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The Holy Grail of condensed matter physics is the 
ability to solve the 78 year old Schrödinger equation 
for “real-life” systems.  The great difficulty is that the 
motions of the electrons in molecules and crystals are 
correlated because of the strong repulsion between 
their negative charges.  The solution of the many-
electron Schrödinger equation (the wavefunction) is 
therefore a complicated function of 3N variables, where 
N is the number of electrons in the system.  A boost to 
the field was given by Hohenberg and Kohn (HK) 40 
years ago [1], with the introduction of density functional 
theory (DFT).  They showed that it was possible to 
reformulate quantum mechanics in such a way that 
the important physical quantity is the electron density, 
rather than the electronic wavefunction, reducing the 
complexity of the problem from 3N to 3.  Of course, 
free lunches are seldom available, and the price to pay 
for the great simplification of HK was the introduction 
of a new quantity, called exchange-correlation (XC) 
energy, which is an (as yet) unknown functional of 
the electron density.  To make the theory work, HK 
suggested a simple form for the XC functional, known 
as the local-density approximation (LDA).  The LDA 
is exact in a system with a homogeneous electron 
density, and is only an approximation in (real-life) 
inhomogeneous systems.  Forty years later the LDA is 
still widely used, and has been the main factor for the 
great success of DFT, however, there are a number of 
cases where more accuracy is needed than the LDA can 
provide.  Physicists have struggled for decades to find 
better approximations for the XC energy, and come up 
with a number of improvements to the LDA, but there 
are still several ’difficult’ cases for which no available 
approximation for the XC is really satisfactory.

A completely different approach to the problem is 
offered by so called quantum Monte Carlo (QMC) 
techniques.  Although their demands on computer 
power are much greater than those of widely used 
techniques such as DFT, their accuracy is also much 
greater for most systems.  QMC traditionally embraces 
two different techniques:  variational Monte Carlo 
(VMC) and diffusion Monte Carlo (DMC).  For a detailed 

descriptions of VMC and DMC see for example Ref. [2], 
here we only outline rather briefly the main ideas for 
the two techniques.

The VMC method gives an upper bound on the 
exact ground-state energy E0, but the results depend 
totally on the quality of the chosen trial wavefunction.  
Given a normalized trial wavefunction ΨT  (R), where 
R = (r1 , r2 ...,rN   ) is a 3N -dimensional vector representing 
the positions of N electrons, and denoting by Ĥ the 
many-electron Hamiltonian, the variational energy  
Eυ ≡ ‹ ΨT | Ĥ | ΨT  › ≥ E0  is estimated  by sampling  
t h e  v a l u e  o f  t h e  l o c a l  e n e r g y  
EL (R) ≡ ΨT

-1 (R) Ĥ ΨT (R) with configurations R, 
distributed according to the probability density  
ΨT  (R)2.  In our calculations the trial wavefunction  
ΨT  ( r1,...rN  ) consists of a Slater determinant D 
of single-electron orbitals υ/n (ri  ) multiplied by a 
parameterized Jastrow correlation factor J (r1 ,... rN  )  
(in the pseudopotential-based QMC of interest here, 
the υ/n (ri  ) are commonly taken from a plane-wave 
pseudopotential DFT calculation), and J is “optimized” 
by varying it’s parameters so as to reduce the variance 
of the “local energy” ΨT

-1 ( Ĥ ΨT   ), where Ĥ is the many-
electron Hamiltonian.

A much more accurate method is DMC, a scheme which 
in principle yields the exact ground state energy.  The 
main idea of DMC is to solve the Schrödinger equation 
in imaginary time.  This is done by recognizing that this 
is equivalent to a diffusion equation which includes a 
potential term, and therefore describes the stochastic 
motion of Brownian particles (walkers), with the 
effect of the potential being equivalent to a branching 
term which has the effect of increasing the number of 
walkers in regions of low potential and decrease it in 
regions of high potential.  Since there is a one-to-one 
correspondence between the density of walkers and the 
value of the wavefunction in any region of space, one 
can compute the value of the wavefunction by following 
the motion of these walkers in configuration space.  
To make the calculations practicable it is necessary to 
“guide” the walkers using a “trial” wavefunction.  The 
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linear transformation on the set of orbitals) [12].
We have tested our method on the prototypical oxide 
material MgO in the rock-salt structure at ambient 
pressure.  Because of its large band gap (experimental 
Eg = 7.7 eV), this kind of material should be particularly 
suited to O(N) methods. The QMC calculations 2 were 
performed using the appropriately modified CASINO 
code [13] and a supercell of 64 atoms.

To compare the efficiency of our method with the 
earlier technique based on Wannier functions [8], we 
plot Q = 1 - P against the side-length of the cubic 
localization region for the two methods in Fig. 1. In Fig. 
2 the VMC energies obtained using the two methods 
are plotted against the side-length of the localization 
region.  The energy obtained with untruncated orbitals 
(the ‘standard’ QMC result) is also shown.  We see that 
nonorthogonal orbitals are much more localized than 
Wannier functions, and that the VMC energy evaluated 
with these orbitals converges to the correct value much 
more rapidly when the localization region is expanded. 
Further details can be found in our recent publication, 
Ref. [12].

In conclusion, we have proposed and tested a new 
technique for achieving linear scaling in one of the most 
demanding parts of QMC calculations.  This technique 
is simple and robust, and it appears also to be more 
efficient than an earlier proposed technique.  This 
new technique already makes it possible to treat large 
systems that would be out of reach of conventional 
QMC methods.  Research areas where we intend to 
apply the technique in the near future include defects 
and surfaces of oxide materials.

These calculations have been performed on both 
the CSAR machines and the HPCx national services. 
Despite the larger computational power of HPCx, 
we note that the CSAR machines were essential for 
carrying out part of this work, thanks to the much larger 
memory available.   This work has been supported by the 
Mineral Physics Consortium, the U.K.C.P. consortium 
and the Materials Chemistry Consortium. DA greatly 
acknowledges support from the Royal Society, and from 
the Leverhulme Trust.
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trial wavefunction should be as close as possible to the 
real many-body wavefunction for optimal efficiency.  
Moreover, because of the fermionic nature of the 
electrons, the many-body wavefunction necessarily has 
regions of space where it is positive and regions where 
it is negative.  This change of sign is a problem for the 
diffusion of the walkers.  The way this problem is usually 
addressed is by fixing the surface which separates 
regions of space where the wavefunction changes sign 
(nodal surface).   The presence of the trial wavefunction 
allows an easy implementation of this so called “fixed-
node” constraint.

With QMC now being applied to large complex systems 
containing hundreds of atoms, a major issue is the 
scaling of the required computer effort with system size.  
The cost of traditional quantum mechanics techniques 
increases at least with the square of the number of 
atoms N in the system, and for most of them (including 
standard QMC) increases as N3.  However, feeding out 
of ideas about the locality of quantum coherence [3], 
it has been shown that in fact linear scaling should be 
achievable, and O(N) techniques have been developed 
for tight binding (TB) [4], DFT [5, 6] and Hartree-Fock 
[7]. Recently, a procedure has been suggested [8] for 
achieving at least partial linear scaling for QMC, based 
on the idea of “maximally localized Wannier functions” 
[9].  This is done by performing a unitary transformation 
which preserves the orthogonality of the single particle 
orbitals that make up the determinant D, and by using 
a localized basis set for representing the single particle 
orbitals.  Since the single particle orbitals are mixed 
by a unitary transformation, the determinant D is 
unchanged.  Linear scaling is achieved then by truncating 
the orbitals beyond a certain localization region ω.  Of 
course, in order to have accurate calculations, ω must 
be big enough so that the localization weights of the 
single particle orbitals, defined as P = ∫ ω d r | o/ (r) |2, is 
as close to 1 as possible.

We have implemented and tested an alternative method 
which has two important advantages over the method 
of Ref. [8].  Firstly, we have developed a technique for 
representing single-particle orbitals in terms of localized 
B-splines [10].  These localized functions have previously 
been used in the context of DFT [11], and they are 
closely related to plane waves.  Our implementation 
[10] therefore provides a natural interface between 
plane-wave-DFT codes, from which one can obtain 
good trial wavefunctions, and QMC codes.  Secondly, 
we have shown that the localization of the single-
particle orbitals can be greatly enhanced by removing 
the orthogonality constraint (i.e. by using a non-unitary 
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Figure 1: Dependence of localization weight on cut-off distance for bulk MgO.  The quantity
plotted is Q ≡ 1 - P, where P is localization weight defined in the text.  Squares:  present non-orthogonal orbitals. Diamonds: maximally 

localized Wannier orbitals.

Figure 2:  Convergence of linear-scaling VMC total energy per atom to the value obtained with extended orbitals for bulk  MgO.  
Squares: present non-orthogonal orbitals.  Diamonds:  maximally localized Wannier functions.  Horizontal dashed line shows total 

energy/atom obtained with extended orbitals.
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