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Ordinary water ice forms under ambient conditions and has two polytypes, hexagonal ice (Ih) and

cubic ice (Ic). From a careful comparison of proton ordering arrangements in Ih and Ic using

periodic density functional theory (DFT) and diffusion Monte Carlo (DMC) approaches, we find

that the most stable arrangement of water molecules in cubic ice is isoenergetic with that of the

proton ordered form of hexagonal ice (known as ice XI). We denote this potential new polytype

of ice XI as XIc and discuss a possible route for preparing ice XIc.

1 Introduction

Hexagonal ice is the most prevalent phase of ice on Earth,

accounting for B10% of its surface area and it has an important

role in climatic regulation via albedo. Although hexagonal ice is

one of the most studied materials in science, new and unusual

properties are still being discovered which have implications for ice

and other materials. For example, it has been recently shown that

ice nucleates differently at positively and negatively charged

surfaces of pyroelectric materials1 and that the surface of crystalline

ice displays a continuum of vacancy energies.2

Cubic ice has not been studied to the same extent, and its

existence in nature is a subject of debate since it is known that Ic

is metastable with respect to Ih.3 Scheiner’s halo4 is interpreted as

evidence of cubic ice in the upper atmosphere but sightings of this

phenomenon are exceptionally rare,5,6 which might suggest that Ic

is not important in nature. However, a series of works have

emerged, particularly in the last few years, which strongly indicate

that Ic forms readily and persists under conditions characteristic of

the Earth’s upper atmosphere. Experiments have shown that water

droplets homogeneously freeze to cubic ice at ambient pressure and

temperatures between 160 K7 and 243 K8 and in droplets with radii

in the range 5 nm9,10 to 5 mm.8Whilst it was previously believed that

Ic transforms rapidly to Ih at temperatures above B180–200 K,

recent studies indicate that Ic remains stable for hours at 228 K.8 It

has also been argued that differences in the surface chemistry of

cubic and hexagonal ice could influence processes such as cloud

formation and dehydration,11 and ozone depletion.12 Motivated

by these recent developments, we have undertaken a basic

characterisation of cubic ice using theoretical approaches.

2 Background

The structures of ice Ih and Ic differ only in terms of the stacking

order of the puckered hexagonal bilayers that form the lattice.

Both phases contain tetrahedrally coordinated water molecules

forming six-membered rings, in boat and chair forms in the case of

Ih and only the chair form in Ic (Fig. 1). Water molecules in both

lattices must be oriented such that the ‘‘ice rules’’13 are satisfied:

each oxygen atom must have two nearest neighbour hydrogens

(forming a water molecule), and each oxygen–oxygen bond must

be occupied by exactly one hydrogen atom, which gives rise to an

intramolecular bond and an intermolecular hydrogen bond.

Although pure hexagonal ice can be isolated (within instrumental

resolution), 100% cubic ice still eludes experimental synthesis.

Murray and Bertram8 have succeeded in preparing around 80%

cubic ice, but the coherence of the cubic sequences was not reported

and it is assumed that the cubic ice is faulted, containing irregular

stacking sequences of Ih and Ic. Indeed, Kuhs et al.14 assert that the

stacking faults are an inherent property of ice Ic; it could be claimed

that cubic ice is not a unique phase, but merely hexagonal ice

containing cubic stacking faults. On the other hand, it has been

proposed that the broad phase transition is a result of the defect

energy at interphase grain boundaries when hexagonal ice crystals

grow in bulk cubic ice.3

Whilst the literature contains many references to Ic, the

structural integrity of the ice sample is often unknown and the

Ic phase is often assumed because of the experimental regime
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in which the sample is prepared (e.g. vapour deposition at 150 K).

More specifically, Dowell and Rinfret synthesized amorphous

ice by condensation of water vapour onto a surface maintained

below 110 K, which transformed to cubic ice on heating above

110 K,15 identified via X-ray diffraction. Bertie et al. heated

samples of high pressure ice phases II, III and V,16 confirming

the formation of cubic ice using X-ray diffraction. Steytler et al.

cooled heavy water trapped in porous silica (containing pores

with a mean diameter of 9 nm) to 260 K and identified cubic

ice using neutron diffraction. Mayer and Hallbrucker reported

the first unambiguous synthesis of cubic ice from liquid water

by deposition of 3 mm water droplets on a cryoplate at 190 K17

and X-ray diffraction. More recently, Murray and Bertram

cooled an emulsion of pure water droplets suspended in an oil

matrix, allowing an X-ray diffraction analysis of cubic ice

formation as a function of temperature and droplet size.8

The structural integrity of ice Ic samples is not well charac-

terised in general but it is known with certainty that Ic is

metastable with respect to Ih, and anneals to ice Ih over an

extended temperature range (160–240 K),3 with no distinct phase

transition. The heat of transition from cubic to hexagonal ice

(DHc-h) is extremely small; measurements vary in the range

�160 to �13 J mol�1;17–24 increasing numbers of hexagonal

sequences in the cubic ice seem to correlate with a less exothermic

transition.25 The lower free-energy of Ih is attributed to an extra

water molecule in the second coordination sphere of Ih in

comparison to Ic26 (hexagonal stacking gives rise to 13 molecules

in the second coordination sphere whilst the cubic sequence has

12 molecules because of the absence of a mirror plane).

We now consider the question of proton ordering in ice. It is

known that proton ordering has a small but significant effect

on the cohesive energy of hexagonal ice;27 the small energy

difference between cubic and hexagonal ice (B100 J mol�1)

is comparable to proton ordering energy differences in ice Ih

(up to B1 kJ mol�1),27 although we note that proton ordering

transitions occur at much lower temperatures (72 K28 for the

Ih - XI transition) than the Ic - Ih transition. Pauling was

able to quantify the effect of orientational ordering on the

entropy of ice29 with a remarkable degree of accuracy. He

asserted that the proton ordered configurations of ice would

be degenerate, but it has since been shown that unique

configurations are energetically preferred. Tajima et al. reported

a phase transition in KOH-doped ice Ih at 72 K, associated with

a loss of approximately 70% of its configurational entropy,28

although the specifics of the proton ordered configuration

remained unascertained since the X-ray diffraction techniques

used lacked the resolution to characterise the hydrogen

positions. Davidson and Morokuma proposed the proton

ordered antiferroelectric Pna21 configuration30 based on

Bjerrum’s model of strong and weak hydrogen bonds in

water dimers;31 it was subsequently proven, experimentally32

and using quantum chemical simulations,27 that the actual

structure is the ferroelectric Cmc21 configuration.

Analyses of proton ordering in cubic ice are not unprece-

dented; Lekner determined that there are four proton ordered

configurations for the cubic Fd%3m cell, considering only ideal

cells with straight hydrogen bonds, and only accounting for

the Hartree component of the total energy;33 he predicted an

anti-ferroelectric ground state. In a neutron diffraction study

of ice Ic, Kuhs et al. mentioned candidates for a hypothetical

proton ordered phase with space groups I41md and P212121.
14

In a DFT study of proton ordering in hexagonal and cubic ice,

Casassa et al. examined two cubic ice configurations with space

groups I41md (ferroelectric) and P41212 (antiferroelectric)34

although energies obtained for analogous calculations on

hexagonal ice (Pna21 and Cmc21 forms) conflicted with those

of Hirsch and Ojamäe,27 a point they acknowledge in a later

publication.35 Casassa’s results indicate that XI is metastable

to the ferroelectric I41md phase by between 880–3517 J mol�1

which was described as ‘contrary to intuition’. Given this

unexpected result and the discrepancy in hexagonal ice energetics,

we sought to investigate this problem to examine whether

exchange–correlation functionals and the van der Waals inter-

action influence the proton ordering energies of hexagonal and

cubic ice. In this respect, it is useful to note that very recently,

Labat et al.36 performed a detailed study of the Pna21 andCmc21
forms of hexagonal ice to assess the performance of hybrid and

meta-GGA (generalised gradient approximation) functionals,

showing that whilst the structures and band gaps were sensitive

to the functional used, the energy differences were only very

weakly affected by B2 meV, in line with the notion that proton

ordering energetics are well described by a range of functionals.37

We note in passing that the success of classical methods in

predicting proton ordered configurations depends largely on

the complexity of the model. The majority of widely used empirical

potentials (namely SPC and the TIPnP family) have had little

success in predicting the proton ordered configuration of ice XI,

instead favouring thePna21 antiferroelectric structure.
38,39 Only the

Nada-van der Eerden (NvdE) six-site model40 has been successful

in this respect;39 it was used to simulate ice growth on hexagonal

and cubic ice substrates, the results suggesting that ice Ic is the

dominant phase immediately after freezing, comprising in

excess of 70% of the newly formed ice regardless of whether

the substrate is cubic or hexagonal.41 Molecular dynamics

simulations of water under the influence of a static electric field

unambiguously resulted in cubic ice,42 whilst metadynamics

simulations of homogeneous ice nucleation using TIP4P by

Quigley and Rodger invariably demonstrated that ice Ic is the

nucleating phase regardless of whether the shape of the simula-

tion cell favoured hexagonal or cubic ice.43 In future work,

Fig. 1 Stacking of bilayers in hexagonal and cubic ice. The vertical is

normal to the (0001) basal surface of hexagonal ice, and the (111) surface

of cubic ice. Only oxygen atoms are shown, connected by hydrogen bonds.
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we will report a consideration of the proton ordering energies

according to commonly used forcefields to interpret whether there

is an intrinsic bias in the forcefields to form cubic ice structures.

The growing interest and perceived importance of Ic

coupled with the absence of characterisation studies in the

literature has motivated the work described here. The main

objective of this study is a systematic examination of proton

ordering energetics in cubic ice using quantum chemical

methods, with a comparison against the relatively well

characterised hexagonal ice. The success of DFT in predicting

the Cmc21 structure of ice XI27 and the correct ground state of

other proton ordered ice44,45 reassures us that the proton

ordering energies of cubic ice can be predicted.

3 Model and computational details

For hexagonal ice, 16 symmetry-unique eight-molecule proton

ordered configurations as determined by Hirsch and Ojamäe27

were considered. The ice Ic cell contains eight molecules, and is

cubic with a side length of 6.358 Å and space group Fd%3m;26

this cell has only 4 symmetry-unique proton ordered

configurations, one of which is antiferroelectric. By cutting

through the (011) plane, it is possible to construct a four

molecule tetragonal cell of dimensions (4.4958 Å� 4.4958 Å�
6.3580 Å) which also has four proton ordered configurations;

the advantage of this cell is that a 2 � 1 � 1 supercell has

11 proton ordered configurations, two of which are antiferro-

electric, and is comparable to the eight-molecule orthorhombic

hexagonal ice cell used by Hirsch and Ojamäe. Symmetry

unique proton ordered configurations that satisfy the ice rules

were generated using graph invariant software provided by

Knight, Beck and Singer.45–48

DFT calculations were conducted using the plane wave

VASP code and the Quickstep49 module of the CP2K suite.

CP2K uses a hybrid Gaussian/plane wave (GPW) representation

which is very computationally efficient.50 Wavefunctions were

represented using the triple-z doubly polarised (TZV2P) basis

set, and the electron density using a plane wave expansion with a

450 Ry cutoff and Goedecker–Teter–Hutter (GTH) norm-

conserving pseudopotentials.51 The Perdew–Burke–Ernzerhof

(PBE) GGA exchange–correlation functional was used for

calculations without a dispersion correction, since it has been

shown to describe hydrogen bonding energetics in ice I

well,52,53 with a small but consistent 5% overbinding.54

Application of a dispersion correction directly to the PBE

functional would exacerbate overbinding, so for comparison,

Grimme’s DFT-D3 correction55 was used in conjunction with

the Becke–Lee–Yang–Parr (BLYP) GGA functional. BLYP

systematically underbinds ice but it performs well for hydrogen-

bonded systems when dispersion is taken into account.56 A

dispersion cutoff of 12 Å was used, but the repulsive 3-body C9

term of DFT-D3 was omitted because it only reduced the extent

of the underbinding slightly, at a significant computational cost.

CP2K currently only supports G-point sampling, so all

eight-molecule cells were replicated to construct 3 � 2 � 2

hexagonal ice (smallest lattice parameter of 13.48 Å) and 2 �
3 � 2 cubic ice (12.46 Å) supercells containing 96 molecules.

In all cases, full cell relaxation and geometry optimisation

were performed in the absence of any symmetry constraints.

In order to gauge the impact of basis set completeness and

basis set superposition error (BSSE), the CP2K PBE calculations

for all hexagonal and cubic ice cells were repeated using the plane

wave code VASP. The projector-augmented wave (PAW)

method was used,57 a plane wave cutoff of 550 eV and a 6 �
3 � 3 (54 k-points) for hexagonal ice or 3 � 6 � 4 (72 k-points)

for cubic ice Monkhorst-Pack grid of k-points were employed.

Additional high precision calculations were performed on the

ground state cubic and hexagonal configurations using hard

PAW potentials, a cutoff of 1000 eV and 128 k-points (a 8 �
4 � 4 grid for hexagonal ice or 4 � 8 � 4 for cubic ice). In

addition, a number of approaches were compared to examine the

importance of van der Waals interactions and electron delocalisa-

tion within the two polytypes; these include GGA (the PBE

functional), the van der Waals density functional58 using an

optimised PBE exchange functional (optPBE-vdW)59 and PBE

with 25% Hartree–Fock exchange (PBE0). The van der Waals

density functional calculations were performed in VASP, using

the self-consistent implementation of Klimeš et al.60

As an independent quantum mechanical reference, we have

also performed diffusion Monte Carlo (DMC) calculations

using the Casino code,61 with Dirac–Fock pseudopotentials.62

The core radii of the oxygen and the hydrogen pseudopotentials

were 0.4 Å and 0.26 Å, respectively. The trial wavefunctions

were of the Slater-Jastrow type, with a single Slater determinant.

The single particle orbitals were obtained from DFT-LDA

plane-wave calculations using the PWscf code,63 with a plane-

wave cutoff of 300 Ry, and were re-expanded in B-splines.64

Extensive time step tests have been performed on the ice

VIII and the ice II structures near their equilibrium volume,

using the primitive cells in both cases. The results of these tests

have been reported in detail,65 and we found that using a time

step of 0.002 a.u., together with the locality approximation,66

cohesive energy differences between ice II and VIII were

converged to within B5 meV molecule�1 and hence this setup

was used in the calculations described here. TheDMC calculations

were performed on supercells of dimensions 3 � 2 � 2 and 2 �
3 � 2 for the XI and XIc structures, respectively, containing

96 water molecules in both cases. We used the Model Periodic

Coulomb (MPC) technique to treat the electron–electron inter-

actions, which helps to significantly reduce DMC size errors.67

Size tests performed on the VIII and the II structures65 showed

that, with cells including 96 molecules or more, finite size errors

are reduced to less than 5 meV molecule�1.

All relaxed structures are given in the ESI.w

4 Results and discussion

We begin by comparing the periodic density functional

evaluation of the cohesive energy,z 27 distinct proton ordering

arrangements for hexagonal and cubic ice were considered

z In the DFT calculations reported here, the internal energy is used to
determine the cohesive energies. Here we define the cohesive energy as
the energy liberated when gaseous water molecules condense to form the
ice lattice. Assuming a pressure of 1 bar and a cell volume of 250 Å3, the
contribution from the pV term is of the order of 2 J mol�1. Considering
the cell volume varies by no more than 0.1% between proton ordered
configurations, it is clear that the contribution to the enthalpic energy
difference is negligible being less than 0.01 J mol�1.
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using the GPW method (CP2K) and plane wave approaches

using the PBE functional. In order to account for the effect of

dispersion in an explicit way, the BLYP-D3 formulation was

also used to evaluate the proton ordering energies. In Fig. 2, it

is seen that qualitatively and quantitatively, the PBE results

obtained using CP2K and VASP are very similar, underlining

that the GPW method is reliable for discriminating between

extremely small energy differences on the J mol�1 scale. The

figure also shows that BLYP-D3 gives a very similar relative

energy distribution for the different structures considered

indicating that in these very closely related structures, differences

in the dispersion energy are to a first approximation negligible.

Note that PBE overbinds at hydrogen bonding distances,

mimicking the binding energy due to short-range dispersion.

In the BLYP-D3 approach, an empirically parameterised

function which has a 1
r6
dependence describing short and long

range dispersions is used.

We now consider the data in Fig. 2 in combination with the

cohesive energies shown in Tables 1 and 2. In the case of

hexagonal ice, cohesive energies are shown relative to structure

1 (the Cmc21 configuration of ice XI, Fig. 3a) which clearly has

the lowest cohesive energy of the hexagonal structures, in

agreement with the calculations of Hirsch and Ojamäe27 and

Tribello and Slater.37 The qualitative shape of the graph is

similar to the one published by Hirsch and Ojamäe, and

quantitative differences are attributed to differences in the

basis set quality and k-point sampling used. The value for

the cohesive energy of ice XI obtained here, �67.76 kJ mol�1,

compares favourably with the �68.1 kJ mol�1 reported by

Pan et al.,53 also using CP2K but with a slightly lower plane

wave cutoff.

No experimental estimate of the ice XI cohesive energy

exists to our knowledge––proton disordered Ih is recorded to

have a cohesive energy of 58.95 kJ mol�1 4 and Johari

estimated an enthalpy change for the transition of around

250 J mol�1,3 suggesting the cohesive energy of ice XI should

be 59.25 kJ mol�1. In recent work,2 we found a very similar

value for proton disordered Ih to that reported here of

�67.3 kJ mol�1 and Pan et al.68 reported an energy range of

around 500 J mol�1 depending upon the degree of proton

disorder. Hence the absolute cohesive energies according to

PBE are overestimated with respect to literature values for ice.

Nevertheless, as reported in Tribello and Slater37 and underlined

by the comparison of PBE and BLYP-D3 data, the variation in

proton ordering energies is not sensitive to the functional used

since the predominant difference to the total energy is electro-

static. Note that our energy difference between the Cmc21 and

Pna21 structures (N = 1 and 2, respectively, on Table 1) using

PBE give an energy difference of around 400 J mol�1 which

compares well with the recent estimate of 335 J mol�1 reported by

Labat et al.36

Given that the hexagonal ice results are consistent with our

previous work and that of Hirsch and Ojamäe, the cubic ice

relative energies can be viewed with confidence. According

to Table 2, the lowest energy configuration of cubic ice has

Fig. 2 Relative energies for 16 hexagonal and 11 cubic symmetry-unique proton ordered configurations, as calculated using DFT. Energies are

shown relative to structure 1 in both cases. The connecting lines have no physical meaning, and are present to guide the eye. In a, structure 1 is the

experimentally verified Cmc21 structure of ice XI, and 2 is the antiferroelectric Pna21 configuration predicted by Davidson and Morokuma.30 In b,

structure 1 is the ground state I41md structure, according to PBE and BLYP-D3 calculations, and can be considered the cubic analogue of ice XI.

Table 1 DFT cell optimised cohesive energies for all symmetry-
unique proton ordered hexagonal ice configurations

N Space group

DFT cohesive energy/kJ mol�1

CP2K/PBE CP2K/BLYP-D3 VASP/PBE

1 Cmc21 �67.901 �69.434 �64.503
2 Pna21 �67.432 �68.914 �64.102
3 Pna21 �67.470 �68.979 �64.131
4 Pbn21 �67.650 �69.144 �64.268
5 Pca21 �67.740 �69.241 �64.373
6 P212121 �67.330 �68.818 �63.995
7 P212121 �67.572 �69.070 �64.235
8 Cc �67.777 �69.307 �64.402
9 Pc �67.718 �69.234 �64.336
10 Pc �67.665 �69.144 �64.273
11 Pc �67.688 �69.189 �64.324
12 P21 �67.450 �68.946 �64.115
13 P21 �67.452 �68.945 �64.118
14 P21 �67.735 �69.230 �64.374
15 P21 �67.665 �69.136 �64.271
16 P1 �67.760 �69.272 �64.387
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I41md symmetry (Fig. 3b), is ferroelectric (only structures

2 and 7 are antiferroelectric) and consists of 100% inverse

centre-symmetric (‘‘h-cis’’) dimers—according to Bjerrum’s

classification.31

We henceforth refer to the ground state I41md structure as

‘‘ice XIc’’, where we retain the c subscript to denote cubic

stacking of the layers, despite the fact that the ground state

ordered configuration has a tetragonal unit cell (I41md is in

fact a subgroup of Fd%3m, the space group of the cubic ice cell).

In order to avoid ambiguity, we will refer to the proton

ordered Cmc21 form as ‘‘ice XIh.’’ The hydrogen bond

network topology of the ice XIc structures is in fact identical

to that of a sub-lattice of the well-characterised ice VIII—the

proton ordered variant of ice VII, which consists of two

independent interpenetrating ice Ic lattices. However, the ice

VIII lattice is antiferroelectric overall because the dipole

moments of the two sub-lattices exactly cancel one another.

XIc exhibits maximum polarisation where all dipoles are

aligned along the c-axis which results in an exceptionally high

molecular dipole moment of 3.56 Debye, in comparison to

3.46 Debye for XIh.

The datasets for cubic and hexagonal ice are internally

consistent and agree on the ground state configurations, but

do not agree on the magnitude of the energy difference

between ice XIh and XIc. GPW calculations indicate that ice

XIh has a lower cohesive energy than XIc by 102 J mol�1 but

the plane wave approach yields a much larger difference of

DHc-h C �416 J mol�1. This order of stability disagrees with

the findings of Casassa et al.34 but because of the acute

sensitivity of this problem, we were motivated to perform very

high precision calculations using the plane wave approach to

eliminate the basis set superposition errors inherent in the

GPW approach. All of the remaining results refer to hard

potential, PAW plane wave calculations and DMC calcula-

tions. Estimates of the cohesive energy according to DMC

were obtained from an equation of state fit using the data

reported in Fig. 4.

From Table 3 it is clear that accurate estimates of the energy

difference between XIh and XIc are much smaller than those

reported in Tables 1 and 2. The functional with the most

sophisticated treatment of dispersion, optPBE-vdW has the

most negative value, predicting that XIc is metastable with

Table 2 DFT cell optimised cohesive energies for all symmetry-
unique proton ordered cubic ice configurations

N Space group

DFT cohesive energy/kJ mol�1

CP2K/PBE CP2K/BLYP-D3 VASP/PBE

1 I41md �67.797 �69.021 �64.087
2 P41212 �67.182 �68.312 �63.538
3 Pna21 �67.479 �68.615 �63.818
4 Pna21 �67.354 �68.424 �63.680
5 Pmn21 �67.346 �68.452 �63.663
6 Pca21 �67.640 �68.768 �63.952
7 P21212 �67.327 �68.453 �63.662
8 Pc �67.504 �68.616 �63.806
9 Pc �67.650 �68.771 �63.953
10 P21 �67.408 �68.493 �63.738
11 P21 �67.353 �68.424 �63.681

Fig. 3 DFT ferroelectric ground state structures of ice Ih (XIh) and

ice Ic (XIc). Although the tetragonal four molecule cell of XIc is

shown, a 2 � 1 � 1 supercell was generated to enumerate proton

ordered configurations and calculate energies.

Fig. 4 Equation of state plot for ice XIc and XIh, calculated using

the optPBE-vdW functional and DMC.
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respect to XIh. Total energies from BLYP-D2 (Grimme’s

original correction)69 and PBE0 (with 25% Hartree–Fock

exchange) calculations yield similar values (+12 J mol�1 and

+54 J mol�1 respectively) which suggest that XIh is metastable

with respect to XIc. The PBE energy difference obtained is very

similar to that of PBE0, suggesting that moderate levels of non-

local exchange have very little effect on the energy difference

between proton ordered hexagonal and cubic ice. However,

both optPBE-vdW and BLYP-D2 reduce the energy difference

between XIc and XIh more directly, where, as already noted, it

would appear van der Waals terms stabilise XIh with respect to

XIc. Turning to DMC, XIc has the lowest cohesive energy

obtained with DMC but the error bars overlap with those of

XIh and the energies were obtained from single point energy

evaluations of relaxed plane wave PBE geometries.

PBE and the optPBE-vdW density functional approaches

suggest that XIc has a lower density than XIh with disagreement

between the order of stability. As already noted, PBE over-

binds at small hydrogen-bonding distances and thus mimics

short-range vdW attraction but neglects long-range attraction.

By comparison, optPBE-vdW explicitly models both short and

long-range dispersion contributions and thus, we assume,

stabilises XIh with respect to XIc because of the additional

molecule in the second coordination shell, despite the fact that

XIc is predicted to be the denser phase. PBE0 does not account

for dispersive interactions and produces a more localised

density distribution resulting in an enhanced electrostatic

contribution to the cohesive energy, yielding XIh as the denser

and more stable phase. This is perhaps surprising given that

dipole moment in XIc is 0.1 Debye larger, which could be

expected to give rise to an enhanced electrostatic energy for

XIc, possibly explaining the PBE0 result since exact exchange

favours a more localised and ionic electronic structure.

It is known that the zero point energy is sizable in ice and hence

the zero point energy difference could influence the relative stability

of XIc and XIh. From four point numerical derivative vibrational

calculations using the PBE (hard pseudopotential) optimised

structures, it was found that the zero point energy of XIc is

133.349 kJ mol�1, 125 J mol�1 greater than that for XIh. Hence

DHc-h is modified to�78 J mol�1, yielding XIh as the more stable

phase. However, using ultrasoft pseudopotentials with the PBE

functional and the CASTEP code70 tells a different story: a zero

point energy difference of 467 J mol�1 combined with a DHc-h

of �130 J mol�1 strongly stabilises cubic ice. Considering that we

are unable to distinguish the energies of XIh and XIc with the

approaches used here, it seems premature to interpret the zero

point energy differences given that these are quantities which are

dependent on the second derivative of the energy.

Turning now to configurational entropy, in the tetrahedrally

coordinated lattice characteristic of both phases, there are six

possible orientations of each molecule, resulting in 68 =

1 679 616 configurations in an eight-molecule cell. For both

phases, only 114 of these are permitted by the ice rules,

but most of these configurations are related by symmetry

operations; in the case of XIh, six of these 114 have the ground

state Cmc21 structure, whilst for XIc, six ground state

structures have the I41md space group. Thus there are six

ways of generating both XIh and XIc cells and it can be

concluded that they have identical configurational entropies.

For each functional the densest phase reassuringly has the

smallest first nearest neighbour oxygen–oxygen separation.

Turning now to hydrogen bonds, we have recently demon-

strated that there is a strong correlation between the hydrogen

bond angle and energy;71 more specifically the linearity of the

OĤO bond is an excellent indicator of stability. For all of the

functionals used here, XIc has a mean hydrogen bond angle

closest to 1801 with a smaller variance in the hydrogen

bonding angle than XIh, evidence that XIc should be the most

stable. Only when dispersive interactions are taken into

account does XIh become stable with respect to XIc. It would

appear that the order of stability is very subtly influenced by the

composition of the functional recipe. Within the limits of

accuracy associated with our functionals, we conclude that

XIc and XIh are approximately isoenergetic. This interpretation

is supported by the DMC energies which are also separated by

just 40 J mol�1 albeit with a substantial error bar.

5 Conclusions

The ferroelectric I41md configuration (polarised in the

c direction) is identified as the unambiguous ground state

proton ordered phase of cubic ice, XIc, having the lowest

cohesive energy according to PBE and BLYP-D3 calculations.

Higher precision plane wave calculations suggest that ice XIc is

comparable in energy to ice XIh where the difference in energy

is of the order of tens of J mol�1. The best approximation to an

accurate van der Waals functional, optPBE-vdW, confirms that

energy difference between XIh and XIc is on the J mol�1 energy

scale. DMC calculations show that within the intrinsic error

bars, the XIh and XIc are isoenergetic. The conclusion from all

of the high precision DFT andDMC calculations is that ice XIh

and XIc are essentially isoenergetic within the confidence limits

and intrinsic errors associated with the approaches used here.

It seems reasonable to contend that XIc should be a

competitive phase to XIh and that in principle, Ic should

transform to XIc. The relative energies of the second most

favourable arrangement of protons in both phases are dissim-

ilar, amounting to B130 J mol�1 for XIh and B270 J mol�1 for

XIc. This may indicate that the transformation to XIc may be

more facile than for XIh, since the potential well separating the

Table 3 Comparison of ice XIh and ice XIc energies and structures obtained with VASP using hard PAW potentials and DMC

Density functional

Cohesive energy/kJ mol�1 Volume/H2O/Å3 OĤO bond angle (1)

DHc-h/J mol�1Ice XIh Ice XIc Ice XIh Ice XIc Ice XIh Ice XIc

PBE �61.312 �61.359 30.41 30.35 177.28 177.66 +47
optPBE-vdW �65.388 �65.359 31.58 31.53 177.08 177.36 �29
PBE0 �62.630 �62.684 30.02 30.17 177.60 178.25 +54
DMC �57.80 � 0.17 �57.84 � 0.22 31.18 � 0.22 31.28 � 0.31 — — +40 � 280
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ground state from the next most favourable level is deeper for XIc

than for the XIh phase.

To observe XIc in a physical experiment, one would first

need to prepare reasonably pure Ic, which appears to be

extremely difficult within the laboratory. Ice XIII, XIV25 and

XV72 have been successfully isolated by very slow cooling

(to prevent transformation to Ih and then XIh) in the presence

of dopants. If pure Ic can be prepared, we tentatively suggest

that it may be transformed into XIc in this manner.
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