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Constraints on the phase diagram of molybdenum from first-principles free-energy calculations
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We use first-principles techniques to reexamine the suggestion that transitions seen in high-P experiments on
Mo are solid-solid transitions from the bcc structure to either the fcc or hcp structures. We confirm that in the
quasiharmonic approximation the free energies of fcc and hcp structures become lower than that of bcc at P > 325
GPa and T below the melting curve, as reported recently. However, we show that if anharmonic effects are fully
included this is no longer true. We calculate fully anharmonic free energies of high-T crystal phases by integration
of the thermal average stress with respect to strain as structures are deformed into each other, and also by thermo-
dynamic integration from harmonic reference systems to the fully anharmonic system. Our finding that fcc is ther-
modynamically less stable than bcc in the relevant high-P /high-T region is supported by comparing the melting
curves of the two structures calculated using the first-principles reference-coexistence technique. We present first-
principles simulations based on the recently proposed Z method, which also support the stability of bcc over fcc.
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I. INTRODUCTION

The past ten years have seen a lively controversy over the
phase diagrams of transition metals at megabar pressures,
with the pressure dependence of the melting temperature
dTm/dP from diamond-anvil-cell (DAC) measurements dif-
fering greatly from that deduced from shock data and from
first-principles calculations (see Fig. 1).1–13 One suggested
resolution of the controversy is that the transition interpreted
as melting in some of the DAC experiments may in fact
be a solid-solid crystallographic transformation, and in the
case of molybdenum this is consistent with the observation
of two transitions in shock experiments.14,15 This suggestion
appeared to be confirmed by recent first-principles work on
Mo, which indicated a transition from the low-temperature
body-centred-cubic (bcc) structure to a close-packed structure
in the appropriate temperature region.7,16,17 However, that
work relied on two important assumptions, which we examine
in detail in this paper. The results we shall present imply that
those assumptions and the conclusions drawn from them may
be incorrect, so that further work is still needed to resolve the
controversy.

DAC measurements have been reported on the melting
curves of several transition metals, including Ti, V, Cr, Fe,
Co, Ni, Mo, Ta, and W.3,6,18,19 The measurements extend
up to nearly 100 GPa (1 Mbar), and in most cases, the
increase of melting temperature Tm between ambient pressure
and 100 GPa is surprisingly small; in the case of Mo, the
increase is only ∼200 K.3,6 These findings are in stark contrast
to the melting curves deduced from shock measurements,
which are available for Fe, Mo, Ta, and W.14,15 For Mo,
the increase of Tm between ambient and 100 GPa estimated
from shock data is ∼2000 K. Recently, density functional
theory (DFT) calculations of the melting curves of Mo and
Ta have been reported.1,2,7,10,20 The DFT predictions are
expected to be reliable, because it is well known that DFT,
without any adjustable parameters, gives excellent results for

a wide range of properties of transition metals, including cold
compression curves up to ∼300 GPa,1,2,21,22 Hugoniot P (V )
curves,4,23,24 phonon dispersion relations (and their pressure
dependence, in the case of Fe),1,2,25–27 and low-temperature
phase boundaries.28 Furthermore, techniques for calculating
melting curves using DFT have become firmly established over
the past ten years and more, and are known to give accurate
results.29–35 The DFT results for Tm(P ) of Mo and Ta lend
support to the correctness of the melting curves deduced from
shock data.1,2,7,10

It has become clear very recently that experimental diffi-
culties may have led to a substantial underestimate of high-P
melting temperatures in earlier DAC measurements. The work
of Dewaele et al.11 indicates that formation of metal carbide
by chemical reaction between the diamond and the metal
sample can be a major problem. Their work also shows that
difficulties in the pyrometric measurement of temperature can
also lead to substantial underestimates of Tm. In the case
of Ta, their measurements give a melting curve that is well
above those given by earlier DAC experiments and is fairly
close to (though systematically lower than) the predictions
from DFT. Nevertheless, in the case of Mo, the occurrence
of two breaks in the shock data seems to leave little doubt
that there is a transition from the low-T bcc structure to an
unidentified high-T crystal structure, followed by the melting
of the latter. The T and P of the lower transition (3500 K and
200 GPa) lie close to the natural extrapolation of the T (P )
boundary identified as melting in the older DAC experiments.
This suggests that this boundary is associated with a bcc-solid
transition. Even in the case of Ta, recent evidence based
on DFT calculations10 indicates that a bcc-solid transition is
implicated in earlier DAC attempts to detect high-P melting.

To substantiate the picture of a bcc-solid transition followed
by a melting transition, it is necessary to show that another
crystal structure becomes thermodynamically more stable
than bcc at high temperatures, and to identify this structure.
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FIG. 1. Points on the solid-liquid boundary of Mo as observed in
DAC (�, Ref. 3) and shock wave (�, Ref. 14) experiments. The shock
wave datum (•, Ref. 14) obtained at low P has been interpreted as
a solid-solid phase transition. Lines represent theoretical predictions
of the melting curve of bcc Mo by Cazorla et al. (solid line, Ref. 1)
and Belonoshko et al. (dashed line, Ref. 7).

This was the aim of the recent DFT work on Mo by
Belonoshko et al.7,8 They showed that, in the quasiharmonic
approximation, the Gibbs free energy of the fcc structure
is lower than that of bcc over a substantial high-P /high-T
region of the phase diagram below the bcc melting curve.
The fcc structure becomes harmonically unstable (there
are imaginary phonon frequencies) for P < 350 GPa, but
extrapolation of the predicted bcc-fcc phase boundary passes
quite close to the (P,T ) of the lower shock transition. The
quasiharmonic calculations on the bcc and fcc free energies
were independently confirmed by two subsequent papers.16,17

As independent evidence that fcc is more stable than bcc at high
T , Belonoshko et al.7 used the Z method36,37 to calculate the
melting curve of fcc Mo. (The Z method employs observations
of spontaneous melting of the superheated solid in constant-
energy molecular dynamics simulations to determine points
on the melting curve.) They found that the fcc melting curve
lies above the bcc melting curve, thus appearing to confirm
that the free energy of fcc is lower than bcc. However, we
note the two important assumptions made here; first is that
anharmonic contributions to the free energies of high-T bcc
and fcc Mo can be neglected, and second, the first-principles
statistical-mechanical techniques that were employed have the
precision needed to distinguish between the possibly rather
similar melting curves of bcc and other stuctures. There is also
the question of whether fcc can remain vibrationally stable
at high T in the region P < 350 GPa, where the harmonic
phonons are unstable. These are the issues addressed in the
present paper.

We use two methods here for comparing the free energies
of the bcc and other crystal structures, and both methods
fully include anharmonicity. The other structures we examine
are fcc and hexagonal-close-packed (hcp). The first method
uses the fact that the free energy difference between two
systems that differ only by a finite strain can be obtained
by integrating the thermal average stress with respect to
strain.38,39 We use this idea to obtain the free energy difference

between fcc and bcc, which can be transformed into each
other by a continuous strain along the Bain path (BP). The
second method employs thermodynamic integration (TI) from
a harmonic reference system to the fully anharmonic system
described by DFT. This is essentially the same method as
we employed in earlier work on Fe.4,30,40 As further ways
of probing the possible thermodynamic stability of the fcc
structure, we have reexamined the melting curve of fcc Mo,
using the reference coexistence technique employed in some
of our earlier work,34,35,41,42 and we have also performed our
own first-principles Z-method calculations on the melting of
bcc and fcc Mo. All the results point to the conclusion that
none of the other structures is thermodynamically more stable
than bcc at high T .

The rest of the paper is organised as follows. In Sec. II, we
summarize briefly the technical details of the DFT methods
employed in all the calculations, and we then present our
results for the harmonic dispersion relations of the bcc, fcc, and
hcp structures over a wide range of P ; we note the pressure
thresholds below which the fcc and hcp structures become
harmonically unstable. In the same section, we report our
results for the quasiharmonic free energies, and hence the
predicted phase boundaries separating the different structures.
Section III presents our results on the vibrational, elastic, and
thermodynamic stability of the different structures, including
our Bain-path calculations of the free energy differences
between fcc and bcc. Our calculations of the anharmonic
contributions to the free energy, and the effect of these
contributions on the phase boundaries are presented in Sec.
IV. Our reference coexistence calculations of the fcc melting
curve and the comparison with the bcc melting curve obtained
already by the same technique are outlined in Sec. V, where we
also present our new Z-method calculations. Finally, we draw
all the results together in Sec. VI, and suggest what future
investigations might help to resolve the controversies over the
phase diagram of Mo and other transition metals.

II. HARMONIC CALCULATIONS

A. DFT techniques

All calculations were done using the projector augmented
wave version of DFT as implemented in the VASP package.43,44

All atomic states up to and including 4s were treated as core
states, with 4p and all higher states being valence states. We
used the PBE form of generalised gradient approximation to
the exchange-correlation functional.45 The accuracy of the
PBE approximation for the pressure-volume relation and the
harmonic phonon frequencies of low-temperature bcc Mo
was demonstrated in several recent papers.1,17,24 An energy
cutoff of 224.6 eV was used throughout; the adequacy of this
value was shown in a previous work where we performed
extensive numerical convergence tests.1 Dense Monkhorst-
Pack grids46 were used for electronic k-point sampling in static
perfect lattice calculations to guarantee convergence of the
total energy to better than 1 meV/atom. Thermal excitation
of electrons was included via the finite-T version of DFT
originally developed by Mermin.47,48 (In this version of DFT,
the thermal occupation numbers of the Kohn-Sham eigenstates
are given by the usual Fermi-Dirac formula, as expected
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from basic physical considerations.) Phonon frequencies in
our calculations were obtained by the small-displacement
method52,53 using large supercells. For molecular dynamics
(MD) simulations, we used the Born-Oppenheimer scheme
where the self-consistent ground state is recalculated at each
MD time step. These simulations were performed in the
microcanonical (N,V,E) and canonical (N,V,T ) ensembles;
temperatures in (N,V,T ) simulations were maintained using
Nosé thermostats. Values of the technical parameters (duration
of the MD runs, k-point grids, number of atoms, etc.) will be
presented together with the results.

B. Quasiharmonic free energies and phase boundaries

It is convenient to represent the total Helmholtz free energy
F (V,T ) of the system at volume V and temperature T as the
sum of three parts:48

F (V,T ) = Fp(V,T ) + Fh(V,T ) + Fa(V,T ) . (1)

Here, Fp is the Helmholtz free energy of the static perfect
lattice: it is a free energy, because we include thermal electronic
excitations.47,48 The second term Fh is the free energy due to
lattice vibrations, calculated in the quasiharmonic approxima-
tion. The remainder Fa accounts for anharmonicity; we ignore
Fa here, but show how to compute it in Sec. IV. Following
the common practice, we refer to Fh as the quasiharmonic
free energy, because the harmonic phonon frequencies used to
calculate it depend on volume. The quantity Fa accounts for
the effects of intrinsic anharmonicity, which lead, for example,
to the dependence of phonon frequencies on temperature. For
recent discussions of quasiharmonic and intrinsic anharmonic
contributions to free energy, see, e.g., Refs. 48–51.

The calculation of Fp(V,T ) is completely standard. It is
known from previous work that at T = 0 K and pressures
P < 660 GPa the most stable phase of Mo is bcc.7,28 At higher
compressions, Mo stabilizes in the double hexagonal-closed-
packed (dhcp) structure as recently shown by Belonoshko et al.
(see Fig. 1 of Ref. 8) and confirmed in our own calculations.
Since we focus here on pressures P < 600 GPa, we have
computed Fp(V,T ) on a grid of (V,T ) points for the bcc, fcc
and hcp structures. This grid spans the ranges 8.25 � V �
15.55 Å3/atom and 0 � T � 10000 K, with state points taken
at intervals of 0.5 Å3/atom and 500 K, respectively. We then
fit the Fp(V,T ) results obtained at fixed T to a third-order
Birch-Murnaghan equation54 of the form

Fp(V,T ) = E0 + 3
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where E0 and K0 = −V0d
2E/dV 2 are the values of the energy

and the bulk modulus at equilibrium volume V0, respectively,
χ = 3

4 (4 − K ′
0) and K ′

0 = [∂K/∂P ], with derivatives evalu-
ated at zero pressure. Finally, the dependence of parameters
E0, K0, V0, and K ′

0 on T is fitted to fourth-order polynomial
expressions.

We obtain the harmonic phonon frequencies ωq,s by diag-
onalising the dynamical matrix, which is the spatial Fourier
transform of the force-constant matrix. Our calculations of
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FIG. 2. Ab initio vibrational phonon frecuencies of Mo in the fcc
structure calculated at volumes V = 9.64 Å3/atom (P = 328 GPa,
solid line) and V = 10.19 Å3/atom (P = 265 GPa, dashed line).

the latter by the small-displacement method,52,53 used large
supercells of 216 atoms (4 × 4 × 4 k-point grid) for the bcc and
fcc structures and 200 atoms for hcp (4 × 4 × 3 k-point grid).
We performed extensive tests for Mo in the bcc structure which
showed that these parameters1 guarantee Fh values converged
to less than 1 meV/atom; these parameters are assumed to be
equally adequate for the fcc and hcp structures. In principle, the
force-constant matrix and the frequencies ωq,s depend on the
electronic temperature, but we ignore this dependence here.
Phonon calculations performed with an electronic T equal
to 2000 and 5000 K provide Fh results that agree within 1
meV/atom, so we used T = 2000 K in all the ωq,s calculations.

The phonons are stable for bcc over the entire range 0 <

P < 600 GPa, as is known from previous work.7,17 However,
the phonons for fcc and hcp are stable only above a threshold
pressure Pth. To illustrate this, we show in Fig. 2 the fcc
phonon frequencies at V = 9.64 Å3/atom (P = 328 GPa) and
V = 10.19 Å3/atom (P = 265 GPa). We see that the phonon
instability first occurs at a finite wave vector, which we estimate
as qinst = (2π/a0) (1/4,1/4,0). We find threshold pressures of
Pth = 310 and 325 GPa for the fcc (V = 9.78 Å3/atom) and
hcp (V = 9.69 Å3/atom) structures.

When calculating the quasiharmonic vibrational free energy
Fh(V,T ), we use the classical expression:

Fh(V,T ) = 3kBT ln(h̄ω̄/kBT ) , (3)

where ω̄ is the geometric mean frequency, defined by

N−1
q,s

∑
q,s

ln(ωq,s/ω̄) = 1 , (4)

with the sum going over all Nq,s phonon modes (wave vector q,
branch s) in the first Brillouin zone. This classical formula for
Fh is valid at temperatures well above the Debye temperature,
which for Mo is around 400 K at equilibrium. We have checked
that even at T = 1000 K the difference between the Fh values
obtained with the classical and quantum formulas is less than
1 meV/atom, so our choice does not affect the accuracy of
the results. It is convenient to work with the classical formula
Eq. (4), because the phonon frequencies then appear through
the single quantity ω̄.
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C. CAZORLA, D. ALFÈ, AND M. J. GILLAN PHYSICAL REVIEW B 85, 064113 (2012)

6

7

8

9

 10

9 10 11 12 13 14

G
eo

m
et

ric
 M

ea
n 

F
re

qu
en

cy
 (

T
H

z)

V (Å3/atom)

BCC
FCC
HCP

FIG. 3. Geometric mean frequency ω̄ of Mo in the bcc, fcc, and
hcp structures as a function of volume. Symbols represent states at
which the calculations have been carried out and the lines are guides
to the eye.

We show the calculated mean frequencies ω̄ for all the
structures in Fig. 3. Comparison of the ω̄ values indicates
that the quasiharmonic contributions to the free-energy tend to
stabilize the fcc and hcp structures over bcc, since ω̄hcp < ω̄bcc

and ω̄fcc < ω̄bcc in the V range studied. The stabilisation is
slightly greater for hcp than for fcc.

We fit the dependence of the quantity ln(h̄ω̄) on V to a
third-order polynomial for all the structures in order to know
the value of Fh at any (V,T ) thermodynamic state using
formula (3). From the quasiharmonic free energies F ′(V,T ) =
Fp(V,T ) + Fh(V,T ), we have determined the transition bcc-
fcc and bcc-hcp pressures at each temperature using the
double-tangent construction. The phase boundaries given by
these calculations are shown in Fig. 4, where we also indicate
the quasiharmonic phase boundaries from the calculations by
Belonoshko et al.8 (The boundaries given by the very recent
quasiharmonic calculations of Zeng et al.17 are similar.) In fact,
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FIG. 4. Solid-solid phase boundaries in Mo at high P and
high T as obtained with first-principles quasiharmonic free-energy
calculations. Results obtained by Belonoshko et al.8 are shown for
comparison.

there are some discrepancies. For instance, those calculated by
Belonoshko et al. lie at somewhat lower T than ours, and the
slopes of the two quasiharmonic bcc-hcp boundaries differ in
sign. Despite these differences, we agree with Belonoshko
et al. that in the quasiharmonic approximation the stable
high-P /high-T structure of Mo is hcp.

III. VIBRATIONAL, ELASTIC, AND THERMODYNAMIC
STABILITY

Do the phase boundaries predicted by quasiharmonic theory
have anything to do with the transitions seen in DAC and
shock experiments? If they do, then the simplest hypothesis
is that these transitions lie on a continuation of the predicted
boundaries. But in order for this to be true, several conditions
must be satisfied. First, since the lower shock transition
occurs at P = 220 GPa, which is far below the quasiharmonic
stability limit for both fcc and hcp, the system must somehow
be vibrationally stabilised, presumably by anharmonic effects.
Second, the system must remain elastically stable at pressures
P < 220 GPa, i.e., small, arbitrary volume-conserving strains
must not cause the free energy to decrease. Third, the crystal
structures must have lower free energies than bcc. Vibrational
stability can be tested by straightforward first-principles MD
simulations, as has been shown in our earlier work on
high-P /high-T bcc Fe,40 and in recent work by Asker et al.
on low-P fcc Mo;55 we report tests here for fcc Mo. The
strain dependence of free energy can be also probed by MD
calculations in which the thermal average stress is monitored.
For the case of fcc, calculation of stress as a function of strain
along the Bain path also allows us to test its thermodynamic
stability.

A. Vibrational stability

When we say that a crystal in thermal equilibrium is
vibrationally stable, we mean that the thermal average position
of each atom remains centered on its pefect-lattice site, and
does not acquire a permanent deviation away from that site.
To test this, it is convenient to use the so-called position
correlation function p(t), defined by40

p(t) = 〈[
ri(t + t0) − R0

i

] · [
ri(t0) − R0

i

]〉
, (5)

where ri(t) is the position of atom i at time t , R0
i is the

perfect-lattice position of the atom, t0 is an arbitrary time
origin, and 〈 · 〉 denotes the thermal average. In practice, the
thermal average is performed by averaging over t0 and over
atoms. At t = 0, p(t) is simply the vibrational mean square
displacement. The crystal is vibrationally stable if p(t →
∞) = 0, because the vibrational displacements at widely
separated times become uncorrelated. But if atoms acquire a
permanent vibrational displacement, then p(t → ∞) becomes
nonzero. The characteristic behaviour of p(t) in a vibrationally
unstable crystal can be seen in our earlier work on high-P /high-
T Fe in the bcc structure.40 For this test to work, the atoms
must not diffuse from one site to another, and we routinely test
for lack of diffusion by monitoring the time-dependent mean
square displacement �r(t)2 ≡ 〈|ri(t + t0) − ri(t0)|2〉, which,
in the absence of diffusion, goes to a constant equal to twice
the vibrational mean square displacement in the limit t → ∞.
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FIG. 5. Calculated mean squared displacement �r(t)2 (dashed
line) and position correlation function p(t) (solid line) of Mo in the
fcc structure as a function of time. The simulations were performed
at two different temperatures and fixed volume V = 10.50 Å3/atom.
The value of functions �r(t)2 and p(t) is in units of Å2.

We have performed a set of first-principles MD simulations
on Mo in the bcc and fcc structures at a wide range of
thermodynamic states. A typical MD run consisted of 104 steps
performed with a time step of 1 fs, with the first 5 ps allowed
for equilibration, and only the last 5 ps used to accumulate
statistical averages. The simulation cell contained 125 particles
for both fcc and bcc structures and �-point electronic k-point
sampling was used.

The MD runs were carried out for a total of 20 state points,
spanning the ranges 200 � P � 600 GPa and 1500 � T �
10500 K. In Fig. 5, we show the mean squared displacement
�r(t)2 and the position correlation function p(t) calculated
for fcc Mo at volume V = 10.50 Å3/atom and T = 1500
and 4000 K. At the lower T , the system is vibrationally
unstable, as shown by the long-t behavior of p(t). Clearly,
atomic liquid-like diffusion does not occur as shown by the
fluctuation of �r(t)2 about a constant value at long t . Since
these MD simulations are very demanding, we did not attempt
to estimate an accurate boundary in the P -T plane separating
stable and unstable states of the fcc structure. Nevertheless,
we can say that vibrational instability was not observed in

our simulations at temperatures T > 3000 K and pressures
below Pth = 310 GPa. The recent work of Asker et al.,55 using
techniques similar to those used here, showed that even at
P ∼ 0 GPa fcc Mo is vibrationally stable for T � 3000 K.

B. Elastic and thermodynamic stability

The elements of the stress tensor σαβ in a thermal-
equilibrium system can be defined as σαβ = V −1(∂F/∂εαβ)T ,
where F is the Helmholtz free energy, εαβ is the strain tensor,
and V is the volume. This relation can be integrated to obtain
the difference of free energy between two states that differ by
a finite homogeneous strain.38,39 The bcc and fcc structures
can be continuously deformed into one another by such a
strain, following the Bain path. This means that the free energy
difference between the two structures can be obtained by
performing a series of MD simulations along the Bain path,
calculating the thermal average σαβ in each simulation, and
then integrating numerically with respect to εαβ . A necessary
condition for elastic stability of the fcc phase is that F must
be a local minimum along the Bain path.56

The Bain path is based on the idea that the bcc and fcc
structures can be regarded as special cases of the body-centered
tetragonal lattice (bct, I4/mmm space group). Taking primi-
tive vectors a1 = (1,0,0)a, a2 = (0,1,0)a, a3 = (1/2,1/2,ζ )a,
the values ζ = 1/2 and and ζ = 1/

√
2 correspond to bcc

and fcc, respectively. By varying ζ from 1/2 to 1/
√

2, while
varying a so as to keep the volume a3ζ of the unit cell constant,
one structure is transformed continuously into the other. If we
denote by Fbct(ζ ) the free energy for a given ζ value, then the
work done on going from the bcc value ζ = 1/2 to the another
value at constant volume is readily shown to be

Fbct(ζ ) − Fbcc = 1

3
V

∫ ζ

1/2
(σxx + σyy − 2σzz)

1

ζ ′ dζ ′ . (6)

For ζ = 1/
√

2, we obtain the free energy difference of interest
Ffcc − Fbcc.

As a preliminary test of the correctness of our procedures,
we have performed calculations at T = 0 K in which case the
free energy difference at constant volume is simply the energy
difference. We show in Fig. 6 the results of integrating the
stress for a range of ζ values, starting from bcc. As expected, at
P = 550 GPa the difference �E ≡ Efcc − Ebcc has the small
value 0.068 meV/atom; at P = 350 GPa, which is close to the
pressure at which the fcc structure becomes elastically stable,
�E has the much larger value 0.354 meV/atom, and the slope
of �E is close to zero at the fcc structure; at P = 0 GPa,
the curvature of �E is downward, so that the fcc structure is
elastically unstable.

Before starting full DFT Bain-path calculations, we have
made preparatory tests to find out how to design the simulations
so as to obtain useful accuracy. These tests were done with an
embedded-atom empirical potential (EAM),57,58 which was
tuned to reproduce the energetics of Mo in the bcc and fcc
structures as described by DFT MD simulations performed
at V = 9.64 Å3/atom and T = 7500 K. The values of the
corresponding EAM parameters are, with the same notation
as in Ref. 1 [see Eq. (1)], ε = 0.2218 eV, a = 5.5525 Å,
C = 4.3164, n = 3.33, and m = 4.68. We set the requirement
that integration along the Bain path should give the free energy
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FIG. 6. Ab initio free energy calculations performed along the
Bain path at zero temperature. Energy differences are represented
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difference �F ≡ Ffcc − Fbcc with errors of no more than
∼10 meV due to statistical uncertainty, number of ζ points for
numerical integration, and system size. Our tests indicated that
the statistical uncertainty in σαβ should be less than ∼0.5 GPa,
and this is achieved with runs of 3–4 ps after equilibration.
Using the trapezoidal rule for numerical integration, we find
that nine ζ points (including the end points ζ = 1/2 and 1/

√
2)

suffice.
Guided by the results of these tests, we performed the DFT

MD calculations on systems of 125 atoms (�-point sampling),
at nine ζ values, with an equilibration time of 2 ps and a
statistical sampling time of 3–4 ps; we use our standard plane-
wave cutoff of 224.6 eV. (Checks on the adequacy of �-point
sampling and our standard cutoff are noted below.) The Bain-
path calculations were done at four different (V,T ) states (units
of Å3/atom and K): (8.26,9000), (10.08,6000), (10.54,4000),
and (11.00,4000), where the pressures corresponding to the
bcc structure are 600, 283, 226, and 187 GPa, respectively. As
an illustration, we show in Fig. 7 the computed values of σxx ,
σyy , and σzz as a function of ζ for the state (8.26,9000). The
figure also reports the free energy difference Fbct(ζ ) − Fbcc

obtained by integration at these four states.
Two important conclusions are clear from these results.

First, the fcc structure is thermodynamically unstable with
respect to bcc at all the high-T states we have examined.
This is true even at the state (600 GPa, 9000 K), which lies
on the bcc-fcc boundary predicted by quasiharmonic theory,
and at the state (283 GPa, 6000 K), which is somewhat
above the extension of that boundary. The second conclusion
is that fcc appears to be elastically unstable for the three
states having P < 300 GPa, though it is weakly stable at
(600 GPa, 9000 K). The conclusions appear to be robust,
since they would be unchanged even if the statistical errors
were considerably greater than those we have achieved. We
have tested for the possible effect of systematic errors coming
from our use of �-point sampling and our standard plane-
wave cutoff. To test the effect of cutoff, we have repeated
the calculation of the thermally averaged stress components
σxx , σyy , and σzz at ζ = 0.60 for the thermodynamic state
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FIG. 7. Top: stress tensor components calculated at different
ζ points along the Bain path at V = 8.26 Å3/atom and T =
9000 K. Statistical errors are represented with bars equivalent
to 0.4 GPa. Bottom: free energy difference �F (ζ ) obtained at
(V,T ) states (8.26,9000) = •, (10.08,6000) = �, (10.54,4000) = ◦
and (11.00,4000) = � in units of Å3/atom and K, respectively.
Numerical uncertainties are represented with bars of 5 meV/atom
and the lines are guides to the eye.

V = 8.26 Å3/atom and T = 9000 K, using the increased
plane-wave cutoff of 280.7 eV. We find that this increased
cutoff leaves all the stress components unchanged within
∼1 GPa. We have done the same thing with the standard
cutoff but now using Monkhorst-Pack (2 × 2 × 2) sampling
of eight k points. This has the effect of shifting all three stress
components down by ∼4 GPa. Since they are all shifted by
essentially the same amount, this does not affect the integral
of Eq. (6), so that the free-energy difference between fcc and
bcc remains unchanged.59 We also note that the conclusions
would remain the same even if the number of ζ -integration
points were less than the nine we have used. The reason is that
our conclusions rely only on the fact that the stress component
σzz lies below the average of σxx and σyy over most of the ζ

range. This indicates that the number of integration points we
use is more than adequate.

Since the Bain-path calculations fully include anharmonic-
ity, and since they are completely at odds with the quasihar-
monic predictions, it appears that anharmonic contributions to
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the free energy must be very substantial at high temperatures.
We examine these contributions directly in the next section.

IV. ANHARMONIC FREE ENERGY

We calculate the anharmonic contribution to the free
energy using thermodynamic integration, which we have used
extensively in previous work on the free energy of transition
metals.4,42,48 The general principle is that we compute the
change of Helmholtz free energy as the total energy function
Uλ(r1, . . . rN ) is changed continuously from U0 to U1, the free
energies associated with these energy functions being F0 and
F1. Then the thermodynamic integration formula is

F1 − F0 =
∫ 1

0
〈U1 − U0〉λ dλ , (7)

where 〈 · 〉λ is the thermal average evaluated for the system
governed by the energy function Uλ = (1 − λ)U0 + λU1. In
practice, we take U1 to be the DFT total energy function U ,
whose free energy we wish to calculate, and U0 to be the
total energy function Uref of a “reference” system, chosen
so that its free energy Fref can be evaluated exactly. Here,
we choose the reference system to be a perfectly harmonic
system.60 For a volume where the harmonic phonons are all
stable, we can choose Uref to be the total energy of the DFT
system calculated in the quasiharmonic approximation. For V ,
where DFT gives imaginary phonon frequencies, the total free
energy cannot be separated into perfect-lattice, quasiharmonic
and anharmonic components [see Eq. (1)]. However, we know
from Sec. III A that the fcc (and hcp) system can still be
vibrationally stable at such volumes, so that the free energy
should still be calculable. In these cases, we create a harmonic
reference system by adding artificial on-site harmonic springs
to remove the harmonic instability.

In applying this scheme in practical DFT calculations, there
is a subtle point connected with electronic k-point sampling,
which we note here. Ideally, we should use infinitely fine
k-point sampling; we denote the DFT total energy calculated
in this way by U∞(r1, . . . rN ). (As usual, U∞ is a free energy,
because it includes thermal electronic excitations.) However
practical DFT simulations have to be performed with limited
k-point sampling, and we denote the total energy in this
case by Uk(r1, . . . rN ). (In fact, most of our simulations are
performed with �-point sampling.) Now with both perfect
and imperfect k-point sampling, we can separate the total
energy into the total (free) energy of the perfect lattice Up

and the vibrational energy Uvib. We write U∞ = U∞
p + U∞

vib

and Uk = Uk
p + Uk

vib. Now the energies U∞
p and Uk

p are very
large, and we do not wish to incur k-point errors in these; we
do not need to do so, since U∞

p and Uk
p can be calculated

explicitly in advance. In a practical DFT simulation with
limited k-point sampling, we therefore make smaller errors if
we take the total energy to be U∞

p + Uk
vib = U∞

p + (Uk − Uk
p).

The reference system should be taken to have the total energy
U ref = U∞

p + U ref
h , where U ref

h is a bilinear function of the
displacements of atoms from their regular lattice sites.

With these points in mind, the λ-dependent total energy
function used in thermodynamic integration is

Uλ = U∞
p + (1 − λ)U ref

h + λ
(
Uk − Uk

p

)
. (8)
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FIG. 8. Averaged 〈U1 − U0〉λ values obtained at different λ-
points in anharmonic free energy calculations perfomed for bcc Mo at
V = 10.08 Å3/atom and T = 6000 K. The dashed line corresponds
to a fourth-order polynomial curve used to reproduce the variation of
these values on parameter λ.

The total free energy of the system is then

F = U∞
p + F ref

h +
∫ 1

0
dλ

〈
Uk − Uk

p − U ref
h

〉
λ

. (9)

We evaluate the integral in Eq. (9) numerically. For this,
first we perform a series of ab initio molecular dynamics
simulations in the (N,V,T ) ensemble governed by the energy
function Uλ at different λ values. We then fit a fourth-order
polynomial to the 〈Uk − Uk

p − U ref
h 〉λ values obtained from

these simulations, in order to perform the λ integration. Our
tests show that DFT MD simulations performed at five equally
spaced λ points are enough to ensure convergence of the free
energy to better than 10 meV/atom (see Fig. 8). A typical
run consisted of 3 × 103 MD steps performed with an time
step of 1 fs with statistical averages taken over the last 2 ps.
This procedure gives values for 〈Uk − Uk

p − U ref
h 〉λ converged

to better than 6 meV/atom. The simulation box employed
contains 125 particles (128 in the hcp case) and �-point
electronic sampling was used.

Anharmonic free energy results are shown in Table I. We
see that solid Mo is always thermodynamically more stable
in the bcc structure than in the other structures examined.
This conclusion disagrees with DFT calculations performed in
the quasiharmonic approximation (see Sec. II), which predict
fcc and hcp Mo as more stable than bcc Mo at pressures
and temperatures above ∼350 GPa and ∼5000 K. Moreover,
the total free energy of Mo in the hcp phase is around
∼0.1 eV/atom larger than in the bcc or fcc structures. The
reason behind these results is that the anharmonic energy term
Fa in general is negative for the bcc structure while positive
for the rest of structures, particularly at low pressures and
high temperatures (see Table I and Fig. 9). We find very good
agreement between the results obtained using thermodynamic
integration (TI) and integration of the stress tensor with respect
to strain along the Bain path (BP); for instance, at state
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TABLE I. Total and anharmonic free energy values obtained for Mo in different crystal structures within the thermodynamic range
270 � P � 415 GPa and 3000 � T � 9000 K. The cases in which the value of the Fa = F − Fp − Fh term is not shown correspond to
thermodynamic states at which the corresponding crystal structure is harmonically unstable. Volumes are in units of Å3/atom, pressures of
GPa and free energies of eV/atom.

V T F bcc F bcc
a F fcc F fcc

a F hcp F hcp
a

9.20 1000 −5.694 −0.002 −5.447 −0.005
(390 � P � 415) 3000 −7.014 −0.005 −6.825 −0.004 −6.619 −0.015

4500 −8.295 0.006 −8.156 0.020 −7.964 0.003
6000 −9.747 0.001 −9.641 0.062 −9.472 0.022
7500 −11.336 −0.017 −11.258 0.104 unstable
9000 −13.047 −0.051 −12.979 0.149

9.64 3000 −8.117 0.000 −7.885 −0.008
(325 � P � 345) 4500 −9.409 −0.005 −9.238 0.035

6000 −10.872 −0.005 −10.742 0.098
7500 −12.484 −0.038 −12.367 0.170

10.08 3000 −9.031 0.005 −8.783
(270 � P � 285) 4500 −10.338 0.001 −10.160

6000 −11.819 −0.019 −11.691

(10.08,6000) the free energy difference Fbcc − Ffcc obtained
with TI is −0.128 eV/atom, while the corresponding BP value
is −0.117 eV/atom.
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FIG. 9. Dependence on temperature of the free energy difference
between bcc and fcc Mo as given by anharmonic and quasiharmonic
(QH) DFT free energy calculations performed at two different
volumes.

The results of the present section and the previous one all
indicate that neither fcc nor hcp becomes thermodynamically
more stable than bcc at high temperature. If this is true, then the
melting curves of those two crystal structures should lie lower
in temperature than the bcc curve. We turn to this question for
fcc Mo in the next section.

V. MELTING CURVE OF FCC MO

There are several well established techniques for calculating
first-principles melting curves,34 including the calculation of
the free energies of solid and liquid using thermodynamic
integration from reference systems, and the direct first-
principles simulation of coexisting solid and liquid in large
systems. Here, we begin (see Sec. V A) by using the “reference
coexistence” method,1,2,35,41,42 because it is fairly easy to apply
and because we have used it recently to determine the DFT
melting curve of bcc Mo. We shall see that the results given
by this method are inconsistent with earlier results for the
relation between the melting curves of bcc and fcc Mo obtained
by the Z method.7 In order to investigate the reasons for
this discrepancy, we shall present (see Sec. V B) our own
DFT Z-method calculations, using larger simulated systems
and longer simulation times than were used in the earlier
work.

A. Reference coexistence

The reference coexistence technique consists of three steps.
First, an empirical reference model is fitted to first-principles
simulations of solid and liquid at thermodynamic conditions
close to the expected melting curve. Next, the reference
model is used to perform simulations of coexisting solid
and liquid in large systems consisting of many thousands
of atoms, so as to find points (P ref

m ,T ref
m ) on the reference

melting curve. Finally, differences between first-principles and
reference free energies of the solid and liquid are used to
estimate the differences between reference and first-principles
melting curves. In the case of Fe, reference coexistence
results have been compared with melting curves obtained
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FIG. 10. Ab initio (AI) high-P and high-T melting curve of
Mo calculated for the bcc (Cazorla et al.1) and fcc (present work)
crystal structures. Melting (P ref

m , T ref
m ) states obtained in the two-phase

coexistence simulations performed with EAM potentials are also
displayed. �, Ref. 3, and �, Ref. 14, represent DAC and shock-wave
data, respectively. The melting line of fcc Mo as calculated by
Belonoshko et al.7 is shown for comparison.

both by first-principles free energy calculations and by direct
first-principles simulation of coexisting solid and liquid, and
the agreement was excellent.4,61 Moreover, notable agree-
ment between reference coexistence results and diffusion
Monte Carlo free energy calculations has been also proved
recently.62

The reference model used in our reference coexistence
calculations on the melting of bcc Mo was an embedded
atom model (EAM), details of which are given in Ref. 1. We
use exactly the same model with the same parameters here.
In our work on bcc Mo, we showed that EAM coexistence
simulations on cells containing 6750 atoms give accurate
reference melting curves, and we use the same size of system
here. The protocols used to prepare the two-phase system are
the same as those used before, and we accept a thermodynamic
state (P ref

m ,T ref
m ) as lying on the reference melting curve if the

two phases remain in stable coexistence for 50 ps or more.
The reference melting curve obtained for fcc Mo in the present
work is compared with our published reference curve for bcc
Mo in Fig. 10. The two curves are essentially identical.

The leading-order shift �Tm in melting temperature caused
by going from the reference to the first-principles total-energy

function is

�Tm = �Gls
(
T ref

m

)/
S ls

ref . (10)

Here, �Gls ≡ �Gl − �Gs , where �Gl and �Gs are the
isobaric-isothermal changes of Gibbs free energy of liquid
and solid due to the change �U of total-energy function; the
denominator Sls

ref is the reference entropy of fusion, i.e., the
difference between the entropies of liquid and solid in the
reference model. The free energy shifts �Gl and �Gs are
calculated using the formula

�G = 〈�U 〉ref − 1
2β〈δ�U 2〉ref − 1

2V κT �P 2 , (11)

with β = 1/kBT , δ�U ≡ �U − 〈�U 〉ref (averages taken in
the reference system), κT is the isothermal compressibility, and
�P is the isochoric-isothermal difference of pressure between
first principles and reference systems.

Following the procedures used in our work on bcc Mo, we
evaluated Sls

ref and the reference κT values for solid and liquid
using separate solid- and liquid-state simulations on cells of
3375 atoms at (P,T ) points on the reference melting curve.
The values of 〈�U 〉ref , 〈δ�U 2〉ref , and �P were obtained from
solid- and liquid-state simulations on systems of 125 atoms,
using a 2 × 2 × 2 Monkhorst-Pack grid for electronic k-point
sampling.

In Fig. 10, we compare the resulting DFT melting curve
for fcc Mo with the DFT curve for bcc Mo obtained using
exactly the same procedures; we also show the fcc melting
curve of Belonoshko et al.7 obtained using the Z method.37

We see that the free energy corrections cause a downward
shift of the melting curve for both bcc and fcc, but the shift is
considerably greater for fcc. Consequently, the fcc melting
curve lies below the bcc curve. It is worth noting that in
using the same reference EAM for both the bcc and the fcc
structures, we make no assumption about the accuracy of EAM
in reproducing DFT results, although in fact the EAM does turn
out to be rather accurate for the bcc structure. The EAM serves
merely as a reference model to which we apply corrections
to account for the differences between the reference model
and DFT. In Table II, we show the values of terms 〈�U 〉lsref

and 〈(δ�U )2〉ref [see Eq. (11)], which are required for the
calculation of the free energy differences in question. The
finding that the fcc melting curve lies below the bcc melting
curve means that the free energy of fcc must be higher than that
of bcc in the high-T region just below the melting curves. This
confirms the conclusions from our Bain-path and anharmonic
calculations. However, our results are not consistent with those

TABLE II. Difference 〈�U〉ls
ref ≡ 〈�U〉l

ref − 〈�U〉s
ref between the liquid and fcc solid thermal averages of the difference �U ≡ UAI − Uref

of ab initio and reference energies, and thermal averages in solid and liquid 〈(δ�U )2〉ref of the squared fluctuations of δ�U ≡ �U − 〈�U〉ref ,
with averages evaluated in the reference system and normalized by dividing by the number of atoms N . Melting temperatures for the reference
and ab initio systems are also reported.

1
2 β〈(δ�U )2〉ref/N (eV/atom)

T ref
m (K) 〈�U〉ls

ref/N (eV/atom) Solid Liquid T AI
m (K)

3200 −0.057(2) 0.024(2) 0.032(2) 2249
6325 −0.108(2) 0.044(2) 0.041(2) 4910
7625 −0.070(2) 0.015(2) 0.027(2) 6690
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of Belonoshko et al.7, whose Z-method calculations indicate
that the fcc melting curve lies above the bcc melting curve.

B. The Z method

The electronic-structure methods used in our reference-
coexistence calculations and in the Z-method calculations of
Belonoshko et al.7 are essentially the same (PAW with the
VASP code), so the contradictory conclusions about the relation
between the bcc and fcc melting curves must originate in
differences between the statistical-mechanical methods. The
Z method has been validated by testing it against known
results for the Lennard-Jones and other systems, using MD
simulations on large systems of up to 32 000 atoms with
simulation times of ∼60 ps.37 However, the DFT Z-method
simulations of Belonoshko et al.7 on the melting of Mo
employed much smaller systems (from 32 to 108 atoms for fcc,
and from 54 to 128 atoms for bcc), and very short simulation
times of ∼3 ps. It is therefore a natural question whether the use
of such short simulations on such small systems might be the
cause of the discrepancy. We have very recently investigated in
detail the dependence of Z-method errors on system size and
simulation time, and our findings shed light on this question.63

Guided by this, we have performed our own DFT Z-method
calculations on the melting of Mo, and we report the results
here.

The Z method is based on the phenomenon of homogeneous
melting of a superheated solid.37 The idea is that if an
MD simulation is performed at constant total energy E and
volume V (microcanonical ensemble) starting from the perfect
crystal (all atoms on regular-lattice sites), then after the solid
has thermally equilibrated at some temperature Tsol it will
subsequently melt only if Tsol exceeds a superheating limit
TLS. Evidence was presented in Ref. 37 that, as the temperature
Tsol tends to TLS from above, the temperature Tliq and pressure
Pliq of the liquid formed by homogeneous melting tend to
a point on the melting curve. Our recent investigation of
homogeneous melting63 focused on the waiting time τw, i.e.,
the time that elapses before the initial solid at temperature
Tsol > TLS melts. In order to gather statistics about τw, for
each system size (number of atoms N ) with specified density
N/V , and for each value of total energy (equivalently, for
each equilibrated solid temperature Tsol), we performed several
hundred statistically independent simulations differing only in
the random velocities assigned at the start of the simulation.
The key conclusions were that (a) τw is a stochastic quantity
having a roughly exponential probability distribution, (b) its
mean value 〈τw〉 lengthens rapidly as Tsol → TLS, being
roughly proportional to 1/(Tsol − TLS)2, and (c) 〈τw〉 also
increases as the size of the system decreases, the dependence
being roughly 1/N . We noted that if the total simulation
time tsim is much shorter than 〈τw〉, then melting is unlikely
to be observed even when Tsol > TLS. This means that if
Tm is estimated by performing simulations of fixed length
tsim and seeking the lowest Tsol and Tliq for which melting
is observed, then Tliq will inevitably overestimate Tm, and
the overestimation will become worse as the system size is
reduced. As an indication of the difficulties, the results of
Ref. 63 suggest that, for a transition metal with a system size
of N = 100 and a simulation time tsim = 3 ps (values similar

330 335 340 345 350
P (GPa)

8000

9000

10000

T
 (

K
)

FIG. 11. (Color online) Estimation of melting temperatures of bcc
and fcc Mo in the pressure region P � 345 GPa. Round black points
(250 atoms for bcc) and red square points (256 atoms for fcc) show
final average (P,T ) values from constant energy MD simulations
starting from the perfect lattice. On the left hand branches, melting
does not occur within the duration of the simulations (at least 12 ps,
see text); on the right hand branches, melting has occurred, and the
(P,T ) values refer to the liquid.

to those used by Belonoshko et al.7), the overestimation could
well be ∼2000 K. Since the overestimation may differ for
different crystal structures, it is clear that the Z method cannot
be used to compare the melting temperatures of different
crystal phases unless large enough systems are simulated for
long enough times.

To illustrate this point, we have performed our own DFT
Z-method simulations on bcc and fcc Mo, using systems of
250 atoms for bcc and 256 atoms for fcc and simulation times
of at least 12 ps (these are greater than the typical values
used in Ref. 7 by factors of 2.5 and 4, respectively). The
values of the final T and P in our simulations are reported
in Fig. 11. The results indicate that the fcc crystal melts at
a lower T than bcc, so that fcc is thermodynamically less
stable than bcc, as expected from our reference-coexistence
calculations and from the free energies from our Bain-path
and anharmonic calculations. We note that the conclusions
from the present Z-method simulations are the opposite of the
Z-method results of Ref. 7. This supports the suggestion that
the earlier Z-method work employed simulations that were too
short on systems that were too small.

VI. DISCUSSION AND CONCLUSIONS

Our results suggest that the fcc and hcp structures cannot be
stable high-T phases of Mo in the pressure range 0 < P < 600
GPa. We have shown that they would be more stable than
bcc in the range 350 < P < 600 GPa and T > 5000 K
in the quasiharmonic approximation, as already found by
Belonoshko et al.7 and Zeng et al.17 However, we find that
anharmonic contributions to the free energy substantially
change the picture. Our most direct evidence for this in the case
of fcc comes from thermodynamic integration along the Bain
path, which indicates that fcc is thermodynamically less stable
than bcc in the region where quasiharmonic theory predicts the
opposite; furthermore, fcc appears to be elastically unstable at
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high T and P < 300 GPa. The Bain-path approach has the
attractive feature that it relies only on completely standard
first-principles MD, and the calculations are easily repeatable
by other researchers. The existence of large anharmonic
contributions, which crucially change the high-T stability
of fcc and hcp relative to bcc, is confirmed by our explicit
calculation of these contributions. Further confirmation that
fcc is thermodynamically less stable than bcc at high T

comes from our comparison of the fcc and bcc melting
curves.

At first sight, it might seem unexpected that anharmonicity
stabilises bcc more than fcc and hcp. After all, fcc and hcp
are the structures that go harmonically unstable at P < 350
GPa, and intuition might suggest that below this pressure there
could be large, anharmonically stabilised vibrations, which
would have a large entropy. However, we have seen that the
fcc structure at high T is not vibrationally unstable, at least with
the sizes of simulation cell that we have used, so presumably
phonons that would be harmonically unstable are stiffened by
anharmonic effects, so that their entropy is actually reduced.
In fact, Asker et al. have shown recently that electronic
thermal excitations have the effect of increasing the phonon
frequencies of fcc Mo (see Fig. 2 in Ref. 55). Furthermore,
electronic thermal excitations appear also to further stabilize
the bcc structure over fcc. As we know from previous work,
the general effect of high T is to smooth the peaks and valleys
of the zero-temperature electronic DOS. However, in the bcc
structure, the population of electronic states on the region
near the Fermi energy is enhanced, while in the fcc structure,
it is depleted. This has the overall effect of enhancing the
electronic entropy of the bcc structure with respect to that of
fcc. A similar argument has already been suggested by Asker
et al.55 for explaining the stability properties of Mo at low P

and high T . It is also worth mentioning that in a recent study
where we have developed a tight-binding model for Mo based
on DFT data and used it to calculate anharmonic free energies
over wide P -T intervals, no stabilization of the fcc structure
over bcc is observed.66 The effect of anharmonicity on the
thermodynamic functions of the closely analogous element W
has been discussed recently by Ozolins.64

Our finding that the fcc melting curve is below the bcc
curve, supported by our own Z-method calculations, is not
consistent with the Mo melting curves deduced by Belonoshko
et al.7 from their Z-method work. We have noted that one of
the difficulties faced by the Z method concerns time scales.
When the temperature Tsol of the initially thermalised crystal
exceeds the superheating limit TLS, then in constant-energy
MD the system will eventually melt, but the waiting time τw

before this occurs may be tens of ps or even more if Tsol is near
TLS, so that long simulations are needed if the method is to be
reliable.65 The time-scale problem appears to become worse

for small systems. The evidence we have presented indicates
that the simulation times of only ∼3 ps used in the earlier
Z-method work7 were too short to yield reliable results. The
longer simulations of at least 12 ps that we use here should
give better results, but even so the bcc melting temperature
that we obtain is a significant overestimate compared with the
values from our reference-coexistence calculations. It would
clearly be desirable to repeat the Z-method calculations with
still longer runs on larger systems. However, the present
simulations do serve the useful purpose of showing that the
Z-method predictions for the relative melting temperatures of
bcc and fcc Mo can be consistent with our much more extensive
and detailed results from free-energy calculations.

The very recent DAC work of Dewaele et al.11 on the
melting of Ta makes it clear that very careful attention must
be paid to experimental procedures if reliable results are to
be obtained for high-P /high-T phase boundaries, and we
believe that a cautious attitude should be adopted toward the
existing DAC evidence3,6 for low melting curves in high-P
Mo. Nevertheless, the shock data on Mo seem to require
a crystallographic boundary somewhere in the region where
quasiharmonic calculations indicate a transition from bcc to
fcc or hcp. When we began the present work, we did not expect
that the inclusion of anharmonicity would cause the bcc-fcc
and bcc-hcp boundaries to disappear. Because we were initially
sceptical of our findings, we felt it essential to confirm them
in the ways that we have described. Our current belief is that
efforts should be continued to search for other candidate crystal
structures which might be thermodynamically more stable than
bcc in the high-P /high-T region.

In conclusion, our results suggest that the high-P /highT

solid phase of Mo indicated by shock experiments is not
fcc or hcp, but we do not rule out the possibility of other
stable high-T crystal phases. Our results also suggest that
the use of the quasiharmonic approximation should not be
uncritically accepted in the first-principles search for other
candidate crystal structures.
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4D. Alfè, G. D. Price, and M. J. Gillan, Phys. Rev. B 65, 165118
(2002).

064113-11

http://dx.doi.org/10.1063/1.2735324
http://dx.doi.org/10.1063/1.2735324
http://dx.doi.org/10.1103/PhysRevB.75.214103
http://dx.doi.org/10.1103/PhysRevB.75.214103
http://dx.doi.org/10.1103/PhysRevB.63.132104
http://dx.doi.org/10.1103/PhysRevB.65.165118
http://dx.doi.org/10.1103/PhysRevB.65.165118
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