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Boosting the accuracy and speed of quantum Monte Carlo: Size consistency and time step
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Diffusion Monte Carlo (DMC) simulations for fermions are becoming the standard for providing high-quality
reference data in systems that are too large to be investigated via quantum chemical approaches. DMC with the
fixed-node approximation relies on modifications of the Green’s function to avoid singularities near the nodal
surface of the trial wave function. Here we show that these modifications affect the DMC energies in a way that
is not size consistent, resulting in large time-step errors. Building on the modifications of Umrigar et al. and
DePasquale et al. we propose a simple Green’s function modification that restores size consistency to large values
of the time step, which substantially reduces time-step errors. This algorithm also yields remarkable speedups
of up to two orders of magnitude in the calculation of molecule-molecule binding energies and crystal cohesive
energies, thus extending the horizons of what is possible with DMC.
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The determination of accurate reference energetics for
solids is one of the grand challenges of materials modeling.
Reliable reference data is needed to make accurate predictions
about any number of phenomena, such as phase stability,
adsorption on surfaces, and crystal polymorph prediction.
Very often density functional theory (DFT) provides sufficient
accuracy for this and as such has been immensely successful
in furthering our understanding of materials [1,2]. However,
there are many materials and materials-related problems
for which DFT does not deliver the desired accuracy [3].
For such problems explicitly correlated wave-function-based
approaches are needed, such as the approaches of quantum
chemistry, quantum Monte Carlo (QMC), and combinations
thereof [4–15]. In practice for condensed phase systems
with more than a handful of atoms in the unit cell QMC
remains the only feasible reference method, partly because
of its favorable scaling with system size and the fact that it
can be used efficiently on massively parallel supercomputers.
Indeed QMC, mostly within the diffusion Monte Carlo (DMC)
approach, is increasingly used to provide benchmark data for
solids and to tackle interesting materials science problems
that have been beyond the reach of DFT [16–29]. DMC is
also proving increasingly useful in exposing and helping to
explain problems with DFT and as such in helping to further
the development of DFT.

DMC is in principle an exact technique to solve the
imaginary time-dependent Schrödinger equation. The dis-
cretization of time in practical implementations introduces
a time-step (τ ) error, the computational cost of which is
proportional to 1/τ . Recently Gillan et al. [21] showed that for
CH4-H2O clusters current implementations of DMC appear to
be non-size-consistent; i.e., the total energy of a system of M

noninteracting molecules is not proportional to M . Here we
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show that this is a general problem, identify its source, and
propose a simple modification that solves it. Moreover, we
observe that the time-step error in binding energy evaluations
is mostly due to this size-consistency issue. Our proposed
method also leads to remarkable speedups, by significantly
increasing the accuracy of large τ DMC evaluations [30].

A review of DMC can be found elsewhere [4,31] and is sum-
marized in the Supplemental Material [32]. To understand the
size-consistency issue we recall the main ideas of the method
and how it is applied in practice. Consider the Schrödinger
equation in imaginary time for a system including N particles
with the fixed-node constraint, i.e., with the solution �(R,t),
where R is the electronic configuration and t is the time, forced
to have the same nodal surface of some guiding function ψG(R)
(the 3N − 1 hypersurface where ψG = 0). This is achieved,
within the importance sampling scheme, by introducing the
mixed distribution f (R,t) = ψG(R)�(R,t), which satisfies the
equation:

−∂f

∂t
= −1

2
∇2f + ∇ · [Vf ] − Sf. (1)

Here we have omitted the functional dependence of the terms
and V(R) ≡ ∇ log |ψG(R)| is usually called the drift velocity,
S(R) ≡ ET − EL(R) is the branching term, EL is the local
energy, and ET is an energy shift. The three terms on the
right-hand side of Eq. (1) are responsible for diffusion, drift,
and branching processes, respectively. Equation (1) can be
rewritten in integral form:

f (R,t + t0) =
∫

G(R,R′; t)f (R′,t0)dR′, (2)

where G(R,R′; t) is the Green’s function for the importance
sampling. The DMC method is a stochastic realization of
Eq. (2), in which a series of walkers initially distributed
as some f (R,0) = ∑

i δ(r − ri) is propagated ahead in time
through a branching-drift-diffusion process [32]. In the limit
t → ∞ the walkers end up distributed as ψG(R)φ(R), with
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φ(R) being the ground state of the Hamiltonian subject to the
fixed-node constraint.

A practical implementation of Eq. (2) faces a problem:
EL(R) and V diverge at the nodes of ψG as the inverse of the
distance between the nodal surface and R. As τ → 0 these two
singularities are not an issue because the drift term prevents
the walkers from approaching the nodal surface. However,
for finite τ , walkers can end up close to the nodal surface
with catastrophic consequences. A practical solution to this
problem is to introduce limits to the drift velocity and to the
local energy. Umrigar, Nightingale, and Runge [31] (UNR)
proposed to replace V = (v1, . . . ,vN ) with V̄ = (v̄1, . . . ,v̄N ),
defined as

v̄i =
−1 +

√
1 + 2av2

i τ

av2
i τ

vi ; vi = ∇i log |ψG(R)|, (3)

with a an adjustable parameter between 0 and 1. This
expression provides a rough approximation to the average
velocity over a time step, which has the effect of limiting
the drift distance [31]. The branching factor S(R) is replaced
with

S̄(R) = [ET − Ebest] + [Ebest − EL(R)]
V̄

V
, (4)

where Ebest is the best estimate of the energy, V = ‖V‖ and
V̄ = ‖V̄‖. This limiting procedure is elegant and minimizes
instabilities because the divergences of EL(R) at the nodes are
canceled by divergences in V . As a result it is now standard
in most DMC simulations. However, this limiting procedure is
an approximation of the Green’s function which renders DMC
size inconsistent; see discussion in Sec. I.D of the SI [32]. The
issue disappears for τ → 0, where V̄ /V → 1, but for τ > 0
the total energy is not proportional to the size of the system.
Since the main application area of DMC is the calculation of
medium to large systems for which relatively small energy
differences are computed but very small τ cannot be afforded,
this issue threatens the usefulness of DMC in material science.

To quantify the size-consistency problem consider two
systems A and B with energies EA and EB , and define
E

separated
A,B as the energy of the system with A and B at large

enough distance from each other to have zero interaction. The
quantity Es = E

separated
A,B − (EA + EB) is therefore expected

to be equal to zero and if it is not it measures the size-
consistency error. To compute the binding energy of the
system where A and B are interacting and have a total energy
Ebonded

A,B it is useful to define Eb = Ebonded
A,B − (EA + EB) and

Ebs = Ebonded
A,B − E

separated
A,B . Here Eb may be affected by a

size-consistency problem, whereas Ebs is not. To illustrate the
problem we have selected three representative examples with
a broad range of interaction strengths, involving both isolated
and periodic systems.

DMC simulations were carried out with the CASINO code
[33]. We used Dirac-Fock pseudopotentials [34,35] with the
locality approximation [36]. The trial wave functions were of
the Slater-Jastrow type with single Slater determinants and the
single-particle orbitals obtained from DFT-LDA plane-wave
calculations performed with PWSCF [37] and re-expanded in
terms of B-splines [38].

FIG. 1. (Top) Size-consistency error Es (see text) and (bottom)
binding energy [using two different definitions, Eb and Ebs (see text)]
for the CH4-H2O system. Results from the limited branching term
given by Eq. (4) (UNR) or the approach introduced here Eqs. (5) and
(6) (this work) are reported. VMC and CCSD(T) [21] evaluations are
also shown. Error bars are one standard deviation. The insets show
the structures of the complexes which have the molecules at large
(top) and near-equilibrium (bottom) separation.

Our first example is a system formed by a CH4 (A) and a
H2O (B) molecule. E

separated
A,B is obtained for a C-O distance of

11.44 Å. On the basis of CCSD(T) calculations we know that
the residual interaction energy is <0.1 meV, negligible for our
purposes. Es is zero also for variational Monte Carlo (VMC),
showing that the trial wave function of the dimer ψ

separated
CH4,H2O is

effectively factorized: ψ
separated
CH4,H2O = ψCH4 ⊗ ψH2O.

In Fig. 1 (top) we plot Es computed with DMC as a function
of τ . For τ → 0, Es → 0 as expected. However, at a typical
time step τ = 0.005 a.u. [21] the error is already ∼20 meV,
which is about the same size as the binding energy of the dimer
near the equilibrium distance, and it grows to over 80 meV at
τ = 0.05 a.u. In Fig. 1 (bottom) we show the binding energy of
the molecule for a configuration near the equilibrium distance
[39]. As expected from the large size-consistency problem
highlighted above, the binding energy computed with Eb is
wrong and has a strong time-step dependence. Extrapolating to
zero time step using the whole 0.005 � τ � 0.05 range yields
Eb = 11 ± 7 meV. Using only the range 0.005 � τ � 0.02
a value of Eb = 21 ± 2 meV is obtained, which is close
to the benchmark energy Eb = 24.5 meV, obtained with
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coupled cluster with singles, doubles, and perturbative triples
(CCSD(T) and a large basis set) [21]. By contrast, Ebs is
effectively time step independent up to τ = 0.05, is in better
agreement with the reference value, and removes the need
for uncertain and arbitrary extrapolations. The UNR limiting
procedure is too unstable above τ = 0.05 and even at τ = 0.05
we have not been able to obtain a very small statistical error
due to instabilities in the simulations [32].

Although one could envisage always using definitions
analogous to Ebs to compute binding energies, it is much
more desirable to be able to use Eb instead, particularly when
one is concerned with the binding energy of more than just a
dimer. [40]

To address this size-consistency issue we propose a differ-
ent limiting procedure. As proven in Sec. I.D of the SI [32],
the UNR limit for the drift term, Eq. (3), does not affect size
consistency; thus we only need to modify the branching term.
Our method is based on the idea that any modifications to
the Green’s function should be as insensitive as possible to the
size of the system. Inspired by the prescriptions of DePasquale
et al. [41], in which the local energy entering the branching
factor is limited by a cutoff Ecut, a modified branching factor
is defined as

S̄(R) = ET − ĒL(R);
(5)

ĒL(R) = Ebest + sign[EL(R) − Ebest]

× min{Ecut,|EL(R) − Ebest|}.
In the original [41] recipe Ecut = 2/

√
τ . This has the con-

sequence that for larger systems a larger fraction of the
distribution of the branching factor is modified, leading again
to a size-consistency issue. Here we propose

Ecut = α
√

N/τ, (6)

where N is the number of electrons in the system. Since the
variance of the system is proportional to N , this ensures that the
proportion of the distribution of the branching factor modified
by the cutoff is similar for systems with different values of
N [42]. As with the original approach [41], the exact Green’s
function is restored in the limit τ → 0. The parameter α is
an arbitrary constant to be conveniently chosen. For large
enough values of α (and/or small values of τ ) the Green’s
function becomes exact, but then singularities reappear. For
small values of α (and/or large values of τ ) the bias in the DMC
energy becomes large. We have found that a good compromise
is obtained by setting α = 0.2. The results obtained with this
newly proposed scheme are displayed in Fig. 1, showing that
the bias in the DMC energy is now size consistent up to very
large values of τ . This scheme also reduces the time-step error
on the absolute energies [32].

If the composite system is made of nonidentical subsystems
(like our water-methane system) then the method becomes less
accurate at large τ , mainly because of the different widths of
the S distributions. In particular, the cutoff at τ = 0.1 a.u.
corresponds to Ecut of around 3.5σ , 2.7σ and 3.0σ for
CH4, H2O and CH4-H2O, respectively, where σ indicates the
corresponding standard deviation of the VMC local energy
[43]. With such small cutoff energies, the percentage of the
respective distributions that are cut are different enough to

FIG. 2. Same as Fig. 1 but in this case for the C60-C60H28 system.

affect the bias of the local energy in a non-size-consistent way,
which is why the error reappears at large values of τ .

Binding energies computed with our method are displayed
in the bottom panel of Fig. 1, showing that Ebs has the same
accuracy as that computed with the UNR branching factor, but
now also Eb is accurate. This method is stable also for τ = 0.1
a.u., although at this very large value of the time step the
binding energy starts to show non-negligible errors. Note that
in order to obtain a sufficiently high accuracy on Eb with the
UNR branching factor, without relying on extrapolations, we
would need to reduce the time step to at least τ ∼ 0.0005 a.u.,
which is two orders of magnitude smaller than what is required
with our newly proposed method.

The second system we examined is the buckyball catcher,
the C60-C60H28 (A − B) complex. This is an example of a
whole class of supramolecular systems which is generally out
of reach of the most accurate quantum chemistry methods
and so at present DMC is the prime candidate for examining
such systems. For the calculation of E

separated
A,B we considered

the system with the two fragments separated by 10 Å. The
residual interaction energy at this distance is �10 meV [44],
which is again negligible compared to the energies involved.
Our limiting procedure results in very good cancellation of
time-step error and it is size consistent up to at least τ =
0.05 a.u. The UNR branching factor causes a slightly larger
time-step dependence of both Eb and Ebs , and the top panel
of Fig. 2 highlights once again the size-consistency problem.
Incidentally, the binding energy of this complex reported in
[45] was computed using UNR and Eb; therefore it had a
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FIG. 3. Cohesive energy of a two-dimensional periodic square
ice system with the UNR and current branching terms. The inset of
the structure shows the simulated 64 molecule supercell as colored
molecules and the primitive unit cell in the blue square.

size-consistency error of ∼0.2 eV. Note that in this case any
sensible extrapolation to zero time step would result in a large
size-consistency error, and therefore to obtain accurate results
we should use τ ∼ 0.0005 a.u., if not even smaller, which is
over two orders of magnitude more expensive and out of reach
even on the biggest supercomputers currently available.

Our third and final test was performed on a square lattice
ice system, a H-bonded 2D-periodic system which has been
the subject of recent theoretical [46,47] and experimental [48]
studies. The simulation cell comprises 64 water molecules.
In Fig. 3 we show the cohesive energy as a function of
time step. The cohesive energy computed with our limiting
procedure is independent of time step up to at least τ = 0.05
a.u., while that computed with the UNR branching factor has
errors even at the shortest time step that we could afford
(τ = 0.002 a.u.). The nonlinear trend of the UNR curve
makes any τ → 0 extrapolation unreliable, unless simulations
with τ < 0.001 a.u. could be afforded. Given the size of this

system this makes such calculations prohibitively expensive.
Remarkably, our method does not require any uncertain time-
step extrapolations and yields a speedup of around two orders
of magnitude.

In summary, we have proposed a procedure that reduces
DMC time-step errors by a large factor and restores size
consistency. The method is based on the UMR scheme with an
alternative branching factor. The modification is straightfor-
ward to implement, requiring just a change to a single line of
code. We have demonstrated our method on a CH4-H2O dimer,
the C60-C60H28 supramolecular system, and 2-dimensional ice.
Besides solving the size-consistency problem, speedups of two
orders of magnitude are obtained (see Fig. 4 in Ref. [32])
and the need for time-step extrapolations is removed. The
improvement appears particularly promising for investigations
on molecular materials and to discriminate between crystal
polymorphs. Moreover, the recent emergence of QMC-based
molecular dynamics [24–26], which until now has only been
affordable within VMC, could be in reach with the more
accurate fixed-node DMC approach.
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[45] A. Tkatchenko, D. Alfè, and K. S. Kim, J. Chem. Theory Comp.

8, 4317 (2012).
[46] J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A.

Michaelides, Phys. Rev. Lett. 116, 025501 (2016).
[47] F. Corsetti, P. Matthews, and E. Artacho, Sci. Rep. 6, 18651

(2016).
[48] G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser,

H. A. Wu, A. K. Geim, and I. V. Grigorieva, Nature (London)
519, 443 (2015).

241118-5

http://dx.doi.org/10.1021/ct500129p
http://dx.doi.org/10.1021/ct500129p
http://dx.doi.org/10.1021/ct500129p
http://dx.doi.org/10.1021/ct500129p
http://dx.doi.org/10.1063/1.4871873
http://dx.doi.org/10.1063/1.4871873
http://dx.doi.org/10.1063/1.4871873
http://dx.doi.org/10.1063/1.4871873
http://dx.doi.org/10.1021/ct5003225
http://dx.doi.org/10.1021/ct5003225
http://dx.doi.org/10.1021/ct5003225
http://dx.doi.org/10.1021/ct5003225
http://dx.doi.org/10.1063/1.4921106
http://dx.doi.org/10.1063/1.4921106
http://dx.doi.org/10.1063/1.4921106
http://dx.doi.org/10.1063/1.4921106
http://dx.doi.org/10.1063/1.4926444
http://dx.doi.org/10.1063/1.4926444
http://dx.doi.org/10.1063/1.4926444
http://dx.doi.org/10.1063/1.4926444
http://dx.doi.org/10.1103/PhysRevB.86.241406
http://dx.doi.org/10.1103/PhysRevB.86.241406
http://dx.doi.org/10.1103/PhysRevB.86.241406
http://dx.doi.org/10.1103/PhysRevB.86.241406
http://dx.doi.org/10.3390/e16010287
http://dx.doi.org/10.3390/e16010287
http://dx.doi.org/10.3390/e16010287
http://dx.doi.org/10.3390/e16010287
http://dx.doi.org/10.1038/ncomms4487
http://dx.doi.org/10.1038/ncomms4487
http://dx.doi.org/10.1038/ncomms4487
http://dx.doi.org/10.1038/ncomms4487
http://dx.doi.org/10.1103/PhysRevLett.114.105701
http://dx.doi.org/10.1103/PhysRevLett.114.105701
http://dx.doi.org/10.1103/PhysRevLett.114.105701
http://dx.doi.org/10.1103/PhysRevLett.114.105701
http://dx.doi.org/10.1063/1.4917171
http://dx.doi.org/10.1063/1.4917171
http://dx.doi.org/10.1063/1.4917171
http://dx.doi.org/10.1063/1.4917171
http://dx.doi.org/10.1063/1.4886075
http://dx.doi.org/10.1063/1.4886075
http://dx.doi.org/10.1063/1.4886075
http://dx.doi.org/10.1063/1.4886075
http://dx.doi.org/10.1002/qua.24526
http://dx.doi.org/10.1002/qua.24526
http://dx.doi.org/10.1002/qua.24526
http://dx.doi.org/10.1002/qua.24526
http://dx.doi.org/10.1103/PhysRevB.90.125129
http://dx.doi.org/10.1103/PhysRevB.90.125129
http://dx.doi.org/10.1103/PhysRevB.90.125129
http://dx.doi.org/10.1103/PhysRevB.90.125129
http://dx.doi.org/10.1063/1.465195
http://dx.doi.org/10.1063/1.465195
http://dx.doi.org/10.1063/1.465195
http://dx.doi.org/10.1063/1.465195
http://link.aps.org/supplemental/10.1103/PhysRevB.93.241118
http://dx.doi.org/10.1088/0953-8984/22/2/023201
http://dx.doi.org/10.1088/0953-8984/22/2/023201
http://dx.doi.org/10.1088/0953-8984/22/2/023201
http://dx.doi.org/10.1088/0953-8984/22/2/023201
http://dx.doi.org/10.1063/1.1829049
http://dx.doi.org/10.1063/1.1829049
http://dx.doi.org/10.1063/1.1829049
http://dx.doi.org/10.1063/1.1829049
http://dx.doi.org/10.1063/1.1888569
http://dx.doi.org/10.1063/1.1888569
http://dx.doi.org/10.1063/1.1888569
http://dx.doi.org/10.1063/1.1888569
http://dx.doi.org/10.1063/1.460849
http://dx.doi.org/10.1063/1.460849
http://dx.doi.org/10.1063/1.460849
http://dx.doi.org/10.1063/1.460849
http://www.pwscf.org
http://dx.doi.org/10.1103/PhysRevB.70.161101
http://dx.doi.org/10.1103/PhysRevB.70.161101
http://dx.doi.org/10.1103/PhysRevB.70.161101
http://dx.doi.org/10.1103/PhysRevB.70.161101
http://dx.doi.org/10.1063/1.454883
http://dx.doi.org/10.1063/1.454883
http://dx.doi.org/10.1063/1.454883
http://dx.doi.org/10.1063/1.454883
http://dx.doi.org/10.1021/ct300711r
http://dx.doi.org/10.1021/ct300711r
http://dx.doi.org/10.1021/ct300711r
http://dx.doi.org/10.1021/ct300711r
http://dx.doi.org/10.1103/PhysRevLett.116.025501
http://dx.doi.org/10.1103/PhysRevLett.116.025501
http://dx.doi.org/10.1103/PhysRevLett.116.025501
http://dx.doi.org/10.1103/PhysRevLett.116.025501
http://dx.doi.org/10.1038/srep18651
http://dx.doi.org/10.1038/srep18651
http://dx.doi.org/10.1038/srep18651
http://dx.doi.org/10.1038/srep18651
http://dx.doi.org/10.1038/nature14295
http://dx.doi.org/10.1038/nature14295
http://dx.doi.org/10.1038/nature14295
http://dx.doi.org/10.1038/nature14295



