are therefore not shown.
For fcc-Fe, Fe3Ni and Fe3S the maximum P-wave anisotropy is
10–15% (as indicated in Fig. 1a) but this degree of anisotropy
cannot be achieved through two mutually perpendicular
directions. If it is assumed that the P-wave anisotropy in the
Earth's inner core is due to crystal alignment then, by inspection
of Fig. 1, we can examine the degree of anisotropy between
polar and equatorial directions for different crystal orientations.
Fig. 1a indicates that, for fcc-Fe, the anisotropy will be b1% for
crystals aligned along b110N, ~3% for crystals aligned along
b111N and as much as 6% for crystals aligned along b100N; for
b110N and b100N the anisotropy is such that the velocity along
the alignment axis is lower than the average velocity in the
plane perpendicular to it. Alignment of fcc-Fe with b111N
parallel to the polar axis can, in principle, give values com-
parable with the observed anisotropy, but would require full
crystal alignment in the inner core; alternatively, the observa-
tions could be explained by crystals oriented with b100N in the
equatorial plane, this arrangement requiring a lesser degree of
alignment. It should be noted, however, that for the case in
which b111N is aligned parallel to the polar axis, an increase in
anisotropy, therefore requiring less preferential orientation, can
be achieved by assuming the inner core is layered (Ouzounis
and Creager, 2001) in such a way that a central, cylindrical (co-
axial with the rotation axis) portion of the inner core is aligned.
Since the average velocity perpendicular to b111N is faster than
the average velocity for randomly oriented crystals, this
layering has the effect of reducing the aggregate equatorial
velocity, whilst keeping the polar velocity the same (and hence
increasing the anisotropy); in the case in which b100N lies in the
equatorial plane, the opposite is true and the anisotropy would
be reduced. For comparison with the results for fcc-Fe, we note
that for bcc-Fe (Fig. 1b) the P-wave anisotropy is similar in
form but smaller in magnitude; the maximum anisotropy that
can be achieved through mutually perpendicular directions is
never more than ~2%; for the hcp-Fe phase (Fig. 1c) a ~3%
anisotropy can be achieved through mutually perpendicular
directions whereby, for the polar P-wave velocity to be faster,
the c-axis of the crystals would lie in the Earth's equatorial
plane. Thus, for the bcc phase of iron, the observed seismic
anisotropy in the Earth's inner core cannot be achieved by
alignment alone, while for the hcp phase it is just possible to

achieve the required degree of anisotropy by alignment but, as
for the b111N orientation of fcc-Fe, the degree of alignment
required would need to be very high.

Finally, any model for the inner core incorporating crystal
alignment capable of explaining the observed P-wave anisotropy
must also be compatible with the shear wave anisotropy required

Fig. 1. Single crystal P-wave velocities for a) fcc-Fe, b) bcc-Fe and c) hcp-Fe at
inner core conditions as a function of propagation direction. Figure generated by
Unicef Careware (Mainprice, 1990).
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in seismic models (e.g., Tromp, 1993; Beghein and Trampert,
2003). In Fig. 2 we show the two shear wave velocities (Fig. 2a
and b), and the difference between them (Fig. 2c), in fcc-Fe as a
function of propagation direction. The degree of shear wave
anisotropy shown by fcc-Fe is striking and is much larger than

that found for either bcc- or hcp-Fe, both in terms of the
difference in wave velocities for a given propagation direction
and for the variation of the velocity with direction for a given
polarisation. For example, it can be seen from Fig. 2c that for
b110N directions the difference in shear wave velocity for the
two polarisations is very large, with the anisotropy (defined here
by the quantity 2(VS1−VS2) / (VS1+VS2)) as high as ~80%. In
contrast, the maximum value for this anisotropy is ~20% along
b110N for bcc-Fe and the maximum for hcp-Fe is ~26% for
directions inclined at ~40° to the c-axis (the values for both bcc-
and hcp-Fe have been derived from the elastic constants given in
Vočadlo, 2007). Similarly, when VS1 and VS2 are considered
separately as a function of propagation direction, their
anisotropy values 2(Vmax−Vmin) / (Vmax+Vmin) are ~35% and
~80% respectively for fcc-Fe, but only ~10% and ~20% for bcc-
Fe and ~30% and ~10% for hcp-Fe. However, as discussed
above for the case of P-waves, when discussing crystal
alignment in the Earth, mutually perpendicular propagation
directions must be considered. From the results shown in Fig. 2a
and b, we find that for fcc-Fe: (i) the average values of VS1 and
VS2 in the plane perpendicular to b111N are ~40% faster and
~20% slower respectively than the velocity along b111N, and
(ii) forb100N alignment, VS1 is unchanged while the average
value of VS2 in the plane perpendicular to b100N is ~30% slower
than the velocity along b100N.

4. Conclusions

Ab initio finite temperature calculations using the technique
of thermodynamic integration to calculate free energies
presented both previously (Vočadlo et al., 2003a,b) and here
show that the thermodynamically stable phase of pure iron at
core conditions is the hexagonal-close packed phase. However,
the free energy differences between hcp-Fe and either bcc-Fe or
fcc-Fe are very small (35 meV for bcc-Fe and 14 meV for fcc-
Fe). Previous calculations performed at zero Kelvin suggest that
such small free energy differences could easily be overcome by
the addition of light elements (Vočadlo et al., 2003a,b; Côté
et al., 2007, 2008, in press). The calculated elastic properties of
fcc-Fe, Fe3Ni and Fe3S presented here show behaviour similar
to that seen for hcp-Fe, bcc-Fe and their alloys (Vočadlo, 2007),
namely that the average shear wave velocities are considerably
higher than those determined from seismology. One way of
reconciling this difference is to invoke a model for the inner
core that includes some molten material; however, for fcc-Fe the
amount of melt required is considerably greater than for either
bcc-Fe or hcp-Fe. Finally, the observed P-wave anisotropy in
the inner core could be accounted for if the solid phase were fcc-
Fe, provided there was a high degree of crystal alignment or
layering present. In conclusion, our results show that the fcc
phase of iron should not be ruled out as a viable candidate for
the major phase present in the Earth's inner core.
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