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Electrical and thermal conductivity of liquid sodium from first-principles calculations
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We report on the electrical and thermal conductivity of liquid sodium at 400 K, calculated using density
functional theory with the local density approximation (LDA) and the Kubo-Greenwood formula. We extensively
tested system-size errors and k-point sampling, using simulation cells containing up to 2000 atoms. We find
that convergence of the results with respect to the size of the system is slow, and at least 1024-atom systems
are required to obtain conductivities converged to within a few percent. �-point sampling does not seem to
be accurate enough, even for the very largest 2000-atom system. We performed calculations at three densities,
including the experimental density ρexpt = 921 kg m−3, the LDA density ρLDA = 1046 kg m−3, and a higher
density ρ = 1094 kg m−3. At the experimental density, the electrical conductivity is underestimated by ∼35%,
at the LDA density it is overestimated by ∼18%, and at the largest density it is higher than the experimental one
by ∼50%. At the experimental density, we also used the Perdew-Burke-Ernzerhof functional, and found that the
conductivity is overestimated by only ∼6%.
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I. INTRODUCTION

Because of its simplicity and resemblance to an ideal
free-electron system, sodium is one of the most studied metals.
Liquid sodium is particularly interesting from a scientific
and technological point of view. For example, it is used as
coolant in fast-breeding nuclear reactors, and in heat pipes
in high-temperature solar-energy power plants, thanks to its
large thermal conductivity, which makes it a very effective
heat-transfer medium. It also has useful properties such as
low vapor pressure and high boiling point, low viscosity
and density, and being a low neutron absorber.1 Recently,
liquid sodium was used as a proxy to study the self-sustained
geomagnetic field, generated in the liquid part of the Earth’s
core. Despite the experiments being obviously performed on
much different size and time scales, the parameters were
tuned to reproduce the relevant conditions representative of
the Earth’s core.2 Among the various parameters entering
the magnetohydrodynamics equations used to describe the
self-generation of a magnetic field in a rotating liquid metal,
particularly important ones are the electrical and the thermal
conductivity of the metal.

The electrical conductivity of liquid sodium has been
calculated by several groups in the past,3–6 mainly using the
phenomenological approach of Ziman7 based on the structure
factor of the liquid. More recently, a direct approach based
on the Kubo-Greenwood (KG) formula8,9 in combination with
density functional theory (DFT) was employed by Silvestrelli
et al.10 and by Knider et al.11 In principle, the KG formula is
exact, but the use of the DFT single-particle orbitals (in
addition to inaccuracies of the exchange-correlation func-
tional) makes its application imperfect. Silvestrelli et al.10

found that the calculated conductivity of Na near the melting
point is underestimated by DFT with the local density
approximation (LDA) roughly by a factor of 2, although the
agreement between calculations and experiments improves as
the temperature is raised. They argued that this disagreement
is probably due to the use of DFT-LDA orbitals in the KG

formula, and to the size of their simulation cells, which
included up to 206 atoms. By contrast, Knider et al.11 obtained
a value for the electrical conductivity of liquid Na near its
melting point very close to the experimental one, even though
they used much smaller simulation cells including only 32
atoms. Both Silvestrelli et al.10 and Knider et al.11 performed
the calculations at the experimental density.

Here, we have revisited the problem and investigated
the electrical conductivity of liquid sodium at 400 K using
DFT-LDA and the KG formula. Thanks to big advancements
in computer power in recent years, we have been able to
investigate size effects using simulation cells containing up to
2000 atoms. In order to investigate the effect of density on the
conductivity, we performed calculations at the experimental
density ρexp = 921 kg m−3,12 the LDA density ρLDA =
1046 kg m−3,13 and the density ρ = 1094 kg m−3. Our results
at the experimental density lead to similar conclusions as those
of Silvestrelli et al.10 in that they underestimate the electrical
conductivity, even though by only 35%, and shed new light on
the magnitude of size effects. In particular, we found that these
errors are significant on systems including less than ∼1000
atoms. At the LDA density, the conductivity is overestimated
by ∼18%, and at the higher density, we found that the
conductivity is higher than the experimental one by ∼50%.

We also investigated the effect of using the Perdew-
Burke-Ernzerhof16 (PBE) functional and found that, at the
experimental density, the results are in much better agreement
with experiments, overestimating the conductivity by only
∼6%.

As a by-product of our simulations, we obtained the elec-
tronic component of the thermal conductivity, which shows
that, as expected for an almost free-electron-like system such
as liquid Na, the Wiedemann-Franz law17 is closely obeyed,
with a Lorenz number close to the ideal value ∼2.44 × 10−8 �

W K−2 at all densities.
The paper is organized as follows. In the next section, we

describe the techniques and the computational framework. In
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Sec. III, we present the results, beginning with the structural
properties of liquid Na, followed by a report on the electrical
and thermal conductivity. Section IV contains our conclusions.

II. TECHNIQUES

First-principles simulations were performed using the VASP

code18 with the projector augmented wave (PAW) method19,20

and the LDA or the PBE (Ref. 16) functional. Most calculations
were performed with a Na PAW with only the 3s electron
in valence, but we also tested the effect of including the 2p

electrons in valence, which showed an undetectable effect on
the conductivities. Single-particle orbitals were expanded in
plane waves with a cutoff of 102 and 300 eV for the PAWs
with the 3s1 and 2p63s1 valence configurations, respectively,
and the core radii were 1.16 Å in both cases. Electronic levels
were occupied according to Fermi-Dirac statistics, with an
electronic temperature of 0.035 eV. An efficient extrapolation
of the charge density was used to speed up the ab initio
molecular dynamics calculations.21 The simulations were
performed by sampling the Brillouin zone (BZ) with the
� point only. The temperature was controlled with a Nosé
thermostat22 and the time step was set to 3 fs. We used simple
cubic simulation cells including 54, 128, 432, 1024, 1458, and
2000 atoms. For each size, we started from a perfect body-
centred-cubic (bcc) lattice and melted the system by simulating
for 3 ps at a temperature of 4000 K. We monitored the system
by calculating the time-dependent mean-square displacement
and verified that, after 3 ps, a good equilibrated liquid was
obtained. After that, we reduced the temperature to 400 K and
rethermalized the system for further 3 ps. Then, we simulated
for an additional 15 ps from which we extracted N = 10
configurations {RI ; I = 1,N} equally spaced in time. These
N configurations were then used to compute the electrical and
the thermal conductivity via the Kubo-Greenwood and the
Chester-Thellung-Kubo-Greenwood23 formula, respectively,
as implemented in VASP.24

The Kubo-Greenwood formula for the electrical conductiv-
ity as a function of frequency ω for a particular k point in the BZ
of the simulation supercell and for a particular configuration
of the ions {RI } reads as

σk(ω; RI ) = 2πe2h̄2

3m2ω�

n∑
i,j=1

3∑
α=1

[F (εi,k) − F (εj,k)]

× |〈
j,k|∇α|
i,k〉|2δ(εj,k − εi,k − h̄ω), (1)

where e and m are the electron charge and mass, respectively,
h̄ is the Planck’s constant divided by 2π , � is the volume
of the simulation cell, and n is the number of Kohn-Sham
states. The α sum runs over the three spatial directions,
which in a liquid are all equivalent. 
i,k is the Kohn-Sham
wave function corresponding to eigenvalue εi,k, and F (εi,k)
is the Fermi weight. The δ function is represented by a
Gaussian, with a width chosen to be roughly equal to the
average spacing between the eigenvalues weighted by the
corresponding change in the Fermi function.24 The width
was chosen to be 45, 18, 5, 2.2, 1.7, and 1.2 meV for
the 54-, 128-, 432-, 1024-, 1458-, and 2000-atom systems,

respectively. Integration over the BZ is performed using
standard methods,25 and the frequency-dependent conductivity
of the liquid is obtained by averaging over the N configurations
{RI ; I = 1,N}:

σ (ω) = 1

N

N∑
I=1

∑
k

σk(ω; RI )W (k). (2)

Here, W (k) is the weighting factor for the point k. In principle,
all the W (k) would be identical for a simulation with no
symmetries like that of a liquid in a cubic box. In practice, we
found it convenient to use k points drawn from the irreducible
wedge of the BZ of the same system in which the atoms occupy
bcc perfect lattice positions, as convergence with respect to
the number of k points is faster if the points are chosen in
this way [in the case of one k point only, this corresponds to
the Baldereschi point,26 given by (2π/a)(1/4,1/4,1/4), where
a is the length of the side of the cubic simulation box]. The
dc conductivity σ0 is given by the value of σ (ω) in the limit
ω → 0. This limit needs to be taken with care because, at very
small values of ω, the conductivity falls unphysically to zero
due to the artificial finite spacing between the Kohn-Sham
eigenvalues, caused by the finite size of the simulation cell.
To take this limit, our procedure is to fit the conductivity to a
smooth function, without including in the fit values of σ (ω)
that have started to fall to zero. Since liquid Na is a nearly
free-electron metal, the optical conductivity is expected to
behave according to a Drude model σ (ω) = σ0/(1 + ω2τ 2),
with τ being the relaxation time, which is what we chose to fit
the data.

The optical conductivity must obey the sum rule

S = 2m�

πe2Ne

∫ ∞

0
σ (ω)dω = 1, (3)

where Ne is the number of electrons in the simulation cell.
The value of S provides a useful check of the quality of the
data, although in practice it is expected to be less than one,
as only states up to a finite value of ω can be included in the
calculations. However, the low-energy part of σ (ω), which is
used to extract the dc conductivity, converges much faster than
the high-energy tail. We decided to include in the calculations
only states up to 2 eV above the Fermi energy, and verified
that the low-energy part of the spectrum is unaffected by this
choice by performing spot checks in which we included states
up to 5 eV above the Fermi energy.

In a free-electron liquid, the electronic part of the thermal
conductivity κ0 and the electrical conductivity σ0 are related
by the Wiedmann-Franz law L = κ0/σ0T , where L is the
Lorenz number. Here, we have directly calculated κ0 using
the Chester-Thellung23 formulation of the Kubo-Greenwood
formula, which reads as

κ(ω) = 1

e2T

(
L22(ω) − L12(ω)2

σ (ω)

)
, (4)

and κ0 is the value of κ(ω) in the limit ω → 0. The kinetic
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FIG. 1. (Color online) Radial distribution function g(r) (left panel) and structure factor S(k) (right panel) of liquid Na at 400 K at the
experimental density ρexpt = 921 kg m−3, computed using simulation cells including 54, 128, 432, and 1024 atoms. Data from simulations
with 1458 and 2000 atoms are indistinguishable from those with 1024 atoms and are not shown. All simulations have been performed with the
� point only.

coefficients Llm(ω) are given by27

Llm(ω) = (−1)(l+m) 2πe2h̄2

3m2ω�

n∑
i,j=1

3∑
α=1

[F (εi,k) − F (εj,k)]

× |〈
j,k|∇α|
i,k〉|2[εj,k − μ](l−1)[εi,k − μ](m−1)

×δ(εj,k − εi,k − h̄ω), (5)

where μ is the chemical potential.

III. RESULTS

In Fig. 1 (left panel), we show the radial distribution
functions g(r) of liquid Na at 400 K computed with simulation
cells containing 54, 128, 432, and 1024 atoms. The simulations

were performed using the � point only at the experimental
density ρexpt = 921 kg m−3. Size effects are apparent for
the 54- and the 128-atom systems, but for sizes including
432 atoms or more, the calculated g(r) are indistinguishable
from each other. The same size effects can be observed in the
structure factor S(k) (Fig. 1, right panel). The g(r) and S(k) for
the 1458- and 2000-atom systems are also essentially identical
to those of the 432- and 1024-atom systems, and are not
shown.

In Fig. 2, we plot the radial distribution function g(r) both
at the experimental density ρexpt = 921 kg m−3 and at the
LDA density ρLDA = 1046 kg m−3. We also plot the structure
factor calculated at the two densities, and we compare it with
experimental data, taken at 373 K.28 We see that the S(k)
calculated at the experimental density agrees well with the
experimental structure factor, and the agreement is less good
when the LDA density is used in the calculations. The present

FIG. 2. (Color online) Radial distribution function g(r) (left panel) and structure factor S(k) (right panel) of liquid Na at 400 K, computed
using 1024-atom simulation cells at the experimental density ρexpt = 921 kg m−3 (black solid curve) and at the LDA density ρLDA = 1046 kg m−3

(dashed violet curve). Experimental data (blue dots) are from Ref. 28.
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FIG. 3. (Color online) Optical conductivity σ (ω) at the experi-
mental density, calculated with the 54-atom system and using various
sets of k points.

results are in good agreement with previous DFT studies of
liquid Na.10,11,29

In Fig. 3, we show the optical conductivity for the smaller
54-atom system, calculated as described in Sec. II and as
function of number of k points. The data show that σ (ω)
strongly depends on the number of k points included in the
calculations and demonstrate that, for this system size, one
needs to include at least 56 k points for the results to be
completely converged.

In Fig. 4, we show the conductivity as function of system
size, calculated with the � point only. The smallest 54-atom
system is not included because �-only sampling induces an
artificial gap of ∼0.5 eV, which is large enough to produce an
unphysical very small conductivity. It is clear that convergence
with respect to system size is very slow, and the results still
show differences between the two largest 1458- and 2000-
atom systems. Even with the 2000-atom systems, the results
are not converged yet (see below). This confirms previous
suggestions10 that �-point-only sampling is not sufficient, but

FIG. 4. (Color online) Optical conductivity σ (ω) at the experi-
mental density calculated with the � point only for various system
sizes.

FIG. 5. (Color online) Optical conductivity σ (ω) at the experi-
mental density calculated with the 54-, 128-, 432-, 1024-, 1458-, and
2000-atom systems. Results shown are fully converged with respect
to k-point sampling.

extends the claim to much larger systems than previously
explored.

Convergence of the results with respect to k points is
expected to be faster for larger systems, and this is indeed
what we observe. For instance, in order to obtain conductivities
converged to within 1%, we need 10 k points for the 128-atom
system, 4 for the 432-atom system, and just the Baldereschi
point26 for the systems with 1024 atoms and above. In Fig. 5,
we show the optical conductivity for various system sizes,
where only the k-point converged result for each size is shown.
At variance with the previous �-point case, we observe that
convergence with respect to system size is indeed obtained.
However, even with a 432-atom system, the error in the optical
conductivity is still appreciable.

The dc conductivities have been obtained by fitting the
low-energy region of the optical conductivity to a Drude
function, which as expected adapts to the data very well. The
results are summarized in Fig. 6. The first thing to notice is
that, as mentioned above, �-point sampling is inadequate even
for the largest systems. On the other hand, the Baldereschi
point26 provides good results, as long as at least 1024 atoms
are included in the simulation cell. In fact, it is clear that, even
with 432-atom cells, the error in the conductivity is at least
∼10%. We also display in Fig. 6 the value of S, which shows
that the sum rule is closely satisfied, a part from the simulations
with the � point and those with the small 54-atom system.

Our results come to the same conclusions as those of
Silvestrelli et al.,10 namely, that, at the experimental density,
the dc conductivity predicted by LDA is lower than the
experimental one. The use of larger simulation cells improves
the results to the value σ0 = 6.2 × 106 �−1m−1, but this
is still ∼35% lower than the experimental value σ

expt
0 =

9.7 × 106 �−1m−1.30

To investigate the dependence of the conductivity on
the density of the system, we performed calculations also
at LDA density ρLDA = 1046 kg m−3 and at the density
ρ = 1094 kg m−3. At the highest density, we repeated all
the size and k-points tests performed for the system at the
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FIG. 6. (Color online) Electrical conductivity σ0 (top panel)
obtained from a fit of σ (ω) to a Drude function for the 54-, 128-, 432-,
1024-, 1458-, and 2000-atom systems at the experimental density
ρexpt = 921 kg m−3. Bottom panel shows the value of S [see Eq. (3)].
Results are shown for various sets of k points.

experimental density, and the results are summarized in Fig. 7.
At the LDA density, we only performed the calculations on
the 1024-atom system. We found that the dc conductivities are
σ0 = 11.4 × 106 �−1m−1 and σ0 = 14.6 × 106 �−1m−1 in
the two cases, respectively, which are ∼18% and ∼50% higher
than the experimental one, respectively. The much closer
agreement between the calculations performed at the LDA
density and the experimental data is encouraging, and supports
the first-principles approach in which no experimental input is
provided to the calculations. On this point, we should also note
that the conductivity depends significantly on temperature,
or rather on the distance from the melting temperature, so it
is possible that the remainder of the disagreement with the
experimental data is due to that. At present, the zero-pressure
LDA melting temperature of Na is not yet known.

Finally, to test the effect of Brillouin zone sampling on the
geometry of the system and how this could possibly propagate
to the conductivity, we performed a further simulation with
the 1024-atom system at the experimental density using the
Baldereschi point.26 From this simulation, we obtained a radial
distribution function, which is indistinguishable from that ob-
tained with the �-point simulation, and the calculated electrical
conductivity is also essentially identical in the two cases.

It is interesting to investigate the effect of the
exchange-correlation functional on the conductivity of
Na. For this reason, we performed an additional simulation

FIG. 7. (Color online) Electrical conductivity σ0 (top panel)
obtained from a fit of σ (ω) to a Drude function for the 54-, 128-, 432-,
1024-, 1458-, and 2000-atom systems at the density ρ = 1094 kg m−3.
Bottom panel shows the value of S [see Eq. (3)]. Results are shown
for various sets of k points.

on the 1024-atom system using the PBE functional at the
experimental density ρexpt = 921 kg m−3, which is very close
the PBE density ρPBE = 926 kg m−3.13 As in the previously
described cases, we extracted 10 statistically independent
configurations to compute the conductivity, and obtained the
value σ0 = 10.3 × 106 �−1m−1, which is only ∼6% higher
than the experimental value.

The calculation of the electronic component of the thermal
conductivity κ was performed using Eqs. (4) and (5), and it
was computed simultaneously to the electrical conductivity σ .
The size and k-point effects discussed for the computation of
σ (ω) also apply to the calculation of κ(ω). By extrapolating
κ(ω) for ω → 0, we obtain the value of κ0 = 60 W m−1 K−1

when we use the experimental density, κ0 = 107 W m−1 K−1

at the LDA density, and κ0 = 140 W m−1 K−1 when we use the
density ρ = 1094 kg m−3. When compared to the experimental
value κ

expt
0 = 86 W m−1 K−1,31 these values display a similar

degree of accuracy as the electrical conductivity. Using the
PBE functional and the experimental density, we obtained κ0 =
93 W m−1 K−1. The Lorenz numbers are L = 2.42, 2.34, 2.4,
and 2.26 × 10−8 � W K−2 for the three LDA cases and the
PBE case, respectively, very close to the ideal value. The
electrical and thermal conductivity results are summarized in
Table I.

To understand in more details why convergence with respect
to the size of the system is so difficult, we plot in Fig. 8 the
density of the represented states and the derivative of the Fermi
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TABLE I. Electrical dc conductivity σ0, thermal conductivity κ0, and Lorenz number L of liquid sodium calculated in the this paper at
various densities and T = 400 K, compared with experimental data at ambient pressure (in square brackets). Calculations have been performed
using the LDA and PBE (values in parentheses).

ρ (kg m−3) σ0 (106 �−1m−1) κ0 (W m−1 K−1) L (10−8 � W K−2)

[921]a 6.2 (10.3) [9.7]b 60 (93) [86]c 2.42(2.26)[2.22]c

1046 11.4 107 2.34
1094 14.6 140 2.4

aReference 12.
bReference 30.
cReference 31.

distribution with respect to the energy dF/dε divided by its
value at the minimum (i.e., at the Fermi energy). The plot is
restricted to the region where dF/dε is appreciably different
from zero, which is the only region contributing to the dc
conductivity. The left panel of the figure is for the 128-atom
system, and the right panel is for the 1024-atom system. It is
clear that, for the small system, there are only a few states
that contribute to the conductivity, and for this reason the
calculations with a system of this size are not accurate enough.

IV. CONCLUSIONS

We have presented first-principles calculations of the elec-
trical and thermal conductivity of liquid Na at a temperature of
400 K. The calculations are based on density functional theory
with the local density approximation and the Kubo-Greenwood
formula. We have shown that size effects are not trivial in this
system, and unexpectedly large simulation cells are required
to converge the results to high accuracy. We have also shown
that k-point sampling is crucial, and even with a very large
system containing 2000 atoms, using only the � point gives
results that are simply not converged. The possibility of large
size effects had been already mentioned in previous work,10

but here we have explicitly addressed their magnitudes.
The calculated value of the electrical conductivity at the ex-

perimental density is too low by ∼35%, in general agreement
with previous calculations. We have also investigated the effect
of the density on the conductivity, and we found that the LDA

performs better at the LDA density. Moreover, the conductivity
depends strongly on temperature, and presumably on how far
the system is from the melting temperature. This would suggest
that it should be interesting to compute the zero-pressure
LDA melting point of Na, and investigate the dependence
of the calculated values of the conductivities as a function of
distance from the calculated melting temperature. As pointed
out earlier,10 an additional source of error could be the use of
the DFT eigenvalues and eigenstates in the Kubo-Greenwood
formula instead of the true many-body values. This error is
not confined to the use of the LDA, as even if we knew
the exact exchange-correlation functional, the single-particle
eigenvalues and eigenstates would still not be the correct
quantities to use.

Finally, we tested the effect of using the PBE exchange-
correlation functional instead of the LDA and found that the
PBE functional gives better agreement with the experimental
density. Likewise, PBE gives significantly better agreement
with the measured conductivity, and at the experimental
density, the calculated conductivity is only ∼6% too high.
Given the observed high sensitivity of the conductivity on the
density, this could be the reason why the PBE is much more
accurate.

The electronic part of the thermal conductivity is computed
using essentially the same ingredients as those employed
for the electrical conductivity, and the results show that the
Wiedemann-Franz law is closely satisfied, as expected for a
nearly free-electron metal such as sodium.
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FIG. 8. (Color online) Density of represented states N(ε) (vertical black lines) and derivative of the Fermi distribution dF/dε divided by
its value at the minimum (red curve) for the 128-atom (left panel) and the 1024-atom (right panel) systems. Apparent thicker lines correspond
to nearly degenerate eigenvalues.
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