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Lattice electrical resistivity of magnetic bcc iron from first-principles calculations
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We have calculated the lattice contribution to the electrical resistivity of body-centered-cubic iron at ambient
pressure and two temperatures, 300 K and 500 K, using density functional theory and the Kubo-Greenwood
formula. We performed extensive size and k-point sampling tests by including up to 1024-atom cells and up
to 10 k points. The calculated resistivities fall within the range of the experimental estimates at 500 K, and
overestimate it by only ∼5% at 300 K.
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I. INTRODUCTION

Iron is the most abundant metal in the solar system, and
believed to be the main constituent of the Earth’s core.1 For this
reason, it is very important to understand the thermophysical
properties of iron, in particular at the conditions of high
pressure (p) and high temperature (T) found in the Earth’s
interior. The development of high performance computers
and modern theoretical methods based on density functional
theory2 have made it possible to compute many properties
of iron, including the zero temperature transition pressure
from the body-centered-cubic (bcc) to the hexagonal-closed-
packed (hcp) structure, the bcc structural properties, magnetic
moment, and the phonon spectrum.3–6 High pressure-high
temperature properties have also been computed with DFT,
including crystal structure stability,7 the viscosity of the
liquid,8,9 and the iron melting curve.10–12 For the latter, there
have also been recent attempts to go beyond DFT with highly
accurate quantum Monte Carlo methods.13,14 However, so far
little has been done on the iron transport properties, particularly
in the high p,T region,15 despite its great importance to
determine the amount of heat transfer in the Earth’s core,
and what remains available to drive the geodynamo for the
generation of the Earth’s magnetic field.

The first-principles calculation of the electrical resistivity
of metals, based on the Kubo-Greenwood formula,16,17 has
been recently successfully carried out for various systems,
including, for example, Na,18–20 Al,21–23 He,24 H,25 mixtures
of Be, C, D, and T,26 and water.27 -In this paper, we are
interested in the electrical resistivity of iron, and in particular
in testing the accuracy of DFT with the Perdew-Wang (PW91)
functional.28 Our general aim is to establish the reliability of
DFT-PW91 at zero pressure, and then use it in a work to follow
to compute the resistivity of iron and iron alloys at Earth’s core
conditions.

Iron at ambient conditions has an additional complication
that is not present at high pressure and high temperature: it is
magnetic. In fact, any calculation for bcc iron at low pressure
needs to include magnetism, otherwise the crystal is unstable
(some phonon frequencies are imaginary if magnetism is
neglected). Moreover, a calculation of the total resistivity
would need to include the noncollinearity of the spins.29

However, it is well known that the electrical resistivity of

magnetic metals can be separated into a lattice contribution
ρl due to thermal vibrations, plus a magnetic contribution ρm

due to spin disorder and the excitation of spin waves. The
latter is thought to be mainly caused by the scattering of the
itinerant s electrons by the more localized d orbitals via s-d
exchange interaction.30,31 The lattice contribution is roughly
proportional to temperature above the Debye temperature,
while the magnetic contribution grows as T3,31 and for iron
it becomes the dominant contribution before saturation at the
Curie temperature. To estimate the lattice contribution ρl and
the magnetic contribution ρm from a measurement of the total
resistivity, Weiss and Marotta32 assumed a linear behavior of
ρl with T, and obtained the slope by fitting the resistivity
data above the Curie temperature, where ρm is constant. The
behavior of ρm is then obtained by subtracting ρl from the
total resistivity. A similar procedure was also adopted by
Bäcklund,33 who obtained similar results, and found that at
300 K the lattice contribution ρl is ∼80% of the total resistivity,
reducing to ∼60% of the total at 500 K.

Here we use collinear spin-polarized DFT-PW91 to calcu-
late the electrical resistivity of solid bcc Fe at zero pressure and
at 300 and 500 K, using the Kubo-Greenwood16,17 formula.
Because of the collinearity of the spins, the magnetic con-
tribution to the resistivity is largely absent, and therefore the
calculations should be compared with the lattice component of
the resistivity. We carefully address the issue of simulation cell
size and k-point sampling, showing that at low temperature
significantly large simulation cells are required to converge
the results. Agreement with experimental estimates of the
lattice resistivity is good. In Sec. II, we describe the method
and the computational framework. The results are presented
in Sec. III, followed by our conclusions in Sec. IV.

II. TECHNIQUES

First-principles simulations were performed using the VASP

code,34 with the projector augmented wave (PAW) method35,36

and the Perdew-Wang28 functional, fully including spin po-
larization. We tested the parametrization of the exchange-
correlation functional of Perdew-Zunger37(PZ) or Vosko-
Wilk-Nusair,38 which showed no appreciable differences
between the two schemes, and we therefore chose to use the
PZ parametrization. Most calculations were performed with an
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ALFÈ, POZZO, AND DESJARLAIS PHYSICAL REVIEW B 85, 024102 (2012)

Fe PAW with only the 4s and 3d electron in valence. We also
tested the effect of including the 3s and 3p electrons in valence,
which affect the optical spectrum in the high energy region, but
have an undetectable effect on the electrical conductivity (the
inverse of the electrical resistivity). Single particle orbitals
were expanded in plane waves with a cutoff of 293.3 and
547.3 eV for the PAW’s with the 4s13d7 and 3s2sp64s13d7

valence configurations respectively, and the core radii were
1.16 and 0.85 Å, respectively. Electronic levels were occupied
according to Fermi-Dirac statistics, with an electronic tem-
perature corresponding to the temperature of the system. An
efficient extrapolation of the charge density was used to speed
up the ab initio molecular dynamics simulations,39 which were
performed by sampling the Brillouin zone (BZ) with the �

point only, and at the experimental room temperature density.
The temperature was controlled with an Andersen thermostat40

and the time step was set to 2 fs. We used simulation cells
including 64, 128, 250, 432, 686, and 1024 atoms. We ran
simulations for typically 3 ps, from which we discarded the
first ps to allow for equilibration, and we used the last 2 ps to
extract N = 10 configurations {RI ; I = 1,N} equally spaced
in time. These N configurations were then used to compute
the electrical conductivity via the Kubo-Greenwood formula
as implemented in VASP.22

The Kubo-Greenwood formula for the electrical conductiv-
ity as a function of frequency ω for a particular k point in the BZ
of the simulation supercell and for a particular configuration
of the ions {RI } reads

σk(ω; RI ) = 2πe2h̄2

3m2ω�

n∑
i,j=1

3∑
α=1

[F (εi,k) − F (εj,k)]

× |〈
j,k|∇α|
i,k〉|2δ(εj,k − εi,k − h̄ω), (1)

where e and m are the electron charge and mass respectively,
h̄ is the Plank’s constant divided by 2π , � is the volume
of the simulation cell, and n is the number of Kohn-Sham
states. The α sum runs over the three spatial directions, which
in bcc iron are all equivalent. 
i,k is the Kohn-Sham wave
function corresponding to eigenvalue εi,k, and F (εi,k) is the
Fermi weight. The δ function is represented by a Gaussian,
with a width chosen to be roughly equal to the average spacing
between the eigenvalues weighted by the corresponding
change in the Fermi function.22 The width was chosen to
be 16, 8, 4, 2.4, 2, and 1.4 meV for the, 64-, 128-, 250-,
432-, 686-, and 1024-atom systems, respectively. Integration
over the BZ is performed using standard methods,41 and the
frequency dependent conductivity of the high temperature
solid is obtained by averaging over the N configurations
{RI ; I = 1,N}:

σ (ω) = 1

N

N∑
I=1

∑
k

σk(ω; RI )W (k). (2)

Here W (k) is the weighting factor for the point k. In principle,
all the W (k) would be identical for a simulation with no
symmetries like that of a high temperature solid in a cubic box.
In practice, we found it convenient to use k points drawn from
the irreducible wedge of the BZ (IBZ) of the same system
in which the atoms occupy bcc perfect lattice positions, as
convergence with respect to the number of k points is faster if

the points are chosen in this way, provided one averages over
the three Cartesian directions. For example, a 4 × 4 × 4 grid
would yield 32 k points for the high temperature solid, but
only 4 k points for the same system with full cubic symmetry.
We have explicitly calculated the conductivity using both
the 32- and the 4-k-point sets for the 128 atoms system at
500 K, and verified that the two sets of calculations yield
identical conductivities when averaged over time.

The dc conductivity σ0 is given by the value of σ (ω) in the
limit ω → 0. This limit needs to be taken with care, because
at very small values of ω the conductivity falls unphysically to
zero due to the artificial finite spacing between the Kohn-Sham
eigenvalues, caused by the finite size of the simulation cell.
To take this limit, our procedure is to fit the conductivity
to a smooth function, without including in the fit values of
σ (ω) that have started to fall to zero. Although Fe is far
from being a simple metal, and a Drude model would not
be appropriate to describe its optical conductivity, we found
that by including a sufficiently restricted set of data, a fit to a
Drude model σ (ω) = σ0/(1 + ω2τ 2) in the low energy region
of the spectrum provided a convenient way to obtain the dc
conductivity σ0 and from this the resistivity ρ = 1/σ0.

The optical conductivity must obey the sum rule

S = 2m�

πe2Ne

∫ ∞

0
σ (ω)dω = 1, (3)

where Ne is the number of electrons in the simulation cell. The
value of S provides a useful check of the quality of the data,
but in the case of iron states up to ∼150 eV above the Fermi
energy must be included to satisfy the sum rule. This means
that, especially for large systems, checking the validity of the
sum rule can become prohibitively expensive. However, the
dc conductivity is only affected by states in a window around
the Fermi energy which is comparable to kBT . We therefore
checked the sum rule for a few configurations on the 128-atom
system by including states up to 150 eV above the Fermi
energy, but then for the rest of the calculations we decided to
include only states up to ∼3 eV above the Fermi energy.

III. RESULTS

In Fig. 1, we show σ (ω) computed with the 128-atom
system and the Baldereschi point42 at the temperature of
500 K. The graph shows that σ (ω) is quite structured, and
decays to zero only at very large energies. The sum rule for
this set of data is 0.97, which indicates that the calculations
are well converged. To calculate the sum rule accurately, we
needed to include 10,000 bands instead of the ∼800 required to
converge a standard spin-polarized calculation. However, the
low energy spectrum (shown in the figure’s inset) is unaffected
by the high energy bands, and therefore production runs have
only been done using 800 bands, which include states up to
∼3 eV above the Fermi energy. For the simulations performed
with the larger cells, we have used a corresponding number
of bands to include states up to ∼3 eV above the Fermi
energy.

In Fig. 2, we show ρ at 500 K as a function of cell size, for
various sets of k points, and we compare with experimental
estimates. It is clear that cells including at least 250 atoms are
needed for the results to be of useful accuracy, and it is also
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FIG. 1. Optical conductivity of bcc iron at 500 K computed using
a 128-atom cell and the Baldereschi point. The calculations were
performed including 10 000 single particle orbitals which extend to
over 150 eV above the Fermi energy. Inset shows the low energy
region of the spectrum for 0 � h̄ω � 1 eV.

obvious that one k point only is not sufficient, not even for
the largest 686-atom system. However, provided at least 4 k
points are used, the results are well converged, and fall within
the experimental range of estimates.

Figure 3 shows the calculated value of ρ at 300 K as
a function of cell size, and for various sets of k points.
Convergence with respect to simulation cell size and k-point
sampling is slower at this lower temperature, as expected,
because the number of states that contribute to the conductivity
is roughly inversely proportional to the temperature, and
therefore large cells are required at low temperatures.20 Even
with 432-atom cells the error due to convergence is still ∼10%.

FIG. 2. (Color online) Lattice contribution to the electrical resis-
tivity of bcc iron at 500 K, calculated using collinear spin-polarized
DFT-PW91 with various cell sizes (N ) and k-point sampling
(symbols), and experimental estimates (dashed lines) by Weiss and
Marotta (Ref. 32) and Bäcklund (Ref. 33). Also shown is the total
measured resistivity (dot-dashed lines) (Refs. 32 and 33).

FIG. 3. (Color online) Lattice contribution to the electrical resis-
tivity of bcc iron at 300 K, calculated using collinear spin-polarized
DFT-PW91 with various cell sizes (N ) and k-point sampling
(symbols), and experimental estimates (dashed lines) by Weiss and
Marotta (Ref. 32) and Bäcklund (Ref. 33). Also shown is the total
measured resistivity (dot-dashed lines) (Refs. 32 and 33).

In fact, it may also be possible that the results obtained with
the largest system including 1024 atoms are not completely
converged, as suggested by the difference between the calcula-
tions with 4 and 10 k points. However, the results overestimate
the resistivity only by ∼5%, and therefore the agreement with
experiments is quite respectable even in this more difficult case
of T = 300 K.

IV. CONCLUSIONS

We have computed the lattice contribution to the electrical
resistivity of magnetic bcc iron at ambient pressure and two
temperatures, 300 and 500 K, using collinear spin-polarized
density functional theory with the PW91 functional. Extensive
size and k-point tests showed that relatively large simulations
cells are required to converge the results, particularly for
the calculations at the lower temperature for which even the
largest systems, including 1024 atoms, show that convergence
may not have been completely achieved. The calculations
overestimate the resistivity only slightly at 300 K (by ∼5%),
but at 500 K our results fall within the experimental range of
estimates. This work lays the foundations for a more extensive
study of the resistivity of iron and iron alloys at Earth’s core
conditions.
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