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The standard model of Earth’s core evolution has the bulk composition set at formation, with slow
cooling beneath a solid mantle providing power for geomagnetic field generation. However, controversy
surrounding the incorporation of oxygen, a critical light element, and the rapid cooling rates needed to
maintain the early dynamo have called this model into question. The predicted cooling rates imply early
core temperatures that far exceed estimates of the lower mantle solidus, suggesting that early core evolution
was governed by interaction with a molten lower mantle. Here we develop ab initio techniques to compute
the chemical potentials of arbitrary solutes in solution and use them to calculate oxygen partitioning
between liquid Fe-O metal and silicate melts at the pressure-temperature (P-T) conditions expected for the
early core-mantle system. Our distribution coefficients are compatible with those obtained by extrapolating
experimental data at lower P-T values and reveal that oxygen strongly partitions into metal at core
conditions via an exothermic reaction. Our results suggest that the bulk of Earth’s core was undersaturated
in oxygen compared to the FeO content of the magma ocean during the latter stages of its formation,
implying the early creation of a stably stratified oxygen-enriched layer below the core-mantle boundary
(CMB). FeO partitioning is accompanied by heat release due to the exothermic reaction. If the reaction
occurred at the CMB, this heat sink could have significantly reduced the heat flow driving the core
convection and magnetic field generation.

DOI: 10.1103/PhysRevX.9.041018 Subject Areas: Chemical Physics, Geophysics,
Statistical Physics

I. INTRODUCTION

It is generally believed that after its formation 4.54 billion
years ago, Earth quickly differentiated with a heavy iron-
based core sinking to its center during the first 100 million
years [1]. As Earth cooled, a solid inner core started to form
at the center of the planet, and in the process, it began to
expel the primordial—solid incompatible—elements into
the liquid. Of particular importance is the expulsion of light
elements because Earth uses their gravitational potential
energy to drive convection in the liquid outer core, which
is presently the main power source for the geodynamo
process that generates Earth’s magnetic field [2,3]. Recent
studies also suggest that gravitational power for the

dynamo can be produced at the top of the core by the
precipitation of oxides such as MgO [4,5] and/or SiO2 [6].
As a result, the dynamics and evolution of Earth’s
core depend strongly on the nature of its light element
inventory.
The density drop between the inner and outer core

requires that some elements partition strongly into the liquid
on freezing [7], the prime candidate being oxygen [8,9],
while other elements (e.g., silicon and sulphur) that partition
more equally are needed to match the core mass and seismic
velocity. The core’s light element inventory, and crucially
its oxygen content, is generally thought to have been
entirely determined by metal-silicate separation and chemi-
cal equilibration at pressure-temperature-composition con-
ditions near the base of an early magma ocean [1], although
effects such as entrainment and turbulent mixing could alter
this simple picture [10]. In any case, there is significant
uncertainty and debate surrounding the amount of O that
can reach the core by this process [11,12]. Here we analyze
the role of post-core-formation processes in setting the core
oxygen content.
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Studies of partitioning between representative lower
mantle mineral assemblages and liquid iron suggest that
oxygen will transfer into the metal as FeO [13–18]. The
amount of O that can enter the core from the solid mantle is
small because the process is limited by diffusion through
the lower mantle chemical boundary layer [18]. However,
there is good reason to believe that the lower mantle was
once molten, which could allow for substantial mass
transfer into the core [19,20]. Core evolution models that
assess the power requirements for sustaining the geo-
magnetic field over the last 3.5 Gyr [21] show that past
core temperatures inevitably exceeded the lower mantle
solidus estimated to be 3500–4200 K [20]. Standard
evolution models (those not including precipitation) that
incorporate new high core thermal conductivity estimates
[22–24] require cooling rates exceeding 100 KGyr−1 and
predict supersolidus temperatures until the last 0.5–1.0 Ga
[3,20,25]. Even with lower values of the thermal conduc-
tivity [26,27], these models predict supersolidus temper-
atures for approximately the first 1 Gyr [28] after core
formation. Concerns over the inefficiency of sustaining the
ancient dynamowith high thermal conductivity led to a new
class of models arguing that precipitation of MgO [4] or
SiO2 [6] began shortly after core formation, though these
models still predict supersolidus temperatures until the last
1–2 Ga. All evolution models predict that the inner core is
≲1.5-Ga old, and so FeO exchange between a fully molten
core and a molten lower mantle should have occurred over
much of Earth’s history.
The amount of oxygen that can be transferred into the

core from a molten lower mantle depends on the thermo-
dynamic equilibrium between silicate melts and liquid
metal at core-mantle-boundary (CMB) conditions and
the dynamics of mass transfer between the core and the
magma ocean. A major challenge is accessing the pressure
(P) and temperature (T) conditions of P ¼ 135 GPa and
T ≥ 5000 K relevant for studying core-mantle equilibrium
at early times. Despite significant recent progress (e.g.,
Refs. [29–34]), experiments are presently unable to simu-
ltaneously access these P-T conditions, though some have
come close (e.g., the values of P ¼ 100� 8 GPa and T ¼
5700� 500 K reported in Ref. [29]). However, the major-
ity of experiments have been conducted at P < 80 GPa
and T < 5000 K (Fig. 2), and so the role of temperature
and composition at CMB pressures is poorly known.
In this paper, we develop complementary methods to

compute the chemical potentials of solutes in solution, and
we apply them to the study of equilibrium between Earth’s
core and the mantle. We focus on partitioning of FeO; MgO
and SiO2 will be considered in a future study. The results
presented in this work are compared to experiments where
possible. We obtain the chemical potentials of iron and
oxygen in a silicate melt comprising 50% SiO2, 44%MgO,
and 6% FeO and a liquid metal comprising 95% Fe and
5% O at conditions close to those of the CMB at pressure

and temperatures that were typical of early Earth [35]. We
find that a significant amount of oxygen can enter the core
after its formation.
In Sec. II, we describe the basic theoretical and computa-

tional tools used in this work. The methods are based on
density-functional theory (DFT) [36,37], and we present
three independent statistical mechanics techniques to com-
pute free-energy differences, and from those, the chemical
potentials of solutes in solution. In particular, we discuss
(i) thermodynamic integration from a reference potential,
whereby the potential energy function is converted from
that of a reference potential to that of the full DFT system,
(ii) inclusion of a solute, whereby one atom of solute is
gradually added to the system, and (iii) alchemical trans-
mutation of a solvent into a solute, whereby one atom
of solvent is gradually converted into a solute atom. All
methods are based on sampling the phase space using
molecular dynamics. In Sec. IV, we check the consistency
of these alternative methods to obtain the oxygen chemical
potential. In Sec. V, we report the results for the distribution
coefficient defined as in Ref. [29] as KD ¼ ½ðccOccFeÞ=
ðcMO

Fe Þ�, where ccO and ccFe are, respectively, the molar
concentrations of O and Fe in the core, and cMO

Fe is the
molar Fe concentration in the magma ocean. Here and
throughout the paper, the superscripts c and MO signify
“core” and “magma ocean.” respectively. Finally, in Sec. VI
we discuss the implications of our results for Earth.

II. THEORY

A. The chemical potential

The chemical potential of a solute atom of type X in a
solvent made of atoms of type A (with no loss of generality,
the discussion also applies to the case where A ¼ X) is
defined as the change of free energy as one atom of X is
added to the system. It can be defined as

μXðp; T; cXÞ ¼
� ∂G
∂NX

�
p;T;NA

; ð1Þ

where G is the Gibbs free energy, p the pressure, T the
temperature, NX the number of X atoms, NA the number of
A atoms, and cX the concentration given by cX ¼ NX=N,
with N ¼ NA þ NX. The Gibbs free energy of the system
is also directly related to the chemical potentials by G ¼
NXμX þ NAμA.
The chemical potential can be equivalently defined as

μXðv; T; cXÞ ¼
� ∂F
∂NX

�
V;T;NA

; ð2Þ

where F is the Helmholtz free energy, V is the volume of
the system, and v ¼ V=N is the average volume per atom.
For finite systems, the two definitions in Eqs. (1) and (2)

provide, in general, slightly different chemical potential
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values, because as one atom is added at constant volume the
pressure of the system increases. However, one can show
that (see the Appendix A)

μXðp; T; cXÞ ≃ μXðv; T; cXÞ −
V
2BT

δp2; ð3Þ

where BT is the isothermal bulk modulus of the system,
and δp is the change of pressure as the atom X is added
to the system at constant volume V (see Appendix A). The
approximate relation in Eq. (3) is useful for our discussion,
because although we need the chemical potential at fixed
pressure, we prefer in most cases to work at constant
volume, and so we use Eq. (3) to correct the results. We
now describe three independent complementary methods to
compute μXðv; T; cXÞ. They are all based on the idea that
free-energy differences can be computed using thermody-
namic integration in which an initial potential energy
function is slowly switched to a final potential energy
function. The switching is done adiabatically, i.e., in such a
way that the system follows a path of states in quasiequili-
brium, so that the partition function is sampled in the
relevant region of the phase space at each point on the path.

1. Method 1

The first method that we describe relies on the calcu-
lation of the Helmholtz free energy of the system as the
difference from that of a chosen reference system.

Equation (2) then provides a direct route to the evaluation
of μX. The derivative on the rhs can be computed numeri-
cally by calculating the Helmholtz free energy of the
system with different number of atoms in the system:

μXðv; T; cXÞ ¼
FðV; T; NX; NAÞ − FðV; T; NX − dN;NAÞ

dN
;

ð4Þ

where dN is an integer and v ¼ V=ðN − dN=2Þ. In
practical calculations it is useful to set dN as large as
possible in order to improve on statistics, but of course,
this will provide only an accurate estimate of the
chemical potential if the Helmholtz free energy is linear
in the range ðNX − dN;NXÞ. A slight ambiguity arises in
finite systems in the definition of the concentration of the
solute X, as this changes from NX=ðNA þ NXÞ to ðNX −
dNÞ=ðNA þ NX − dNÞ for the two terms in the numerator
on the rhs of Eq. (4). To remove this ambiguity, we take
cX ¼ ðNX − dN=2Þ=ðNA þ NX − dN=2Þ, which is the
average between the concentrations before and after the
dN atoms of type X are added to the system.
In the classical limit (i.e., ignoring nuclei quantum

effects), the Helmholtz free energy of a system including
NX solute and NA solvent atoms that have access to the
whole volume V can be expressed as

FðV; T; NA;NXÞ ¼ −kBT ln

�
1

NA!NX!Λ
3NA
A Λ3NX

X

Z
V
dR exp ½−βUðNA;NX;RÞ�

�
; ð5Þ

where β ¼ 1=kBT, kB being the Boltzmann constant, and ΛA, ΛX the thermal wavelengths of A and X given by
ΛA ¼ h=ð2πMAkBTÞ1=2, with h the Plank’s constant, MA the atomic mass of A, and similarly for ΛX. The quantity
UðNA;NX;RÞ is the total energy function of the system which depends on the positions of all the atoms indicated byR, andR
V dR indicates integration over the whole configuration space of the system contained in volume V. Separating the terms
that do not depend on the potential energy, we rewrite Eq. (5) as

FðV; T; NA; NXÞ ¼ −kBT ln
VNA

NA!Λ
3NA
A

− kBT ln
VNX

NX!Λ
3NX
X

− kBT ln
1

VN

Z
V
dR exp ½−βUðNA;NX;RÞ�; ð6Þ

which with the Stirling formula becomes

FðV; T; NA; NXÞ ¼ −kBTNA

�
ln

V
NAΛ3

A

þ 1

�
− kBTNX

�
ln

V
NXΛ3

X
þ 1

�
þ FexðV; T; NA; NXÞ

¼ −kBTNA

�
ln

V
NΛ3

A

− ln
NA

N
þ 1

�
− kBTNX

�
ln

V
NΛ3

X
− ln

NX

N
þ 1

�
þ FexðV; T; NA; NXÞ

¼ N½cAFPG
A ðv; TÞ þ cXFPG

X ðv; TÞ þ kBTcA ln cA þ kBTcX ln cX� þ FexðV; T; NA; NXÞ; ð7Þ

where v ¼ V=N is the average volume per atom, FPG
A=Xðv; TÞ ¼ −kBTfln½v=ðΛ3

A=XÞ� þ 1g is the perfect gas Helmholtz free
energies per atom of atom A=X, and FexðV; T; NA; NXÞ ¼ −kBT lnð1=VNÞ RV dR exp ½−βUðNA;NX;RÞ�.
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The excess free energy FexðV; T; NX; NAÞ can be calcu-
lated by thermodynamic integration,

FexðV; T;NA; NXÞ ¼ Fex
refðV; T; NA; NXÞ

þ
Z

1

0

dλhUðNA;NX;RÞ

−UrefðNA;NX;RÞiλ; ð8Þ

where Uref is the total energy function of an appropriately
chosen reference system, Fex

ref its excess free energy, and the
quantity h·iλ is the canonical average,

hBiλ ¼
R
V dRBe−βUλðNA;NX ;RÞR
V dRe−βUλðNA;NX ;RÞ ; ð9Þ

where UλðNA;NX;RÞ¼ λUðNA;NX;RÞþð1−λÞUrefðNA;
NX;RÞ, and B is the quantity to be averaged. Note that
Fex in Eq. (8) does not depend on the choice of reference
system, provided that no discontinuities are observed in Uλ

as λ is increased from zero to 1.

2. Method 2

A second approach to compute the chemical potential of
the solute is to add one (or more generally dN) atom(s) of
solute to the system at constant volume and temperature
and compute the change of Helmholtz free energy in the
process. The main difference with method 1 is that the
chemical potential is obtained as the difference of free
energies of the systems with NX and NX − dN solute atoms
but without explicitly computing the free energies of the
two systems. We rewrite Eq. (4) as (see Appendix B)

FðV; T; NA; NXÞ − FðV; T; NA; NX − dNÞ
dN

¼ kBT ln cX þ μPGX ðv; TÞ þ ΔF
dN

þ FSðNX; dNÞ
dN

¼ kBT ln cX þ μ̃Xðv; T; cXÞ þ
FSðNX; dNÞ

dN
; ð10Þ

where the average volume is now v ¼ V=ðN − dN=2Þ,
μPGX ðv; TÞ ¼ FPG

X ðv; TÞ þ kBT is the perfect gas chemical
potential, and FSðNX; dNÞ is a finite-size correction which
results from the use of the Stirling formula and the
condition dN ≪ NX. This correction is not necessary for
method 1 or method 3 (described below), because in those
cases, only the excess free energy is computed with finite-
size systems. However, in method 2, we compute part of the
free energy by performing thermodynamic integration
directly from the perfect gas (see below), and therefore,
this correction needs to be taken into account, but we
note that with the parameters used in the calculations,
this correction is of the order of only approximately
−0.03 eV=atom, and therefore, negligible for our present

purposes. Equation (10) defines the excess chemical
potential μ̃Xðv; T; cXÞ. The quantity ΔF is calculated as

ΔF¼
Z

1

0

dλhUðNA;NX;RÞ−UðNA;NX−dN;R0Þiλ; ð11Þ

where R0 ¼ ðR1;…;RNA
;RNAþ1;…;RNAþNX−dNÞ and

R ¼ ðR0;RNAþNX−dNþ1;…;RNAþNX
Þ. The canonical aver-

age is generated by the potential UλðNA;NX;RÞ ¼
λUðNA;NX;RÞ þ ð1 − λÞUðNA;NX − dN;R0Þ.
This approach is well defined, but it may be statistically

inefficient, because as λ approaches zero the forces acting
on atoms ðNA þ NX − dN þ 1;…; NA þ NXÞ and the
forces on their neighbors due to their presence become
vanishingly small (in fact, zero in the limit λ ¼ 0).
Therefore, the distances between these atoms and their
neighbors are no longer limited from below, and close
approaches cause large energy fluctuations in the term
UðNA;NX;RÞ −UðNA;NX − dN;R0Þ. Indeed, this term
diverges for λ ¼ 0. However, since the quantity defined in
Eq. (11) is finite, this divergency must be integrable and
therefore, the quantity h·iλ must go to infinity more slowly
than λ−1. This consideration suggests that a practical
approach to the calculation of ΔF is to compute the
quantity h·iλ in Eq. (11) at several values of λ, including
values as close as possible to λ ¼ 0 (but obviously not
including the value λ ¼ 0) and fit the values with a function
of the type fðλÞ ¼ aλ−k þ b. The value of the integral
divided by dN is then ΔF=dN ¼ μX − μPGX − kBT ln cX ¼
a=ð1 − kÞ þ b.
It is also possible to altogether avoid the divergency at

λ ¼ 0 by making a change of variable ηm ¼ λ, withm some
integer greater than 1. The integral in Eq. (11) becomes

ΔFex ¼
Z

1

0

mηm−1dηhUðNA;NX;RÞ

−UðNA;NX − dN;R0Þiη; ð12Þ
which does not require the value of the integrand for η ¼ 0.

3. Method 3

A third approach is to compute the chemical potential of
the solute as the difference from the chemical potential of
the solvent [38]. This approach is particularly useful in the
low concentration limit, as we explain below. We have

μX−Aðv; T; cXÞ
¼ FðV; T; NA − 1; NX þ 1Þ − FðV; T; NA; NXÞ
¼ −kBT lnðNA=½NX þ 1�Þ − kBT ln ðΛ3

A=Λ3
XÞ

− kBT ln

�R
V dR exp ½−βUðNA − 1; NX þ 1;RÞ�R

V dR exp ½−βUðNA;NX;RÞ�
�
;

ð13Þ
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which can be expressed as

μX−Aðv; T; cXÞ ¼ kBT ln
cX

1 − cX
þ 3kBT ln

ΛX

ΛA

þmðV; T; cXÞ; ð14Þ

where we define

mðV; T; cXÞ

¼ −kBT ln

�R
V dR exp ½−βUðNA − 1; NX þ 1;RÞ�R

V dR exp ½−βUðNA;NX;RÞ�
�
:

ð15Þ

Expanding Eq. (14) to linear order in cX, we have

μX−Aðv; T; cXÞ ≃ kBT ln cX þ kBTcX

þ 3kBT ln
ΛX

ΛA
þmðV; T; cXÞ: ð16Þ

For constant pressure and temperature variations, the
chemical potential of the solvent is related to that of the
solute by the Gibbs-Duhem equation:

cAdμA þ cXdμX ¼ 0: ð17Þ

To obtain an expression for μAðp; T; cXÞ in the low
concentration limit, we first expand μ̃Xðp; T; cXÞ,

μ̃Xðp; T; cXÞ ¼ μ†Xðp; TÞ þ ϵðp; TÞcX þ oðc2XÞ; ð18Þ

and combining Eqs. (17) and (18), together with cA ¼
1 − cX, we obtain, to linear order in cX,

μAðp; T; cXÞ ≃ μ0Aðp; TÞ − kBTcX; ð19Þ

where μ0Aðp; TÞ is the chemical potential of the pure
solvent. By summing Eqs. (16) and (19), we can now
write the chemical potential of the solute as

μXðp; T; cXÞ ≃ kBT ln cX þ μ0Aðp; TÞ þ 3kBT ln
ΛX

ΛA

þmðV; T; cXÞ −
V
2BT

δp2: ð20Þ

The quantity mðV; T; cXÞ can be computed using thermo-
dynamic integration techniques by defining a hybrid
potential energy function Uλ ¼ λUðNX þ 1; NA − 1;RÞ þ
ð1 − λÞUðNX;NA;RÞ and performing the integral

mðV; T; cXÞ ¼
Z

1

0

dλhUðNX þ 1; NA − 1;RÞ

− UðNX;NA;RÞiλ; ð21Þ

with h·iλ representing the thermal average operator in the
ensemble generated by Uλ with volume V and temperature
T. Note that mðV; T; cXÞ does not depend on the masses of
the solute and the solvent, which are therefore free
parameters in the molecular dynamics simulations used
to compute thermal averages and can be chosen to be equal.
This is useful, because a practical implementation of the
method involves performing two simultaneous and syn-
chronous MD simulations, one withUðNX þ 1; NA − 1;RÞ
and the other with UðNX;NA;RÞ, and then moving the
atoms in both systems according to the forces obtained
from fλðRÞ ¼ ∂Uλ=∂R. These forces are equal in both
simulations for each corresponding atom, and therefore
requiring also the corresponding masses to be equal in
order to keep the two trajectories equal.
As noted in Ref. [38], a difficulty in a practical

implementation of Eq. (21) is that of statistics, as only
one solvent atom is transmuted into a solute. A more
efficient procedure is to transmute dN atoms simultane-
ously and define

WðNX;NA; dNÞ ¼ 1

dN

Z
1

0

dλhUðNX þ dN;NA − dN;RÞ

− UðNX;NA;RÞiλ: ð22Þ

The quantity WðNX;NA; dN;VÞ is equal to the integral of
mðV; T; cXÞ over the range of concentrations between
NX=N and ðNX þ dNÞ=ðN þ dNÞ. If dN is sufficiently
small compared to N, mðV; T; cXÞ can be approximated as
depending linearly on cX in the interval NX=N ≤ cX ≤
ðNX þ dNÞ=ðN þ dNÞ, and we have WðNX;NA; dNÞ ¼
mðV; T; cXÞ, with cX ¼ ðNX þ dN=2Þ=ðN þ dN=2Þ.
This approach is very efficient computationally, because

one changes only a small part of the system to obtain
the chemical potential difference between two species.
However, for large concentrations, or for the general case in
which the chemical potential of the solvent is not known,
method 3 is not viable. This is, for example, the case of
oxygen in the magma ocean, where we are interested only
in the value of its chemical potential and not in those of the
other elements. However, the approach of Ref. [38] can still
be used to cross-check the other two methods where all of
them can be applied, which is what we do in Sec. IV.

B. Heat of reaction

To understand if the FeO dissolution reaction is endo-
thermic or exothermic, we calculate the heat of reaction
defined as

RX ¼ μ − T

�∂μ
∂T

�
p;cX

: ð23Þ

Note that RX is completely determined by the excess
chemical potential μ̃, with the configurational term
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kXT ln cX playing no part, so we can equivalently write
RX ¼ μ̃ − T½ð∂μ̃Þ=ð∂TÞ�p;cX . This is obviously clear also by
noting that mixing elements that do not interact chemically
(e.g., mixing balls of different color but identical otherwise)
cannot result in any production of heat. Since we are adding
one FeO f.u. to the core by removing it from the magma
ocean, the total heat absorbed or released is given by
Rc
FeO − RMO

FeO, where R
c
FeO is the heat of reaction as one FeO

f.u. is added to the core, and RMO
FeO is the analogous quantity

for the magma ocean.
Computationally, an efficient procedure to calculate RX

is to use its equivalent definition given by the enthalpy
change ΔH [39]:

RX ¼ ΔHX ¼ ΔEX þ pΔVX; ð24Þ

where ΔEX and ΔVX are the internal energy and the
volume change as one formula unit X is added to the system
at constant pressure and constant temperature. To improve
on the statistics, we compute ΔHc

FeO and ΔHMO
FeO by adding

1, 2, 3, and 4 FeO f.u. to the respective liquid and fit the
results to a linear function.

III. TECHNICAL DETAILS

First-principles simulations are performed using the
parameter-free ab initio method DFT. The accuracy of
DFT depends on the approximation used for the exchange-
correlation functional. With the generalized-gradient-
corrected functional known as PW91 [40] used in the
present work, the experimentally observed properties of
iron are very accurately reproduced, including high-
pressure properties such as the ϵ-iron equation of state
[41–43], the phonon density of states [44], the equation of
state, and the speed of sound on the Hugoniot [45], to name
a few. DFT-PW91 is also used to model iron mixed with
oxygen, sulphur, and silicon at Earth’s core conditions
[22,38,46,47], obtaining transport properties in good
agreement with experimental data [23,24,48]. Recent
calculations of liquid-iron mixtures in equilibrium with
ferropericlase obtained distribution coefficients in good
agreement with experiments [18].
The present calculations are performed using the VASP

code [49] with the projector-augmented-wave (PAW)
method [50,51]. For Fe, we use a PAW with a Ne core
and the 3s electrons also frozen in the core (14 valence
electrons). For O, we use a PAWwith a He core (six valence
electrons). For Mg, we use a PAW with a He and the 2s
orbitals frozen in the core (eight valence electrons), and
for Si, a PAW with a Ne core (four valence electrons).
Single-particle orbitals are expanded in plane waves with a
cutoff of 400 eV. The core radii are 1.16, 1.06, 0.8, and
0.8 Å, respectively. Electronic levels are occupied accord-
ing to Fermi-Dirac statistics, with an electronic temperature
equal to the ionic temperature. An efficient extrapolation

of the charge density is used to speed up the ab initio
molecular dynamics simulations [52], which are performed
by sampling the BZ with the Γ point only. The temperature
is controlled with a Nosé thermostat [53], and the time step
is set to 1 fs. As shown in previous work [18], with these
parameters, the chemical potentials are found to be con-
verged to better than ≃50 meV. With this accuracy, logKD
is converged to better than 0.08, which is about 1 order of
magnitude better than the typical scattering between
experimental data (see Fig. 2).

IV. TEST OF TECHNIQUES

A. Oxygen in liquid iron

In Table I, we report the results for the excess chemical
potential of oxygen in liquid iron, i.e., the quantity
μ̃O ¼ μO − kBT ln cO, where cO is the oxygen concentra-
tion, obtained using method 1 and compared with calcu-
lations performed using method 3. The use of method 3 is
possible because the concentrations of oxygen are low,
and we know the chemical potential of pure Fe [45].
The calculations are performed with T ¼ 4300 K, and we
use NFe ¼ 149. For method 1, the three different values
reported in Table I are computed using NO ¼ 8, dN ¼ 4;
NO ¼ 6, dN ¼ 2, and NO ¼ 8, dN ¼ 2, giving average
pressures of 130.1, 127.8, and 132.6 GPa, respectively. The
pressures are different because the volume of the simulation
cell is always the same, but the number of atoms is
different. They are given as the average pressure between
the two systems with NFe þ NO and NFe þ NO − dN
atoms, because one can think of removing dN atoms to
theNFe þ NO system just as well as adding dN atoms to the
NFe þ NO − dN system. The calculations with method 3
are performed with NO ¼ 8, dN ¼ 8 at a pressure p ¼
133.5 GPa and corrected to the required pressure using
dμ̃O=dp ¼ vO, with vO ¼ 5.4 Å3 the oxygen partial
volume. The agreement between the two sets of
results is extremely good when considering their statistical

TABLE I. Excess chemical potential of oxygen in liquid iron at
T ¼ 4300 K and various pressures and concentrations calculated
using method 1 and compared to data obtained with method 3.
All systems contain 149 Fe atoms, and the number of O atoms
together with dN is reported in each case. For method 3, only one
calculation with NO ¼ 8, dN ¼ 8 is performed at a pressure
p ¼ 133.5 GPa, and the values reported in the table are corrected
using dμ̃O=dp ¼ vO ¼ 5.4 Å3 (see text).

ðp; cO; NO; dNÞ (GPa, mol %)

μ̃O (eV/atom)
(127.8,
3.2, 6, 2)

(130.1,
3.9, 8, 4)

(132.6,
4.5, 8, 2)

Method 3 −4.33 (6) −4.26 (6) −4.17 (6)
Method 1 −4.26 (6) −4.19 (5) −4.11 (8)
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errors, which in turn, are small enough for our present
purposes.
In Table II, we report the results for μ̃O using method 2

and compare them again to those obtained using method 3.
For method 2, to compute the integral in Eq. (11) we
perform calculations at nine values of λ ranging between
0.0075 and 1.0. The values of the integrand are displayed in
Fig. 1. The calculations are performed with T ¼ 4300 K
and p ¼ 112.8 GPa, using NFe ¼ 149, NO ¼ 8, dN ¼ 8.
Once again, the agreement between the results obtained
with method 2 and method 3 is extremely good.

V. RESULTS

A. Equilibrium between Earth’s core
and the magma ocean

The tests of the previous section lend confidence to both
method 1 and method 2, and we are ready to extend the
calculations to the magma ocean. We consider the chemical
potential of Fe and O together, rather than O in isolation,
because it is likely that any movement of oxygen between
the MO and the liquid core is accompanied by Fe for charge
balance reasons. In fact, oxygen could also be moved
as MgO and/or SiO2, but for the purpose of this paper,

we consider only FeO. In Table III, we report the values of
the excess chemical potential of FeO both in a liquid-iron-
oxygen mixture with 149 Fe and eight O atoms, and in
the MO, modeled as a liquid mixture with a starting
composition of 28 Mg, four Fe, 32 Si, and 96 O atoms.
To compute the chemical potential with the techniques
described in the previous sections, we remove two FeO
units (dN ¼ 2) both in the liquid-iron mixture and in the
liquid-silicate mixtures. The pressures reported in Table III
are the average of the pressures of the systems before and
after the removal of the two FeO molecules. For compari-
son, we also report the excess chemical potential of FeO in
solid Mg63FeO64, as computed in Ref. [18]. As expected,
the chemical potential is lower in the liquid mixture
representing the MO than in solid ferropericlase, but it is
still significantly higher than that in the liquid-iron mixture,
which will cause strong partitioning of FeO into the core.
The calculations performed with method 1 are very

inefficient because we used a reference potential that is
not optimal for liquid Mg28Fe3Si32O95, and so we perform
them only at one thermodynamic state to cross-check the
results obtained with method 2. All other results are
obtained with method 2 only.
Chemical equilibrium is reached when the chemical

potential of all species is equal in the two phases. Since
we are interested in FeO, we consider the sum of the
chemical potentials of Fe and O, μcFeO ¼ μcFe þ μcO and
μMO
FeO ¼ μMO

Fe þ μMO
O , rather than the two in isolation, that is

μcFeOðp; T; ccO; ccFeÞ ¼ μMO
FeOðp; T; cMO

O ; cMO
Fe Þ; ð25Þ

where ccO and ccFe are the concentrations of O and Fe in the
core and similarly for those in the MO. To obtain the
relation that governs the partition, we rewrite the chemical
potential by separating the configurational parts, and so
Eq. (25) becomes

kBT ln ccO þ kBT ln ccFe þ μ̃cFeOðp; T; ccO; ccFeÞ
¼ kBT ln cMO

O þ kBT ln cMO
Fe þ μ̃MO

FeOðp; T; cMO
O ; cMO

Fe Þ;
ð26Þ

TABLE III. Excess chemical potential of FeO, μ̃FeO ¼ μFeO−
kBT ln cFe − kBT ln cO, in liquid iron and liquid Mg28Fe3Si32O95,
at T ¼ 5500 K calculated using method 1 [method 2]. For
comparison, we also report the value in solid Mg63FeO64.

p (GPa)

μ̃FeO (eV/atom) 128.4 122.5

Liquid Mg28Fe3Si32O95 −9.76 (0.17)
[−9.79 (0.07)]

Liquid Fe148O7 −10.46 (0.04)
[−10.46 (0.07)]

Solid Mg63FeO64 −9.02 (0.05) −9.55 (0.05)
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FIG. 1. The integrand of Eq. (11) evaluated at several values of
λ for the FeO case reported in Table II. The data are fitted to the
function fðλÞ ¼ aλ−k þ b (blue line), with k ¼ 0.37, a ¼ 5.34,
b ¼ −9.45.

TABLE II. Excess chemical potential of oxygen in liquid iron at
T ¼ 4300 K calculated using method 2 and compared to the data
obtained with method 3. The system contains 149 Fe atoms and
eight O atoms, and we use dN ¼ 8 (see text).

ðp; cO; NO; dNÞ (GPa, mol %)

μ̃O (eV/atom) (112.8, 2.6, 8, 8)

Method 3 −4.80 (6)
Method 2 −4.81 (6)
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from which we get the distribution coefficient:

KD ¼ ccOc
c
Fe

cMO
Fe

¼ cMO
O exp

�
−
μ̃cFeOðp; T; ccO; ccFeÞ − μ̃MO

FeOðp; T; cMO
O ; cMO

Fe Þ
kBT

�
¼ cMO

O exp

�
−
δμ̃FeO
kBT

�
: ð27Þ

One important difference in the relation above compared to
the partition with solid ferropericlase is that in the latter we
do not consider the configurational term due to the oxygen
concentration, because in the ferropericlase lattice there is
only one possible arrangement of the oxygen atoms, and so
there is no associated entropy. However, in the MO the
oxygen atoms move around freely, and therefore, there will
be a contribution to the chemical potential given by
kBT ln cMO

O ∼ kBT ln 0.6. For the same excess chemical
potential difference, this term reduces the distribution
coefficient compared to that with solid ferropericlase.
To estimate the value of the distribution coefficient,

we need the excess chemical potentials at the same
pressure, which we can estimate by using ∂μ̃MO

FeO=∂p ¼
vMO
FeO ∼ 0.096ð1Þ eV=GPa and ∂μ̃cFeO=∂p ¼ vcFeO ∼

0.091ð1Þ eV=GPa. These two partial volumes are calcu-
lated by adding one FeO molecule to the system at constant
pressure and temperature and measuring the change of
volume. Therefore, at 124 GPa and 5500 K, the excess
chemical potential difference between the core and the
mantle is δμ̃FeOð5500Þ ¼ −1.21ð8Þ eV, and we have KD ¼
7.8þ1.5

−1.2 . We then perform additional calculations at
T ¼ 5000 K and T ¼ 6000 K, obtaining δμ̃FeOð5000Þ ¼
−1.24ð8Þ and δμ̃FeOð6000Þ ¼ −1.22ð7Þ eV, giving KD ¼
10.6þ2.6

−2.3 and KD ¼ 6.3þ1.3
−1.1 . Noting that ∂δμ̃FeO=∂p ¼

−0.005ð2Þ eV=GPa, the dependence of KD with
pressure can be estimated from ∂KD=∂p ¼ −KD=kBT×
∂ðδμ̃FeOÞ=∂p ¼ 0.07ð2Þ GPa−1.

Figure 2 compares our results to a number of recent
studies of partitioning between liquid metal and silicate
melts at different P-T conditions [29–34]. The value at
T ¼ 5500 K KD ¼ 7.8þ1.5

−1.2 is comparable to the value of
KD ¼ 4.76 at P ¼ 74 GPa and T ¼ 3700 K reported in
Ref. [32] and slightly higher than the values reported in
Refs. [29,34] at similar temperatures and lower pressures.
The differences are likely due to variations in the starting
compositions and oxygen concentrations in both silicate
and metal phases, which are known to strongly influence
oxygen partitioning [15,29,54], while uncertainties on the
experimental P-T conditions will also contribute. These
and other factors produce a scatter of 0.5–1 log units in KD
across much of the accessible temperature range, which is
consistent with the variation observed at high temperature
(> 5000 K) in Fig. 2. In view of the significant technical
challenges associated with conducting both experiments
and simulations at such extreme conditions, the impressive
level of agreement in Fig. 2 demonstrates the mutual
consistency of these two fundamentally different yet
complementary approaches.
Figure 2 shows that, once pressure and temperature

effects are taken into account, the results for partitioning
between liquid metal and both solid and liquid silicates
display similar behavior across the available P-T range.
Values of KD at T > 4000 K for the solid are higher than
values obtained from liquid-metal–silicate melt partitioning
at similar temperature, which has been found in previous

FIG. 2. Comparison of present results with published work. Panels show values of the distribution coefficient KD plotted against
inverse temperature (left) and pressure (right) for our data together with other experimental studies of solid-silicate–liquid-metal
partitioning (open symbols) and silicate-melt–liquid-metal partitioning (closed symbols).
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studies [20,35,55]. This is expected from our calculations
because of the configurational entropy contribution due to
oxygen in the silicate melt (not present in ferropericlase
where the oxygen atoms are fixed in their lattice positions),
which reduces the liquid-metal–liquid-silicate partition
coefficient by a factor of cMO

O compared to the liquid-
metal-ferropericlase value.
The results are reported inTable IV togetherwithavalueof

the heat of reaction, which is negative, signaling that the
reaction of dissolution of FeO from the MO to the core is
exothermic. This is in contrast with the heat of reaction from
solid ferropericlase to liquid-ironmixtures,which is found to
be positive [18], giving an endothermic reaction. These
results have profound implications for the early history of
Earth, as additional chemical energy would have been
provided to the core as it acquired its oxygen inventory.

VI. DISCUSSION

We use our new FeO partitioning data to estimate the
equilibrium conditions between silicate melts and liquid
metal in early Earth. Core formation models often assume
that the magma ocean froze from the bottom up, with
chemical equilibration occurring at theP-T conditions where
metal ponds on top of the solid before sinking to the core (e.g.,
Refs. [11,12]). Another possibility is that the magma ocean
froze outwards from the midmantle [56], in which case,
partitioning would occur at the CMB. Core formation
probably involved multiple impacts between small bodies
and proto-Earth that added material of varying composition
and produced magma oceans at different pressure-
temperature-composition conditions [11]. These conditions
are difficult to constrain because they depend on the detailed
dynamics of the accretion and differentiation processes,
which are still poorly understood. Here we focus on con-
ditions that prevail following the last impact and consider a
range of plausible magma-ocean conditions and silicate-melt
compositions in order to estimate the oxygen content of
material added in the final stages of core formation.
The temperature for equilibration in the latter stages of

core formation depends on the manner in which the magma

ocean froze. For bottom-up freezing, the relevant
temperature is between the peridotite liquidus and solidus,
which could be between 3000 and 5000 K depending on
the pressure (depth) of equilibration [12,57]. For middle-
out crystallization, the basal magma ocean is expected to
remain close to the liquidus [56], in which case, the relevant
temperature is towards the upper end of the range quoted
above. Nevertheless, it is possible that some material could
have equilibrated at even higher temperatures [4]. We
therefore consider the range T ¼ 5000–6000 K, noting
that our results (Fig. 2) suggest lower temperatures will
lead to stronger partitioning. The pressure effect on KD is
small (Fig. 2) and is neglected here; changes in P therefore
affect the results only insofar as they affect the temperature.
We consider a range of estimates for the molar concen-

trations of iron and oxygen in the silicate melt cMO
Fe and

cMO
O , respectively. This ignores the potential for partitioning
of MgO and/or SiO2, which are not calculated here and will
be the subject of future study, though we note that our
results for the solid [18] suggest that the presence of Si
does not strongly affect oxygen partitioning. Reasonable
bounds on cMO

Fe and cMO
O can be obtained by considering the

composition of the present lower mantle, which is thought
to consist mainly of 70%–80% ðMg;FeÞSiO3 bridgmanite
and 15%–20% (Mg,Fe)O ferropericlase [58]. We consider a
lower value of cMO

O ¼ 10%, which is probably too low
given the abundance of O-bearing minerals in the lower
mantle, and an upper value of cMO

O ¼ 65% corresponding to
almost pure SiO2. We consider cMO

Fe ¼ 1%–10%, slightly
smaller than estimates of 10%–20% in previous work
[35,56]. Higher values of cMO

O or cMO
Fe increase the predicted

core oxygen concentration which, as we show below, does
not affect the conclusions.
The liquid core is assumed to be composed of iron and

oxygen, and so Eq. (27) can be written as ccOð1 − ccOÞ ¼
cMO
Fe cMO

O exp f−½ðδμ̃FeOÞ=ðkBTÞ�g. Varying cMO
Fe , cMO

O , and
T therefore provides a range of estimates for the equilib-
rium concentration of liquid metal ccO. At each T, we use
the corresponding value of δμ̃FeO, assuming that the effect
of composition on δμ̃FeO is small.
Figure 3 shows ccO plotted against cMO

O for different
values of T and cMO

Fe . Unless there is very little iron in the
MO (approximately 1%), ccO equals or exceeds the present
bulk core oxygen concentration. The main result is there-
fore that abundant oxygen should partition into the core
at high temperatures. However, it is also clear that the
oxygen added during the latter stages of core formation
cannot be uniformly mixed into the bulk core, otherwise the
present-day core oxygen concentration would be higher.
The explanation is that this oxygen cannot be mixed to
greater depths by convection, and instead remains near the
CMB [15,18,19,59] creating a layer of stable stratification.
This is consistent with our KD values, which increase
with decreasing temperature; as the magma ocean cools

TABLE IV. Temperature T, excess chemical potential differ-
ence of FeO between the core and the magma ocean μ̃cFeO − μ̃MO

FeO

with error given in brackets, heat of reaction difference Rc
FeO −

RMO
FeO as one FeO unit is transferred from the magma ocean to the

core, distribution coefficient KD ¼ ½ðccOccFeÞ=cMO
Fe � and partition

coefficient P ¼ KD=ccFe. All calculated values refer to a pressure
of 124 GPa for a silicate melt comprising 50% SiO2, 44% MgO,
and 6% FeO and a liquid metal comprising 95% Fe and 5% O.

T (K) μ̃cFeO − μ̃MO
FeO (eV) Rc

FeO − RMO
FeO (eV) KD P

5000 −1.24 (0.08) � � � 10.6 11.2
5500 −1.21 (0.08) −2.5 7.8 8.2
6000 −1.22 (0.07) � � � 6.3 6.6
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following the final giant impact, more oxygen will partition
into the core.
Stably stratified layers strongly suppress radial fluid

motions (at least in the absence of significant topography
on the core-mantle boundary [60]) and support hydro-
magnetic wave motions that do not arise in convecting
regions [61,62]. The existence of a stably stratified layer
therefore has significant implications for reconciling
observed variations of Earth’s magnetic field with motions
inside the core [3,63]. Our results suggest that such a stable
stratification would have formed early in Earth’s history,
directly following the last impact that could have erased
any previous stratification [64]. The mechanism is funda-
mentally different from the primordial compositional
stratification that could arise due to merging between a
light-element-rich impactor and Earth’s core [65], and both
effects could possibly reinforce to create a thick and
strongly stable region at the top of the core.
If FeO exchange occurs at the CMB, the release of heat

through the exothermic reaction will affect the operation of
the dynamo. The reaction does not produce entropy to
power the dynamo because heat is both generated and lost
at the CMB; the thermodynamic efficiency factor of the
process is zero [see Eq. (40) in Ref. [66] ]. However, it
does affect the dynamo indirectly by reducing the heat
that is extracted from the core at the CMB. The heat sink
Qh due to the exothermic reaction can be written [66]
Qh ¼ hRhijIOj, where IO ¼ 4πr2cρDΔc=δ is the mass flux
of O into the core, and hRhi ¼ Rc

O − RMO
O . Here, rc ¼

3480 km is the CMB radius, ρ ∼ 5000 kgm−3 is the lower
mantle density, D ∼ 10−9 m2 s−1 is the oxygen-diffusion
coefficient, and Δc is the change in O mass fraction across
the lower mantle chemical boundary layer of thickness δ
[18]. The heatQb extracted across the lower mantle thermal
boundary layer is related to the heat Qc driving core

convection by Qc ¼ Qb þQh. Since hRhi < 0, Qh < 0
and the reaction decreases Qc for a given Qb, which lowers
the core cooling rate and decreases the power available to
the geodynamo [3,25].
The flux of O from the solid mantle is estimated as IO ∼

103–104 kg s−1 [59], which gives Qh ∼ 10−2–10−1 TW, a
negligible value. However, flux from the vigorously con-
vecting magma ocean is likely to be much larger than from
the relatively sluggish solid mantle. Thermal boundary
layers in the magma ocean are perhaps only 1 cm thick
[67], and chemical boundary layers are probably even
thinner owing to the smaller compositional diffusion
coefficient. Using δ ¼ 1 cm, a compositional change of
Δc ¼ 1% across the boundary layer and other values above
yields a flux of 8 × 108 kg s−1 and a heat sink of
Qh ¼ 600 TW, while a value of δ ¼ 1 m reduces the flux
and sink to IO ¼ 8 × 106 kg s−1 and Qh ¼ 6 TW. The
rather large uncertainties on D, Δc, and δ allow higher or
lower estimates for IO and Qh than those above, but values
towards the lower end are more compatible with conven-
tional estimates of CMB heat flow in early times [3,68].
These high values ofQh are unlikely to be sustainable on

long timescales because transfer of oxygen to the core
would reduce the compositional difference across the lower
mantle chemical boundary layer, and hence, IO. Indeed, if
the top of the core becomes highly enriched in oxygen, then
the mass flux of FeO may be limited by slow diffusion
through the stratified upper core rather than by dynamics
on the mantle side of the CMB. Realistic scenarios can be
obtained only by solving conservation equations that
couple FeO evolution in the mantle and core, which
requires a separate study. Here we provide context for
our estimates of Qh by comparing them to values of Qb
during the early stages of core-mantle evolution.
Estimates of Qb ¼ kΔTs=δT are uncertain because they

depend on the superadiabatic temperature drop ΔTs across
the lower thermal boundary layer of thickness δT (k∼
10 Wm−1K−1 the magma-ocean thermal conductivity
[56]), ΔTs is unknown but could be rather small if the
magma ocean is vigorously convecting. Taking ΔTs ¼
10−3 K, which is similar to estimates for Earth’s present-
day core, and δT ¼ 1 cm as above suggests Qb ∼ 100 TW,
but uncertainties in the parameters could allow a factor of
10 variation either way. Core evolution models produce
values of Qb ranging from 40 to 50 TW [68] to well over
50 TW [69] around 4.0–4.5 Ga, though these models
assume that the mantle is solid. A previous model of the
basal magma ocean [56] produced low values of
Qb < 10 TW, though it was assumed that the core and
mantle cooled at the same rate. In reality, Qh and Qb are
coupled because heat released through the exothermic
reaction will change the temperature at the top of the core,
which in turn changes ΔTs. Nevertheless, the simple
estimates above suggest that the effect is large enough to
warrant further investigation, which could be accomplished

FIG. 3. Predicted equilibrium concentration of oxygen in liquid
metal ccO as a function of oxygen and iron concentrations in
silicate melt cMO

O and cMO
Fe , respectively. Line styles denote

different temperatures: T ¼ 5000 K (solid), 5500 K (dashed),
and 5000 K (dot-dashed). The gray shaded region highlights the
range of oxygen concentrations estimated for the present-day
core [25].
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by relaxing the constraint in existing core evolution models
of no mass transfer between the core and mantle [3,20,25].

VII. CONCLUSIONS

The manner in which elements partition between sili-
cates and metals at high pressure and temperature is critical
for determining the structure, dynamics, and evolution of
the terrestrial planets. The relative proportions of light
elements in the core and mantle set during formation of the
planet dictates the melting or freezing properties of these
regions and the manner in which they flow, while parti-
tioning of these elements during core freezing provides
crucial power to generate planetary magnetic fields.
In this paper, we present three complementary and

independent methods for calculating the chemical poten-
tials of arbitrary solutes in solution. Excellent agreement is
demonstrated by applying these techniques to study the
partitioning of FeO between liquid metal and silicate
melts at high pressure and temperature, providing cross-
validation and independent support. This work paves the
way for establishing the partitioning behavior of all relevant
elements and in particular silicon and magnesium. The
methods allow calculations at pressures above 100 GPa
and temperatures of several thousand kelvin and therefore
span the pressure-temperature conditions thought to have
occurred during and following core formation in Earth and
other terrestrial bodies.
Our FeO partitioning data show that oxygen strongly

partitions into liquid metal at high pressure and temper-
ature. These results suggest oxygen concentrations in the
core during the latter stages of its formation that exceed
present-day values, implying that the addition of oxygen at
this time led to the formation of a stably stratified layer
below the CMB. Future calculations are needed to establish
whether this layer is related to anomalous seismic structure
at the top of Earth’s present-day core [70], in particular,
whether the layer could resist disruption due to convection
in the deeper core [59,71] or from the presence of thermal
anomalies in the lower mantle [72]. We also show that heat
released by the exothermic reaction could have limited
the heat flow out of the core in early times. Reduced heat
flow slows the core cooling rate, lowering the power
available to the early dynamo, further exacerbating the
energetic limitations imposed by high core thermal con-
ductivity (e.g., Refs. [3,25,63,73,74]) and reinforcing the
need for alternative power sources for the ancient geo-
magnetic field [4,6]. Future models of core thermochemical
evolution should account for this effect when accessing the
conditions that gave rise to Earth’s ancient magnetic field.
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APPENDIX A

We derive here the approximate relation Eq. (3), between
constant pressure and constant volume variations. Let us
consider two systems, 0 and 1, with potential energies
U0ðRÞ and U1ðRÞ, respectively, and let us introduce the
hybrid potential UλðRÞ ¼ λU1ðRÞ þ ð1 − λÞU0ðRÞ. We
are interested here in the quantity ΔF ¼ F1 − F0 and its
relation to ΔG ¼ G1 −G0, where F0 and F1 are the
Helmholtz free energies of the two systems at volume V
and temperature T, andG0 andG1 the corresponding Gibbs
free energies at pressure p and temperature T. In the
following, we assume that the temperature is fixed, and so
we do not display it explicitly. Noting that as we go from
system 0 to system 1, we have dλ ¼ 1, these free-energy
differences can be written as

ΔF ¼
�∂Fλ

∂λ
�

V
þ 1

2

�∂2Fλ

∂λ2
�

V
þ…; ðA1Þ

where Fλ is the Helmholtz free energy of the system with
potential energy Uλ, and the derivatives are taken at λ ¼ 0.
Analogously, for the Gibbs free energy, we have

ΔG ¼
�∂Gλ

∂λ
�

p
þ 1

2

�∂2Gλ

∂λ2
�

p
þ…: ðA2Þ

Since Gλ ¼ Fλ þ pV, we have

�∂Gλ

∂λ
�

p
¼

�∂Fλ

∂λ
�

p
þ p

�∂V
∂λ

�
p
: ðA3Þ

The differential of Fλ with respect to variations of V
and λ is

dFλ ¼
�∂Fλ

∂λ
�

V
dλþ

�∂Fλ

∂V
�

λ

dV; ðA4Þ

and by writing V ¼ Vðλ; pÞ, we have dV ¼ ½ð∂VÞ=
ð∂λÞ�pdλþ ½ð∂VÞ=ð∂pÞ�λdp, which once substituted in
Eq. (A4) allows us to write the differential of Fλ with
respect to λ and p,
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dFλ ¼
�∂Fλ

∂λ
�

V
dλþ

�∂Fλ

∂V
�

λ

��∂V
∂λ

�
p
dλþ

�∂V
∂p

�
λ

dp

�

¼
��∂Fλ

∂λ
�

V
þ
�∂Fλ

∂V
�

λ

�∂V
∂λ

�
p

�
dλ

þ
�∂Fλ

∂V
�

λ

�∂V
∂p

�
λ

dp; ðA5Þ

and so, considering F ¼ Fðλ; pÞ,
�∂Fλ

∂λ
�

p
¼

�∂Fλ

∂λ
�

V
þ
�∂Fλ

∂V
�

λ

�∂V
∂λ

�
p

¼
�∂Fλ

∂λ
�

V
− p

�∂V
∂λ

�
p
: ðA6Þ

Comparing Eqs. (A3) and (A6), we have

�∂Gλ

∂λ
�

p
¼

�∂Fλ

∂λ
�

V
: ðA7Þ

This is nothing but a general thermodynamic equivalence
between the derivative of G at constant pressure and that
of F at constant volume with respect to some external
perturbation, and indeed, it is the equivalence used in the
definitions of the chemical potential in Eqs. (1) and (2)
where the perturbation is due to the addition of one atom to
the system. For finite differences, Eq. (A7) shows that
variations of G and F are the same to linear order in the
perturbation, and corrections appear only to higher orders.
Since we compute the chemical potential as a finite
difference μðp; T; cXÞ ¼ ΔG and μðV; T; cXÞ ¼ ΔF, where
Δ refers to a change caused by the addition of one atom of
solute at constant pressure (volume) in the case of ΔG
(ΔF), we have that to linear order μðp; T; cXÞ ¼
μðV; T; cXÞ. The perturbation causes a change of volume
(pressure) if performed at constant pressure (volume), and
therefore, the first correction in the equivalence between
ΔG and ΔF is going to be quadratic with respect to the
change of volume (pressure) as the atom is added at
constant pressure (volume).
Let us now consider the second-order variations and

define

Aλ ¼
�∂Gλ

∂λ
�

p
: ðA8Þ

We have

�∂2Gλ

∂λ2
�

p
¼

�∂Aλ

∂λ
�

p
: ðA9Þ

The infinitesimal change of Aλ with respect to variations of
V and λ is

dAλ ¼
�∂Aλ

∂λ
�

V
dλþ

�∂Aλ

∂V
�

λ

dV; ðA10Þ

and writing Aλ ¼ Aλðλ; pÞ, we obtain

�∂Aλ

∂λ
�

p
¼

�∂Aλ

∂λ
�

V
þ
�∂Aλ

∂V
�

λ

�∂V
∂λ

�
p
: ðA11Þ

Using [75]

�∂V
∂λ

�
p
¼ −

�∂V
∂p

�
λ

�∂p
∂λ

�
V
¼ V

BT

�∂p
∂λ

�
V

ðA12Þ

together with

�∂Aλ

∂V
�

λ

¼
� ∂
∂V

�∂Fλ

∂λ
�
V

�
λ

¼
� ∂
∂λ

�∂Fλ

∂V
�
λ

�
V
¼−

�∂p
∂λ

�
V
;

ðA13Þ

we obtain

�∂2Gλ

∂λ2
�

p
¼

�∂Aλ

∂λ
�

V
−

V
BT

�∂p
∂λ

�
2

V

¼
�∂2Fλ

∂λ2
�

V
−

V
BT

δp2; ðA14Þ

where δp is the change of pressure as the potential energy
is changed from U0 to U1 at constant volume V, BT ¼
−V½ð∂pÞ=ð∂VÞ�T , and we use ½ð∂pÞ=ð∂λÞ�V ¼ δp valid to
linear order in δp. We can now write our final expression
for the relation of the change of Gibbs and Helmholtz free
energies to second order:

ΔG ¼ ΔF −
V
2BT

δp2 þ…: ðA15Þ

APPENDIX B

To keep the notation simpler, we work with the sym-
metric difference FðV; T; NA; NX þ dNÞ − FðV; T; NA;
NX − dNÞ. To obtain the asymmetric quantity FðV; T; NA;
NXÞ − FðV; T; NA; NX − dNÞ of Eq. (10), we then replace
dN → dN=2, NX → NX − dN=2, and N → N − dN=2.
We have
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FðV; T; NA; NX þ dNÞ − FðV; T; NA; NX − dNÞ − ΔF ¼ −kBT ln
V2dNðNX − dNÞ!
Λ6dN
X ðNX þ dNÞ! ðB1Þ

¼ −kBT ln
V2dN

Λ6dN
X N2dN

N2dNðNX − dNÞ!
ðNX þ dNÞ! ¼ −kBT ln

V2dN

Λ6dN
X N2dN − kBT ln

N2dNðNX − dNÞ!
ðNX þ dNÞ! ðB2Þ

¼ 2dNμPGX ðV; T; NÞ − kBT ln
N2dNðNX − dNÞ!
ðNX þ dNÞ! ; ðB3Þ

with μPGX ðV; T; NÞ the perfect gas chemical potential of X in the system with temperature T. If NX − dN ≫ 1, we can
rewrite the last term using the Stirling approximation:

−kBT ln
N2dNðNX − dNÞ!
ðNX þ dNÞ! ¼ −kBT ln

N2dNe2dNðNX − dNÞNX−dN

ðNX þ dNÞNXþdN ðB4Þ

¼ −kBTf2dN½1þ lnN� þ ½ðNX − dNÞ lnðNX − dNÞ − ðNX þ dNÞ lnðNX þ dNÞ�g ðB5Þ

¼ −kBTf2dN½1þ lnN� þ NX½lnðNX − dNÞ − lnðNX þ dNÞ� − dN½lnðNX − dNÞ þ lnðNX þ dNÞ�g: ðB6Þ

If we also have dN ≪ NX, we can expand the logarithms in
Taylor series and retain only the terms linear in dN=NX,
which gives

FðV; T; NA; NX þ dNÞ − FðV; T; NA; NX − dNÞ
¼ 2dN½μPGX ðV; T; NÞ þ kBT ln cX� þ ΔF; ðB7Þ

where cX ¼ NX=N. Equation (B7) is only valid in the
thermodynamic limit. For finite values of NX or if
dN ≃ NX, the Stirling approximation and/or the Taylor
expansion employed above are not accurate, and the error is
given by the quantity

FSðNX þ dN; 2dNÞ

¼ kBT

�
ln

ðNX þ dNÞ!
N2dNðNX − dNÞ! − 2dN log cX

�
: ðB8Þ

We now refer back to Eq. (10), and with the substitutions
dN → dN=2, NX → NX − dN=2, and N → N − dN=2,
and therefore also v ¼ V=ðN − dN=2Þ, we obtain

FðV; T; NA; NXÞ − FðV; T; NA; NX − dNÞ
¼ dN½μPGX ðv; TÞ þ kBT ln cX� þ FSðNX; dNÞ þ ΔF;

ðB9Þ
where now cX ¼ ðNX − dN=2Þ=ðN − dN=2Þ and ΔF is
calculated as in Eq. (11).
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