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Development of a machine learning potential for graphene
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We present an accurate interatomic potential for graphene, constructed using the Gaussian approximation
potential (GAP) machine learning methodology. This GAP model obtains a faithful representation of a density
functional theory (DFT) potential energy surface, facilitating highly accurate (approaching the accuracy of ab initio
methods) molecular dynamics simulations. This is achieved at a computational cost which is orders of magnitude
lower than that of comparable calculations which directly invoke electronic structure methods. We evaluate
the accuracy of our machine learning model alongside that of a number of popular empirical and bond-order
potentials, using both experimental and ab initio data as references. We find that whilst significant discrepancies
exist between the empirical interatomic potentials and the reference data—and amongst the empirical potentials
themselves—the machine learning model introduced here provides exemplary performance in all of the tested
areas. The calculated properties include: graphene phonon dispersion curves at 0 K (which we predict with
sub-meV accuracy), phonon spectra at finite temperature, in-plane thermal expansion up to 2500 K as compared
to NPT ab initio molecular dynamics simulations and a comparison of the thermally induced dispersion of
graphene Raman bands to experimental observations. We have made our potential freely available online at
[http://www.libatoms.org].
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I. INTRODUCTION

As a result of its unique mechanical, electronic, and struc-
tural properties, graphene has been the subject of extensive
investigation since it was first isolated [1–3]. These, combined
with its characteristic 2D nature, have resulted in graphene
becoming the “poster child” for materials design in nanoelec-
tronic, mechanical, and optical research [4,5]. It is the funda-
mental building block of all sp2 hybridized carbon allotropes;
graphene may be rolled to form nanotubes or fullerenes, or
stacked to form graphite [3]. These similarities are not merely
topological, but also extend to the physical properties of the
materials; graphene, graphite, and carbon nanotubes share
many electronic and vibrational properties for this reason
[6–8]. It is concerning, therefore, that despite the vast num-
ber of excellent computational and experimental publications
focused on elucidating the microscopic origins of graphene’s
unique properties, existing calculations often draw quantita-
tively or qualitatively conflicting conclusions. In particular,
modern empirical potentials provide disparate results, with
conflicting predictions made for fundamental properties such
as the coefficient of thermal expansion (CTE), even the sign of
which is not reliably predicted [9–12]. There are a great number
of interesting phenomena associated with graphene, such as the
phonon assisted diffusion of small molecules on the graphene
surface [13], the study of thermal transport [14–16], and the in-
corporation of nuclear quantum effects into simulations which
would benefit greatly from a highly accurate graphene model
[17,18].

Empirical and bond-order potentials have long provided an
indispensable tool in facilitating molecular dynamics (MD)
studies of carbonaceous materials. The first many-body po-
tential for carbon was published in 1988 by Tersoff, which
was parameterized to reproduce the experimentally determined
cohesive energies of various carbon allotropes, as well as the
lattice parameter and bulk modulus of diamond [19]. This
potential gained rapid acceptance as research into amorphous
and other allotropes of carbon (nanotubes and fullerenes) grew
[19,20]. Modification and reparameterization of the Tersoff
potential with a fit to a broad range of molecular atomization
energies, bond lengths, and reaction barriers, made possible the
treatment of hydrocarbons and significantly improved the de-
scription of the pure carbon allotropes in the form of the re-
active empirical bond-order potential (REBO) [21]. While the
REBO potential represented a substantial improvement over
the Tersoff potential, neither of these accounted for the effects
of dispersion interactions and were inherently short ranged in
nature. The adaptive intermolecular reactive empirical bond or-
der potential (AIREBO) [22] aimed to correct this, by explicitly
incorporating long-range interactions into the functional form
through the use of switching functions, thereby maintaining
effectively the same short-range potential as its predecessor,
REBO. Parameters for the nonbonded interactions of the
AIREBO potential were chosen to reproduce the experimen-
tally determined properties of graphite. The description of
the bonding behavior of this potential was further improved
upon in AIREBO-Morse (AIREBO-M) by the incorporation
of a Morse pair potential (replacing the Lennard-Jones term
in the original) to improve the description of anharmonicity in
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the bonding terms [22,23]. A fully reparametrized bond-order
potential was produced by Los and Fasolino in the form of the
long-range corrected bond-order potential (LCBOP), wherein
the short-range potential was fitted to a data set comprising
both experimental values and DFT results computed using the
LDA functional [24].

In addition to these developments in traditionally con-
structed force fields, a number of different approaches have
emerged which show promise as computational tools. The
ReaxFF class of potentials do not represent an iterative im-
provement upon any of the previously discussed empirical
carbon potentials, instead adopting an approach centered
around the description of bond dissociation and reactivity [25].
The potential constructs the bond order from the interatomic
distance, from which the bond energy is derived. Also included
in the functional form are terms to account for van der Waals,
Coulombic, and over- and undercoordination energies, the
terms of which are fitted to quantities such as atomic charges,
bond, angle and torsional energies and heats of formation
[25,26]. Density functional tight-binding (DFTB) represents
yet another approach, it is not an interatomic potential in the
traditional sense, rather an electronic method which operates
on a tightly constrained set of parameterized wave functions.
DFTB is based on a second-order expansion of the DFT total
energy into a distance dependent electronic Hamiltonian and
two-body repulsive classical term. The diagonal elements of
the Hamiltonian matrix correspond to the atomic (s, p, and
d) eigenenergies, while the distance dependent off-diagonal
elements of the Hamiltonian—the bond energies—are param-
eterized to DFT and evaluated by interpolation [27,28].

In recent years, maching learning (ML) methodologies
have emerged as an exciting tool within chemical and ma-
terials science. Applications have included structure pre-
diction [29,30], property prediction (including atomization
energies, band gaps, and nuclear chemical shifts) [31–35]
and the development of DFT exchange-correlation functionals
[36–39]. The application of machine learning algorithms to
the development of interatomic potentials also represents an
innovative approach, which has recently attracted much atten-
tion. ML-based approaches to the generation of intermolecular
potentials are by their very nature parametrized exclusively
to ab initio data—but the differences between an ML and a
bond-order or empirical potential extend far beyond this. The
general ML approach makes very different use of ab intio data
than an empirical many-body potential. While potentials such
as LCBOP may optimize the parameters of (for example) a
Morse style functional form based on a fit to ab inito data,
such an approach will always be fundamentally limited by
the assumption that the two-body part of such an interaction
is describable by a specifc closed mathematical form. This
assumption—while physically motivated—does not arise from
a first-principles consideration of the shape of the potential
energy surface (PES), but from empirical observations and
will therefore incorporate a physical bias, limiting the quality
of the resulting potential. ML approaches, however, make no
such assumptions about the functional form into which the PES
may be decomposed—beyond that it must be a regular function
of the atomic coordinates (continuously differentiable) and
that interactions become infinitesimal as interatomic distances
become very large. Machine learning methodologies have been

shown to be capable of the reproduction of arbitrary functions
with arbitrarily high accuracy [40].

The first attempts at modeling the PES in its full dimension-
ality using ML methods made use of artificial neural networks,
in which the PES was for the first time represented as a sum of
atomic contributions to the total energy [41]. This approach
was able to accurately reproduce the structural and elastic
properties of the crystal structures of graphite and diamond
and was used to study the mechanism of the phase transition
between the two states [42,43]. The first generally applicable
potential for carbon that made use of ML methods came in
the form of a GAP designed to treat the amorphous phase
of carbon [29,44]. This provided excellent agreement with
a number of experimental observations on the properties of
amorphous carbon, including bulk moduli, radial distribution
functions and topological properties such as the number of
rings present in amorphous structures of a given density. It was
also found to have excellent transferability to the crystalline
allotropes of carbon and was successfully used in anab initio
random structure search study, where it accurately predicted
the existence of a number of stable crystalline carbon phases.
The price of this transferability and associated broadness of the
training data set, however, is that the accuracy of the amorphous
GAP model when applied to the crystalline phases is not opti-
mal. This motivates the development of the current graphene
model as a counterpart, with a specialized training data set
aimed at achieving the maximum accuracy at the expense of
transferability. Further details of the properties of graphene
as calculated using the amorphous carbon GAP model are
provided in Ref. [66]. Early attempts at the generation of
ML models were trained using the readily available DFT total
energies [41], however, more efficient use of the training data
can be made by training a model on the energies, forces and
virial stresses obtainable from DFT; there being 3N data points
available in the form of atomic forces compared to the single
value for energy available from ab initio calculations [45].
A more detailed discussion of the features and approaches
to the development of ML potentials can be found elsewhere
[46–49].

In this work we use the Gaussian approximation poten-
tial method [45] to generate an accurate ML interatomic
potential for graphene, with the aim of directly comparing
the capabilities of modern machine learning methods with
those of empirically constructed many-body potentials. We
evaluate the quality of the prediction of atomic forces of
our GAP model and a number of empirical potentials ver-
sus a reference DFT method. We also compare predictions
of the finite temperature phonon spectra of graphene with
experimental results, where we find excellent agreement. We
further compare the predictions of our GAP potential to those
from ab initio molecular dynamics (AIMD) simulations of
the thermal expansion of graphene—a property, which has
historically been very challenging for interatomic potentials
to predict [12,50–52]. We show thereby that for the case of
graphene, machine learning potentials have the capability to
act as a substitute for direct ab initio calculation, at a much
reduced cost and only marginally compromised accuracy. This
capability will be particularly valuable in instances where
accurate descriptions of dynamics are mandated, such as the
description of the diffusion of small molecules on the graphene
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surface [13] and the treatment of nuclear quantum effects via
path integral molecular dynamics [17,18].

The remainder of this paper will be structured as follows;
in Sec. II, we provide an outline of how the GAP model is
constructed, Sec. III outlines how the ab initio configurations
and training data were generated. Sections IV to VI are con-
cerned with the evaluation and benchmarking of the potential,
considering first the force accuracy, followed by the phonon
spectra and thermally induced Raman band dispersion, lattice
parameters, and thermal expansion. We give our conclusions
in Sec. VII.

II. CONSTRUCTION OF A GAUSSIAN
APPROXIMATION POTENTIAL

Gaussian approximation potentials are the product of the
application of the Gaussian kernel regression machine learning
methodology to the problem of function interpolation of the
Born-Oppenheimer PES [45,49]. The ab initio PES is sampled
using a database of observations of quantum mechanical
(often DFT) atomic forces and total energies on structures
representative of the desired regions of phase space to be
studied. These data are used to train the GAP model, which can
be used to accurately interpolate energies and forces between
the previously observed reference data points, the resulting
prediction can be used to generate MD trajectories; much like
an empirical potential. This method circumvents a problem
inherent in empirical potentials wherein assumptions must
be made about the functional forms into which the PES can
be decomposed. No prior supposition is made, for example,
that the microscopic interactions between two atoms must be
representable by a harmonic, Morse or Lennard-Jones type
function. This allows for a faithful and unbiased (so far as
any ab inito method may be called unbiased) representation of
the PES to be built, which may be conveniently evaluated to
accurately predict the energies and forces acting on arbitrary
configurations within the sampled phase space.

In the quantum mechanical reference data set used to
generate the potential, only the total energies, forces, and
virial stresses are available. In order to facilitate the simulation
of systems of larger sizes than those upon which ab initio
calculations are feasible, the GAP model total energy is decom-
posed into a sum of local contributions, computed from kernel
functions, which represent the similarity between chemical
environments. In this work, we decompose the total energy
function into a sum of two-body (2b), three-body (3b), and
many-body (MB) interactions, which are weighted (in terms
of their contribution to the total energy and atomistic forces)
based on their respective statistically measured contributions.
The mathematical form of these descriptors is discussed below.
The largest portion of the energy is described by pairwise
interactions, then 3b, then MB contributions, each of which
is represented by a distinct descriptor and associated kernel
function [45,46,53]. The descriptor is a transformation of the
atomic Cartesian coordinates into a rotationally and transla-
tionally invariant form which is suitable for use as input to a ML
algorithm. Descriptors vary greatly in their complexity, the 2b
term used here is simply the distance between two atoms, while
the MB term takes the form of the smooth overlap of atomic
positions (SOAP) descriptor, which provides an overcomplete

mapping of general n-body configurations. There are many
other possible descriptors in the literature, including symmetry
functions, Coulomb matrices, and bispectra [48,54,55]. We
choose this combined descriptor machine learning model as
it has been previously shown to greatly improve the stability
of a GAP model for amorphous carbon [44]. We also found in
the development of our potential that combined descriptors
additionally facilitated greater accuracy—a higher quality
potential—thereby making more efficient use of the training
data as compared to single descriptor methods.

The fundamental feature defining an interatomic potential
is that the total energy is the sum of individual atomic
contributions. The local atomic energy expression for the GAP
model is a linear combination over the contributions from each
kernel function K (d) associated with a descriptor d:

ε(d)
(
q(d)

i

) =
N

(d)
t∑

t=1

α
(d)
t K (d)

(
q(d)

i ,q(d)
t

)
, (1)

in which the sum over t runs over the Nt basis functions.
K (d)(q(d)

i ,q(d)
t ) is the covariance kernel quantifying the similar-

ity between the descriptor of the atomic environment for which
the prediction is to be made, q(d)

i , and the prior observation, q(d)
t ,

which has associated with it a weighting αt obtained during the
fitting process. The total energy expression for a system is then
given by the sum of each of the contributions of each descriptor
used in the model, weighted by a corresponding factor δ:

E = δ(2b)
∑
ij

ε(2b)(q(2b)
ij

) + δ(3b)
∑
ijk

ε(3b)(q(3b)
ijk

)

+δ(MB)
∑

i

ε(MB)
(
q(MB)

i

)
. (2)

The indices i, j , and k run over all atoms in the system. We
now introduce the mathematical form of each of the descriptors
used. The two-body descriptor is simply the distance between
any two atomic pairs i and j ,

q
(2b)
ij = |rj − ri | ≡ rij , (3)

where rj indicates the position vector of atom j . The 3b term
(q(3b)) used here involves a symmetrized transformation of the
Cartesian coordinates, which is designed to be permutationally
invariant to the swapping of atoms j and k, given by [49]

q(3b)
ijk =

⎛
⎜⎝

rij + rik

(rij − rik)2

rjk

⎞
⎟⎠. (4)

Many-body interactions are described using the recently intro-
duced SOAP descriptor [48,53]. For this descriptor, we begin
with the atomic neighbor density around an atom i, which is
constructed by the placement of a Gaussian function on each
neighbor atom j within a given cutoff rcut,

ρi(r) =
∑

j

fcut(rij ) exp

[
− (ri − rij )2

2σ 2
at

]
. (5)

Here, σat determines the width of the Gaussian and fcut is
any function, which goes smoothly to 0 at the cut off distance
(we note that all descriptors in this work use this same cut-off
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function). For example,

fcut(rij ) =

⎧⎪⎨
⎪⎩

1 if rij � rcut − wcut

gcut(rij ) if rcut − wcut < rij � rcut

0 if rij > rcut

(6)

in which wcut specifies the width of the region over which
the function goes to 0, and where gcut(rij ) may be any function
which decreases monotonically from 1 to 0 between rcut − wcut

and r . We choose

gcut(rij ) = 1

2

[
cos

(
π

rij − rcut + wcut

wcut

)
+ 1

]
. (7)

The neighbor density is then expanded in a basis set of radial
functions gn(r) and spherical harmonics Ylm(r) as

ρi(r) =
∑
nlm

c
(i)
nlmgn(r)Ylm(r), (8)

in which c
(i)
nlm are the expansion coefficients for the atom i. The

descriptor itself is formed from the power spectrum of these
coefficients:

qMB
i = p

(i)
nn′l = 1√

2l + 1

∑
m

c
(i)
nlm

(
c

(i)
n′lm

)∗
. (9)

To obtain a power spectrum for n < nmax,l < lmax, the expan-
sion of the atomic neighbor density into radial basis functions
can employ a truncated basis set. In the local energy expression
[Eq. (1)] the covariance kernel K

(d)
t provides a quantitative

measure of the similarity between two chemical environments
q(d) and q(d)

t . The functional form of the covariance kernel dif-
fers depending on the descriptor, for the 2b and 3b descriptors,
we choose the squared exponential kernel,

K (d)(q(d)
i ,q(d)

t

) = exp

⎡
⎣−1

2

∑
ξ

(
q

(d)
ξ,i − q

(d)
ξ,t

)2

θ2
ξ

⎤
⎦. (10)

The index ξ runs over either the single value of the 2b
descriptor, or the three components of the 3b descriptor. For the
many-body SOAP descriptor, the natural choice of covariance
function is the dot product of the two power spectra pi and pt

with elements p
(i)
nn′l and p

(t)
nn′l , as this corresponds analytically

to an integrated overlap over all possible 3D rotations of the
two associated neighbor densities, that is,

K (MB)
(
q(MB)

i ,q(MB)
t

) = [pi · pt ]
ζ

=
[∫

dR̂

∣∣∣∣
∫

dr3ρi(r)ρt (R̂r)
2∣∣∣∣

]ζ

. (11)

III. GENERATION OF TRAINING DATA

Our training data are generated from tightly converged
plane-wave DFT calculations performed on configurations
sampled from various molecular dynamics trajectories. While
the atomic configurations herein are generated using a variety
of methods (MD with existing potentials and various iterations
of our GAP model) the values for atomic forces, virial stresses
and energies which comprise the training dataset have all been
calculated using precisely the same level of DFT. For these

calculations, we use the VASP plane-wave DFT code [56–58],
with the optB88-vdW dispersion inclusive functional [59,60]
with a projector augmented wave potential [61], a plane-wave
basis cutoff of 650 eV and Gaussian smearing of 0.05 eV
[62,63]. We use a dense reciprocal space Monkhorst-Pack

grid [64] with a maximum spacing of 0.012 Å
−1

. In order
to ensure a low degree of noise on the calculated forces, the
energy convergence criterion for the SCF iterations was set
to 10−8 eV. We choose the optB88-vdW functional as it has
already been shown to provide an excellent description of
graphitic carbon [65]. We further evaluate the sensitivity of our
predictions to this choice, by comparing against other common
exchange-correlation functionals, which is discussed briefly in
Sec. IV and the details of which are given in Ref. [66]. We have
generated our training data so as to have a dense sampling of
a specific region of phase space, with the aim of exploring
the optimum accuracy possible for a particular allotrope, this
approach is distinct from that used in the generation of the
previously published amorphous carbon potential wherein the
training set was chosen to maximize the transferability of the
potential [44].

The first set of training data was generated from three MD
simulations of a free-standing graphene sheet comprised of 200
atoms with lattice parameter a = 2.465 Å. Simulations were
performed in the NVT ensemble at temperatures of 1000, 2000,
and 3000 K. Trajectories were generated using the LAMMPS

[67] open source molecular dynamics program, interactions
were modelled using the LCBOP many-body potential for
carbon and a Nosé-Hoover thermostat was used to maintain
a constant temperature over the simulation. A total of 100
configurations were sampled from each of the three 2 ns
trajectories at 20 ps intervals, the total energies and forces of
these atomic configurations were then calculated using VASP
as outlined above.

An initial GAP model was generated using the ab initio
quantities computed on the 300 configurations. A further set
of molecular dynamics trajectories were generated as above,
but with interactions now computed using the preliminary
GAP model. Simulations were performed between 300 and
3000 K at a fixed lattice parameter of a = 2.465 Å, a sample
of ab initio energies, forces, and virial stresses from these
configurations was added to the training set to produce a second
GAP model. A number of iterations of improvement were
performed using this approach, the final data set was comprised
of 1083 configurations of 200 atoms at temperatures between
300 and 4000 K and lattice parameters between 2.460 and
2.480 Å.

A random sample of 5% of these configurations was
withheld as a validation set to benchmark the quality of the
GAP fitting procedure. The parameters used for the fitting of
the GAP model are shown in Table I. Additionally, we choose
the expected error (analogous to the target closeness of the
fit of the GAP model to the training data) in energies to be
σE = 10−3 eV, for forces we choose σf = 5 × 10−4 eV, and for
virial stresses σv = 5 × 10−3. The training configurations and
GAP model files developed herein are freely available in our
online repository at [http://www.libatoms.org]. The quantum
mechanics for intermolecular potentials (QUIP) source code,
necessary to make use of the GAP model, is also available
online at [https://github.com/libAtoms/QUIP].
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TABLE I. Additional parameters used for the training of the GAP
model. δ indicates the relative weighting of the different descriptors,
rcut indicates the cutoff width of the descriptor, and wcut indicates the
characteristic width over which the descriptor magnitude goes to 0.
2b, 3b, and MB indicate the two-body, three-body, and many-body
descriptors used in the construction of the potential. Nt indicates the
number of sparse points chosen for each descriptor during training,
while the sparse method denotes the method by which sparse points
were chosen. More information can be found in the GAP code
documentation at [http://www.libatoms.org].

2b 3b SOAP

δ(eV) 10 3.7 0.07
rcut(Å) 4.0 4.0 4.0
wcut(Å) 1.0 1.0 1.0

Sparse method uniform uniform CUR
Nt 50 200 650

IV. FORCE PREDICTION

The first natural metric for the quality of a potential—in
particular one of a machine learning origin—is the quality
of the forces it predicts relative to an appropriate reference.
We choose a random sample of 1.5 × 104 atomistic reference
points from our data and compare the forces as predicted by our
model to those from DFT. Additionally, we compare the forces
predicted by a number of other popular methods for atomistic
modeling: DFT with common exchange correlation function-
als, density functional tight-binding (DFTB), a number of
empirical many-body potentials (Tersoff, REBO, AIREBO,
AIREBO-Morse, and LCBOP), a ReaxFF potential parame-
terized for condensed carbon, and the recently published GAP
model for the amorphous phase, all of which have been used
in their originally published forms [19–22,24,26,44,68]. Force
errors for the graphene GAP, LCBOP, Tersoff, and DFTB
methods are shown in Fig. 1, where we have separated the
data into forces in the “in-plane” directions and those in the
“out-of-plane” direction. Root mean squared errors (RMSE)
are given for all methods in Table II, plots of force correlations
and errors for all methods can be found in Ref. [66]. We
calculate the cost of each of the methods over 104 identical
MD steps for 200 atoms, which we normalize for the number
of cores on which the simulation was run. Figure 1 shows that
the predictions of the graphene GAP model align very closely
with those of the reference DFT method. Forces are obtained
with an RMSE of 0.028 eV Å

−1
in the in-plane direction, and

0.019 eV Å
−1

in the out of plane direction. The errors obtained
from the DFTB and LCBOP methods are much larger, RMS

errors in forces are 0.69 and 0.55 eV Å
−1

, respectively, and

maximum errors of 2 eV Å
−1

are observed in the worst cases.
Errors are largest for the Tersoff potential, for which the RMSE

is measured as 3.1 eV Å
−1

with a maximum in excess of
11 eV Å

−1
. Despite the AIREBO-Morse potential being a

more recent iteration of the AIREBO potential (including a
Morse potential to model bonding interactions) we find that
the modifications are actually a detriment to the quality of the
predicted forces, despite the increased cost (Table II).

FIG. 1. Force correlations (left) and associated force errors (right)
on an independent reference data set of configurations for the
graphene GAP model, DFTB, LCBOP, and Tersoff potentials as
compared to the reference DFT method, the plots for all methods
considered can be found in the SM. Black points indicate forces
perpendicular to the plane of the graphene sheet (out-of-plane) while
red points indicate forces oriented in the plane. The inset in the
graphene GAP plot has a different scale on the y axis to show more
clearly the distribution of force errors, which are smallest for large
forces with a Gaussian distribution.

It is important to briefly consider how these conclusions
may be affected by the choice of reference method; there
are many instances in the literature of disagreement between
various exchange correlation functionals and it is important to
evaluate the importance of this in the context of graphene, the
details of which we give in Ref. [66]. We find that there is a
minimal dependence of the measured forces on the choice of
exchange correlation functional for this system, on average

0.026 eV Å
−1

in the in-plane and 0.018 eV Å
−1

in the
out of plane direction—indicating that the relative ranking
of the benchmarked methods would be the same irrespective
of the chosen reference method. Furthermore, the expected
performance of the graphene GAP model would also be
insensitive to this choice. This is supported by the similarity
in the phonon spectra calculated with each of the functionals,
which are also available in Ref. [66].
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TABLE II. Root mean squared force errors, lattice parameters predicted and relative costs of empirical many-body and GAP models. The
details for other common DFT functionals tested are available in Ref. [66].

Potential RMSE (In-plane) eV Å
−1

RMSE (Out-of-plane) eV Å
−1

Lattice parameter (0 K) Å Time (Relative)

Graphene GAP 0.028 0.019 2.467 (+0.003) 340
Amorphous GAP 0.270 0.258 2.430 (−0.03) 380
Tersoff 3.122 0.542 2.530 (+0.08) 1
REBO 0.722 0.187 2.460 (−0.004) 1.2
AIREBO 0.548 0.414 2.419 (−0.05) 1.9
AIREBO-Morse 0.720 0.568 2.459 (−0.005) 2.9
LCBOP 0.595 0.306 2.459 (−0.005) 2.3
ReaxFF 1.226 0.311 2.462 (−0.002) 23
DFTB 0.693 0.162 2.470 (+0.006) 950
DFT (optB88-vdW) 2.464 2 × 107 (AIMD)
Exp.[65] graphite, 300 K 2.462

V. LATTICE PARAMETERS AND IN-PLANE
THERMAL EXPANSION

The lattice parameter is a fundamental property for any
atomistic model of a material to predict. Many intrinsic prop-
erties of materials such as graphene are affected by the lattice
constant, while the degree and type interaction between two
distinct materials can vary dramatically based on the degree of
lattice matching between their two structures [69]. In addition
to the ground-state lattice parameter, the thermal expansion
of graphene is also of interest as it provides insight into the
relative strengths of the in-plane and out of plane forces, the
anharmonicity of the bonding interactions and the coupling
between harmonic and anharmonic vibrational modes.

The nature of the thermal expansion of graphene is, how-
ever, a topic wherein many conflicting computational reports
may be found [12,50–52]. The experimental coefficient of ther-
mal expansion of freestanding graphene is generally accepted
to be negative at moderate temperatures—low lying bending
phonon modes cause graphene to “crumple” and thus shrink in
the in-plane direction [12,50]. Graphene has been found from
Raman spectroscopy and micromechanical measurements to
have a negative in-plane coefficient of thermal expansion
at temperatures between 30 and 500 K [51,52]. However,
graphene must typically be investigated experimentally while
adsorbed on a substrate material, the strain induced from
this significantly affects both its 0 K lattice parameter and
the thermal expansion of the material, leaving the study of
freestanding graphene as a particularly attractive topic for
theoreticians [11,70]. Ab initio investigations broadly agree
in their prediction that the CTE of graphene is negative over a
moderate temperature range—but differ in their predictions at
higher temperatures. Results from DFPT show nonmonotonic
behavior, a negative and in-plane coefficient of thermal expan-
sion up to 2000 K, with a minimum at 300 K [71]. Green’s
function lattice dynamics calculations have found the sign of
the CTE to change from negative to positive at temperatures
above 500 K and AIMD simulations have found the CTE to
be weakly negative over a large temperature range [11,72].
Results from studies employing empirical potentials vary more
substantially, the REBO potential predicts a positive CTE over
a wide temperature range, the Stillinger-Weber and LBOP
potentials predict the CTE to be entirely negative and the

LCBOP and LCBOPII [73] potentials predict a change in the
sign of the CTE around 500 K [9,12].

We now compare to lattice parameters over a range of
temperatures as predicted by ab initio molecular dynamics
simulations of graphene sheets using the method established
in Ref. [11]. In-plane lattice parameters were averaged over
AIMD simulations on freestanding graphene sheets contain-
ing 200 atoms between 60 and 2500 K. Calculations were
performed at the � point, using the optB88-vdW functional
and a projector augmented wave potential with a plane-wave
cutoff of 400 eV, in the NPT ensemble as implemented in VASP,
with the constant pressure algorithm applied only in the lateral
directions (in-plane) [9,11,74]. Three independent simulations
at each temperature were conducted and statistics were col-
lected for between 40 and 95 ps depending on the temperature
until the lattice parameter was converged to within 10−4Å. We
note that this approach neglects the effect of the zero-point
vibrational energy (ZPE) on the calculated lattice parameter
and thermal expansion. The inclusion of this has previously
been found to increase the ground state lattice parameter of
graphene by 0.3% [71]. The effect of ZPE could be included via
path-integral type methods, but we consider this unnecessary
for the benchmarking purposes of the current study.

Lattice parameters for the empirical and GAP potentials
were determined similarly. We performed NPT simulations
using the Nosé-Hoover thermostat on freestanding graphene
sheets containing 200 atoms. Simulations were equilibrated
for 5 ns and statistics collected on three replica simulations
over a further 5 ns for each potential, in each case, the
time averaged lattice parameters were converged to within
10−4Å. The coefficient of thermal expansion of graphene is
calculated as

CTE = 1

AT

∂AT

∂T
. (12)

Here, A denotes the area of the graphene sheet and T the
temperature in Kelvin. To calculate the CTE, we interpolate
between calculated data points by fitting splines to the data—
we take the derivatives of the fitted splines to evaluate Eq. (12).
The optimized lattice parameters at 0 K for graphene for all
methods are also given in Table II for comparison.

054303-6



DEVELOPMENT OF A MACHINE LEARNING … PHYSICAL REVIEW B 97, 054303 (2018)

The calculated lattice parameters from ground-state opti-
mization are given in Table II. The majority of the empirical po-
tentials considered accurately predict the 0 K lattice parameter
(with errors typically less than 0.2%), which is found from DFT
to be 2.464 Å. The exceptions to this are the Tersoff, AIREBO,
and Amorphous GAP potentials. The Tersoff potential is
found to overestimate the lattice parameter of graphene by
3.2%, while the AIREBO and amorphous carbon potentials
underestimate by 2.0% and 1.2%, respectively. DFTB would
generally be expected to represent an improvement over em-
pirical potentials, however, in this instance predicts the lattice
parameter of graphene with an error of +0.3%, representing
an improvement over only the three worst empirical poten-
tials. The graphene GAP and ReaxFF potentials are both in
excellent agreement with our ab inito results with errors of
0.1%.

Most of the potentials considered predict a much larger
dependence of the in-plane lattice parameter on the temper-
ature than is calculated from AIMD, which predicts an overall
maximum change in value of 0.1% as can be seen from
Fig. 2(b). Our first-principles calculations predict a contraction
of the graphene sheet up to approximately 1750 K, above which
we observe expansion in the in-plane direction. Our graphene
GAP model is in excellent agreement with the predictions of
the first-principles calculations both in terms of the absolute
and relative lattice parameters. The relative predictions of the
Tersoff potential are also found to be in good agreement with
ab initio results at low temperatures, despite the significant
overestimation of the absolute lattice parameter. The AIREBO
and AIREBO-Morse potentials significantly overestimate the
in-plane expansion of graphene at moderate temperatures,
while the REBO potential predicts an in-plane lattice param-
eter, which increases over the entire observed temperature
range. The predictions of the LCBOP potential are in line
with those of previous studies, it predicts a strongly negative
thermal expansion with a minimum close to 1000 K [12]. The
ReaxFF potential considered here is observed to predict a very
strong, negative thermal expansion coefficient and predicts the
fragmentation of the graphene sheet at temperatures above
1500 K, well below the experimentally determined melting
point. Between temperatures of 60 and 1500 K, ReaxFF
predicts a strong contraction of the in-plane lattice parameter as
a result of large out-of-plane displacements. Figure 2(c) shows
the values for the CTE of graphene as calculated with each
of the potentials and with ab initio calculations. The LCBOP,
AIREBO and AIREBO-Morse potentials predict CTEs which
are strongly temperature dependent, switching from negative to
positive at temperatures between 500 and 1000 K. The REBO
potential similarly predicts a strong temperature dependence,
however, in this case the CTE is predicted to be positive
over the entire measured range. In contrast, the GAP, Tersoff,
and AIMD simulations predict a much weaker temperature
dependence of the CTE, with a change in sign close to 1000 K.
The Tersoff potential predicts a continued increase of the
in-plane CTE throughout the measured temperature range,
while the GAP and AIMD calculations predict a slowdown
in the increase and a plateau above 1500 K. Overall it is clear
that, the lattice expansion of graphene represents a challenging
property to evaluate with molecular dynamics, the GAP model
introduced here quantitatively reproduces the results of the
reference calculations.

(a)

(b)

(c)

FIG. 2. (a) Thermal dependence of the lattice parameter of
graphene between 60 and 2500 K, for a range of potentials as
compared to the reference value calculated from ab initio molecular
dynamics calculations. (b) Thermal dependence of lattice parameter,
a, normalized according to the predicted value at 60 K, emphasizing
the relative behavior of the different methods—a range of predictions
is observed, from monotonically increasing or decreasing lattice
parameters to more complex nonmonotonic behavior in the case
of GAP, LCBOP, and AIMD calculations. (c) Computed thermal
expansion coefficients for graphene as a function of temperature
calculated using Eq. (12), for DFT and various potentials.

VI. PREDICTION OF PHONON SPECTRA

A correct description of the lattice dynamics of a material
is a fundamental requirement for any atomistic model. This
experimentally measurable property of a material is obtained
computationally directly from the derivative of the forces
acting upon the atoms. There is thus a natural and close link
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FIG. 3. Comparison of model predictions using the finite displacement method [75] to phonon dispersion from XRD [76,77]. Black lines
represent the calculated phonon spectrum and red is the reference XRD. The GAP model accurately reproduces the experimentally determined
phonon spectrum over all of the high-symmetry directions considered. Labels for branches are shown on the Graphene GAP plot (left) along
with symmetry labels at the � point (right). Note that the highest energy LO branch is not shown for the Tersoff potential in this figure—this
branch crosses the � point at approximately 350 meV.

between the quality of the phonon spectrum and the quality
of the predicted forces with respect to experiment. This makes
the prediction of the phonon spectrum an excellent independent
metric of the overall quality of a potential. Furthermore, a num-
ber of thermodynamic properties of materials, for example,
the heat capacity may be obtained directly from dispersion
relations via calculation of the free energy. We note here
that two definitions of dispersion are used in this text, when
referring to dispersion in the context of phonon dispersion
curves, we refer to the rate of change of the energies of the
various modes as a function of reciprocal space, rather than
the effect of van der Waals interactions.

We use two methods to calculate the phonon spectrum of
graphene. To calculate the 0 K phonon spectrum, we use the
finite displacement method as implemented in PHON [75]. In
order to predict the anharmonic phonon spectrum at finite tem-
perature, we evaluate the elastic constants and thus the phonon
spectrum directly from the forces and displacements sampled
from MD trajectories [76,77]. As our reference, we compare
our results to those determined from the fifth nearest-neighbor
force constant fit to data measured experimentally using x-ray
diffraction (XRD) on graphite [6,8]. The phonon spectrum of
graphene is comprised of six branches; ZA, TA, LA, ZO, TO,
and LO. At the � point, the LO and TO phonon branches
take on the symmetry label E2g, the ZO branch is labeled B2g
and the lowest energy LA, TA, and ZA branches together as
A2u and E1u.1 Figure 3 shows the phonon spectra predicted

1The label “Z” denotes an out-of-plane vibration, “ L” a longitudinal,
in-plane vibration, and “T” a transverse shear mode. Each of these
modes may be either acoustic or optical in nature, indicating the
phase of the displacements of adjacent nuclei relative to one another.
Acoustic phonons represent in-phase vibrational modes, while an
optical phonon represents an out-of-phase normal mode of vibration,
wherein any two atoms are seen to move against each other.

using each of the potentials compared to the reference XRD
data. The graphene GAP model achieves excellent agreement
with experiment; it correctly predicts the phonon frequencies at
almost all of the high-symmetry points with sub-meV accuracy.
The dispersion behavior of each of the bands is also accurately
predicted across all of the sampled regions of the Brillouin
zone. The LCBOP and REBO potentials perform comparably
to one another, qualitatively correctly predicting the shape
and dispersion character of most of the phonon branches.
What can be seen in more detail from Fig. 4 is that LCBOP
achieves a greater accuracy than REBO close to the � point, but
amasses more significant errors overall, on the order of 20 meV,
towards the K and M high-symmetry points. Conversely, the
error in the prediction of the phonon frequencies made by the
REBO potential is a much flatter function of k-space with an
overall mean absolute error (MAE) of 10 meV. However, both
potentials exhibit significant errors in the prediction of the
highest energy longitudinal optical (LO) branch, with peak
errors of 40 and 60 meV for LCBOP and REBO respectively.
As would be expected, both the AIREBO and AIREBO-Morse
potentials perform comparably, with notable underestimations
of the transverse optical (ZO) phonon modes at the � point.
The MAE of each potential is again a relatively flat function
of k space, at 20 meV in both cases. The dispersive character
and B2g � point frequency predicted by DFTB are in good
agreement with the experimental results, the most most notable
error being the overestimation of the E2g symmetry frequency
at the � point, which is overestimated by 20 meV. We find that
the ReaxFF potential provides a reasonably good estimate of
dispersion of the low-frequency phonon modes, however, fails
for the highest energy LO and TO branches. This is the case in
particular away from the � point, for which peak errors in the
LO branch are found to be in excess of 60 meV. The Tersoff
potential, finally, is shown to fail in predicting the energies and
dispersion behaviors of all but the two lowest energy branches
of the phonon spectrum. Band errors are as large as 110 meV
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FIG. 4. Absolute errors in prediction of phonon band frequencies along the high-symmetry directions in the graphene Brillouin zone,
separated by phonon branch type. The thick red line denotes the mean absolute error (MAE) summed across all bands. Notable similarities in
the error predicting the character of the LO branch can be seen across the LCBOP, REBO, and AIREBO(-Morse) potentials (black line).

for the E2g symmetry (LO and TO) bands at the � point, with a
MAE across the sampled region of k space of 40 meV. Although
a modified version of the Tersoff potential has been constructed
which was optimized to reproduce the lowest energy phonon
dispersion modes of graphene, we find that the stability of this
potential is not satisfactory due to the reparametrization, and
have therefore not included it here [9,78]. We note that an error
common to all of the empirical potentials is a failure to describe
the dispersive behavior of the high-energy LO branch of the
phonon spectrum—which the graphene GAP model predicts
with negligible error.

In addition to a consideration of the phonon spectrum at a
single temperature, we can compare the behavior of particular
phonon modes as a function of temperature to experimental
observations from Raman spectroscopy. The G band of the
graphene phonon spectrum may be unambiguously assigned
to the frequency of the E2g symmetry phonon mode at the �

point. We may therefore make a direct comparison between
the experimentally measured thermal softening of this mode
and the softening predicted by each of the potential models.
The correct description of the thermal character of this band
is of great importance for the technological application of
graphene—the degree of population of the E2g band has
implications for the ballistic energy transport which makes
graphene so attractive as an electronic material [50,79]. One
aspect of this characterization is the correct prediction of the
energy of this mode at the � point, the comparison for which
is shown in Fig. 5 where the phonon spectra for graphene from
60 to 2500 K are given.

For each temperature, we use the lattice parameter de-
termined for each potential for the given temperature as
calculated using the same procedure for determining the lattice
parameter described above. Simulations were run for each
lattice parameter and each potential in the NVT ensemble using
Langevin dynamics. Configurations were first equilibrated
for 2 ns until the temperature had equilibrated and statistics
were collected over 30 ns trajectories at each temperature, in

each case the phonon frequencies of the degenerate LO/TO
(E2g) branches at the � point were converged to within
1 meV.

We observe that all potentials predict a large degree of
thermally induced dispersion in the highest energy LO/TO
branches (Fig. 5). The AIREBO and AIREBO-Morse po-
tentials both predict a strong dependence of the transverse
optical (ZO) branch on temperature, which is not observed
for the other methods considered. We compare quantitatively
the results of our calculations to those obtained from the
variable temperature Raman scattering measurements [70].
The thermally induced dispersion of the Raman G band was
measured between 150–900 K for graphene sheets adsorbed on
a SiN substrate. The effect of the substrate on the position and
thermal dispersion of the G band is twofold, a constant offset
induced by the mismatched lattice parameter and interlayer
interactions between the substrate and the graphene and an
effect due to the thermally induced strain from the different
thermal expansions of the two materials. To account for the
first effect, we simply report the change in G band frequency
rather than the absolute value. The effect of the differing lattice
expansion of the materials may be accounted for by calculating
the induced strain and correcting the data using the known
biaxial strain coefficient of the graphene G band [51,70],

ωs
G(T ) = β

∫ T

T0

[CTEsub(T ) − CTEgr(T )]dT , (13)

where CTEsub and CTEgr represent the CTEs of the substrate
(SiN) and graphene, respectively, and β is the known biaxial
strain coefficient of graphene (β = −70 ± 3 cm−1/%) [80,81].
We use values for the CTE graphene as determined by our
earlier ab initio calculations. Figure 6 shows the thermally
induced dispersion of the E2g symmetry phonon modes at
the � point. Our graphene GAP model is seen to be in good
agreement with the experimentally observed effects as are the
predictions of both the AIREBO and REBO potentials. The
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FIG. 5. Finite temperature phonon calculations for graphene simulations between 60 and 2500 K derived directly from molecular dynamics
simulations. Strong thermally induced dispersion is seen for the highest energy E2g symmetry phonon modes across all potentials, corresponding
to the observed thermally induced dispersion of the Raman G band of graphene. Varying predictions are made for the transverse optical (ZO)
branch’s dependence on temperature: the AIREBO(-Morse) potentials predict this to have a strong thermal dispersive character. Blue corresponds
to simulations at 60 K, through to 2500 K for red in a linear scale.

AIREBO-Morse potential slightly overestimates the degree of
dispersion while the Tersoff potential predicts a significantly
enhanced effect. Surprisingly, despite the good predictions of
the shape of the phonon dispersion curves by the LCBOP
potential using the finite displacement method, we find here a
strong qualitative disagreement with the experimental results.

FIG. 6. Change in � point frequencies for graphene E2g symmetry
vibrational mode in the region of 150–1400 K. Compared with results
from variable temperature Raman spectroscopy, which have been
corrected for the strain induced by the adsorption of the graphene
sheet onto the SiN substrate.

VII. CONCLUSIONS AND DISCUSSION

We have used the Gaussian approximation potential method
to construct a machine learning potential for graphene, which
we have trained using energies, forces, and virial stresses
calculated using high-quality vdW inclusive DFT calculations.
We have benchmarked the quality of this potential alongside
a number of other commonly used potentials against both ab
initio and experimental references. We find that the graphene
GAP model predicts quantitatively the lattice parameter, coeffi-
cient of thermal expansion, and phonon properties of graphene.
Among the other potentials considered, many of them provide
reasonable predictions of one property, but none is successful
in predicting the whole range of properties considered. We find
the REBO potential to be the best empirical model, providing
a good overall description of the lattice dynamics of graphene,
including accurately describing the effect of temperature on
these. However, despite accurately predicting the 0-K lattice
parameter, the REBO potential’s predicted dependence of the
in-plane lattice parameter is in qualitative disagreement with
the results of ab inito calculations. In fact, we find that none
of the empirical many-body potentials accurately predicts both
the 0 K lattice parameter of graphene and the lattice expansion
at finite temperature.

The GAP method is computationally more demanding
than the empirical many-body potentials considered here, but
approximately four orders of magnitude cheaper than direct
ab initio molecular dynamics, for 200 atoms. Even taking
into consideration the computational cost of the generation
of the training database, this represents a significant reduction
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in computational cost with only a marginal compromise on
accuracy. Since the scaling of the cost of the GAP model
with system size is the same as that of a force-field MD
simulation, compared with the O(N3

electron) scaling of DFT, this
reduction in cost would be more effective for larger system
sizes. The purpose of the GAP framework is to provide an
accuracy close to that of AIMD at a much reduced cost,
rather than offering a universally applicable alternative to
empirical potentials. Such a potential would be best put to
use in cases where a highly accurate description of dynamics
is mandated. One such example may be the description of
adsorbate diffusion on or confined by graphene sheets, a
process which is in some cases strongly enhanced by a
coupling between adsorbed molecules and particular graphene
phonon modes [13,82]. In this instance, the accurate finite
temperature description of the phonon modes provided by
the GAP model would be highly desirable. The GAP model
would also be ideally suited to modeling thermal transport
in graphene nanoelectronic devices, such as transistors. Such
systems require highly accurate modeling of heat dissipation,
but involve systems of sizes that are beyond the reach of routine
ab initio calculations [14–16]. In many cases, such as for exotic
or newly discovered materials, computational investigations
may be hampered by the absence of a well parameterized
empirical potential. The GAP framework provides a systematic
pathway for the development of specialized potentials in these
cases.

Despite the promising behavior of the GAP model consid-
ered here, it is important to note that the transferability of the
various models may also be an important property. While the

GAP model presented here is exemplary in its treatment of
free-standing graphene, it is (by construction) not transferable
to other phases of carbon, i.e., diamond, which the other
empirical potentials are capable of. The inability of current
machine learning models to extrapolate into foreign regions of
chemical space is a well documented one, and great care and
attention must be paid to generate a machine learning potential
which is capable of treating a wide range of phases of a material
[29,44]. Nevertheless, given the systematically improvable
nature of Gaussian approximation potentials, a highly accurate
and generalized machine learning carbon potential could soon
be feasible.
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