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B1-B2 phase transition of ferropericlase at planetary interior conditions
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Using ab initio simulations based on density functional theory, we have analyzed the crystal structure and
thermodynamic stability of MgxFe1−xO ferropericlase, showing how the P-T phase diagram associated with
the B1-B2 phase transition of pure MgO is influenced by the presence of iron substitutional alloys. We find
that a small concentration of Fe atoms contribute to an increase of the transition pressure at fixed temperature,
extending the stability of B1 crystalline structure. Moreover, we find a significant nonhomogeneous distribution
of the iron atoms between the two phases at low temperatures, with strong partitioning in the B1 phase, an
interesting phenomena that could lead to important dynamic consequences. Finally, we analyze the effect of the
iron impurities on the volume thermal expansion.
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I. INTRODUCTION

The mineral ferropericlase (MgxFe1−xO) is one of the most
abundant elements of Earth’s mantle. It is also expected to be a
major component of high-density super-Earths [1]. It has been
theoretically predicted [2] for a long time that the periclase
(MgO), the end member of ferropericlase, transitions from the
rocksalt structure (B1) to the caesium chloride structure (B2).
The low-temperature transition pressure of MgO is higher
than the pressure at the center of the Earth, and so it is not
relevant for our planet. However, temperature or composition
may reduce it to the point of being relevant for the Earth
(∼136 GPa and ∼4000 K at the core-mantle boundary), and
of course for super-Earth’s interior conditions, where values
up to 20 000 K and 10 TPa are expected [3,4]. For instance,
Metsue and Tsuchiya [5] showed that the presence of Fe
lowers the perovskite to post-perovskite phase transition in
MgSiO3, in addition to bringing a coexisting region of both
phases.

Experimentally, the transition has only been directly ob-
served recently by dynamic x-ray diffraction measurements
[6], and its probable signature in laser-driven decaying [7,8]
and steady shock experiments [9,10] has been evidenced.

Several numerical simulations have been performed to
analyze the phase boundary associated with the solid-solid
phase transition of the MgO, and a detailed review of
the state-of-the-art literature can be found in Ref. [11].
There is a good agreement on the zero-temperature transi-
tion pressure, which is found to be in a relatively narrow
range between 475–510 GPa. These variations can be prin-
cipally ascribed to the use of different approximations for

the exchange-correlation functional and different number of
valence electrons in the pseudopotentials. This range sig-
nificantly increases at high temperatures, and whether the
anharmonic term is or is not neglected in the computa-
tion of the vibrational free energy plays a fundamental role.
However, despite differences of ∼102 GPa between different
high-temperatures results, there is an overall common agree-
ment between all the recent results: it is evident that not even
the increase in temperature makes this transformation relevant
inside the Earth’s mantle, where the maximum pressure is
about 136 GPa. The phase transition, on the other hand, cer-
tainly plays an important role in the study of super-Earths,
where the pressure conditions can be about ten times greater
than those in our Earth. The B1-B2 transition could influence
internal structure and dynamics [3,12], orbital evolution [12],
and exoplanet mass-radius relationships [3].

However, the mineral periclase is only the end member
of ferropericlase MgxFe1−xO (typically with x ∼ 0.9), whose
structural, vibrational, and electronic properties have gained
interest in the last few years [13–16]. The aim of our work
is, therefore, to develop a model of study of the periclase
phase diagram and then to show how it is modified by the
substitution of magnesium atoms with iron impurities.

The paper is structured as follows. In Sec. II we describe
the theoretical and numerical details of our simulations that
led to the construction and computation of the free energy. In
the first part of Sec. III we report our results for the B1-B2
phase transition of MgO, comparing with previous works.
Then we show how the phase diagram is modified by the
introduction of iron impurities. The effect of the phase tran-
sition and of the iron atoms on the volume thermal expansion
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coefficient and on the wave velocities is reported in the Sup-
plemental Material (SM) [17].

II. COMPUTATIONAL METHODOLOGY

In this section we outline the details of the ab initio simu-
lations and of the other computational methods that we used
to compute the phase boundary associated with the B1-B2
transition and the thermodynamics properties of MgO and
MgxFe1−xO.

A. Chemical equilibrium

The B1-B2 phase boundary of MgO periclase is obtained
by the resolution of the thermodynamic relation

μB1(P, T ) = μB2(P, T ), (1)

where μi(P, T ) is the chemical potential in the i phase, with
i = B1, B2. The chemical potential of a monospecie system is
simply given by the Gibbs free energy per particle μ = G/N ,
where

G(P, T ) = F (V, T ) + PV, (2)

F (V, T ) being the Helmholtz free energy of the system.
MgxFe1−xO ferropericlase is a mixture of a solvent (MgO)

and a solute (FeO), therefore the chemical equilibrium condi-
tion generalizes to

μB1
Fe

(
P, T, cB1

Fe

) = μB2
Fe

(
P, T, cB2

Fe

)
, (3)

μB1
Mg

(
P, T, cB1

Fe

) = μB2
Mg

(
P, T, cB2

Fe

)
, (4)

where cFe is the mole fraction of Fe atoms (solute), defined
by cFe = NFe

NFe+NMg
, and where we omit the subscript O for

simplicity of notation.
These two equations impose two relations between

cB1
Fe , cB2

Fe , and T , for any fixed pressure P. In the low-
concentration limit cFe → 0 the solute chemical potential
diverges logarithmically, and it is useful to write

μFe(P, T, cFe) = kBT ln (cFe) + μ̄Fe(P, T, cFe), (5)

where μ̄(P, T, cFe) is well behaved for all cFe, and kB is the
Boltzmann constant. In an ideal solution, μ̄Fe is independent
of cFe, but in reality the interaction between solute atoms (Fe
atoms) causes it to vary with cFe.

Combining Eqs. (3) and (5) we obtain

cB1
Fe

cB2
Fe

= exp
[(

μ̄B2
Fe − μ̄B1

Fe

)
/kBT

]
. (6)

To solve Eqs. (3), (4), and (6) we proceed as in Ref. [18], out-
lining the main points here for convenience. We are interested
in the case of moderately low cFe, but we wish to take account
of the variation of μ̄Fe with cFe to lowest order. For this reason
we expand μ̄Fe as

μ̄Fe(P, T, cFe) = μ
†
Fe(P, T ) + λFe(P, T )cFe + O

(
c2

Fe

)
, (7)

and we shall systematically neglect the term O(c2
Fe). The con-

centration ratio then becomes

cB1
Fe

cB2
Fe

= exp
[(

μ
†,B2
Fe − μ

†,B1
Fe + λB2

Fe cB2
Fe − λB1

Fe cB1
Fe

)
/kBT

]
. (8)

To obtain an equation for the transition temperature T , we
need the corresponding expansion for μMg. Using the Gibbs-
Duhem equation

cMgdμMg + cFedμFe = 0, (9)

we have

μMg(P, T, cFe) = μ0
Mg(P, T ) + [λFe(P, T ) + kBT ] ln (1 − cFe)

+ λFe
(
P, T )cFe + O(c2

Fe

)
, (10)

where μ0
Mg is the chemical potential of pure MgO, and we

have used the fact that cMg = 1 − cFe. To linear order in cFe,
this gives

μMg(P, T, cFe) = μ0
Mg(P, T ) − kBT cFe. (11)

Expanding the chemical potential of pure MgO to linear order
in the difference T − T 0, where T 0 is the transition tempera-
ture of pure MgO, we obtain

μ0
Mg(P, T ) ∼ μ0

Mg(P, T 0) +
(

∂μ0
Mg

∂T

)
T =T 0

(T − T 0), (12)

and substituting Eqs. (11) and (12) in Eq. (4) we obtain

−kBT cB2
Fe + μ0,B2

Mg

(
P, T 0

) + (
T − T 0

)(∂μ0,B2
Mg

∂T

)
T =T 0

= −kBT cB1
Fe + μ0,B1

Mg (P, T 0) + (T − T 0)

(
∂μ0,B1

Mg

∂T

)
T =T 0

.

Since μ0,B1
Mg (P, T 0) = μ0,B2

Mg (P, T 0) (by definition of T 0), and

considering that s0
Mg = −(

∂μ0
Mg

∂T )T =T 0 is the entropy per for-
mula unit of pure MgO at the transition temperature, we can
rewrite the previous equation as

(T − T 0) = kBT

�s0
Mg

(
cB1

Fe − cB2
Fe

)
, (13)

where �s0
Mg = s0,B2

Mg − s0,B1
Mg . Equations (6) and (13) must be

solved self-consistently. In particular, we need to find a way
to compute the chemical potential μ̄Fe, and so the functions
μ

†
Fe(P, T ) and λFe(P, T ). In a multispecie system, the chem-

ical potential of the specie j (in our case j = Mg,Fe) is the
first derivative of the Gibbs free energy w.r.t. the number of
particles of the specie j, i.e.,

G(P, T, NMg, NFe) = NMgμMg + NFeμFe. (14)

Indicating with Ḡ(P, T, NMg, NFe) the Gibbs free energy due
to the well-behaved part of the chemical potentials, i.e.,

Ḡ(P, T, NMg, NFe) = NMgμ̄Mg + NFeμ̄Fe, (15)

then we can compute μ̄ j (P, T ) approximating the derivative
with the finite difference:

μ̄Fe(NFe) − μ̄Mg(NFe)

∼ Ḡ(NMg − δN, NFe + δN ) − Ḡ(NMg + δN, NFe − δN )

2δN
.

(16)
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TABLE I. Comparison between this work EOS parameters and previous results. References [27,28] are theoretical simulations based on
LDA+pseudopotential technique while Ref. [2] is an all electron (LAPW) LDA calculation.

EOS This work (electrons) This work (electrons+ions) LDA [27] LDA [28] LDA [2] Experiment [29]

V0 (Å3) 19.05 19.29 19.05 18.8 18.1 18.68
K0 (GPa) 152.2 147.4 172.6 159 172 160.2
K ′

0 4.1 4.0 4.0 4.3 4.1 3.9

Computing the Gibbs free energy of MgxFe1−xO for several
concentrations of the iron impurities, we can fit Eq. (7) to
obtain the ab initio quantities μ†(P, T ) and λ(P, T ).

We write the Helmholtz free energy as

F (V, T ) = E (V ) + Fvib(V, T ), (17)

where E (V ) is the static lattice contribution, i.e., the elec-
tronic zero-temperature contribution to the free energy, and
Fvib(V, T ) is the vibrational contribution due to atomic mo-
tion. In this work, the vibrational contribution is generally
computed in the framework of the quasiharmonic approxima-
tion (QHA), while the effects of the anharmonic contribution
to the free energy are only computed in the case of MgO. For
MgxFe1−xO we also include the contribution due to different
possible spatial distributions of the iron atoms. We computed
F (V, T ) at several volumes and fitted the results to a Birch
Murnaghan equation of state to calculate the pressure from its
analytic derivative, which allow us to obtain Ḡ(P, T ).

B. Static lattice contribution

The present results have been obtained with the use of the
VASP.4.6 [19,20] package in the framework of the projector
augmented wave (PAW) method [20] and by means of the
generalized gradient approximation (GGA) [21]. The PAW
core radii are equal to 1.7 Å for Mg, with 2s, 2p, and 3s states
as valence electrons (10 electrons), 1.52 Å for O, with 2s and
2p states as valence electrons (6 electrons), and 2.2 Å for Fe,
with 3p, 3d , and 4s states as valence electrons (14 electrons).

The static lattice contribution is computed using unit cells
with 2 atoms for MgO, while we used the 128 atoms supercell
to investigate the effect of iron impurities in ferropericlase.
The cutoff energy for the plane-wave set is 800 eV, while
the global break condition for the electronic self-consistent
equations is 10−7 eV. The Brillouin zone is sampled with a
32 × 32 × 32 Monkhorst-Pack [22] mesh of k points for MgO
and a 2 × 2 × 2 mesh for MgxFe1−xO.

Fixing several volumes V in the region 8–11 Å3 for MgO
primitive cells and 512–704 Å3 for the MgxFe1−xO 128 atoms
supercells, we computed the electronic zero-temperature con-
tribution to the free energy E (V ), which is fitted to the
Birch-Murnaghan equation of state (EOS) [23], given by

E (V ) = E0 + 3

2
V0K0

[
3 + 6χ

4

(V0

V

)4/3

− χ

2

(V0

V

)2

− 3 + 3χ

2

(V0

V

)2/3

+ 2χ + 3

4

]
, (18)

where E0 is the value of the energy at the zero pressure
equilibrium volume V0, K0 = −V0( dP

dV )V0 is the zero pressure
bulk modulus, and χ = 3

4 (4 − K ′
0), with K ′

0 = ( dK
dP )P=0.

Then, the associated pressure is obtained as Pel = − ∂E
∂V .

C. Phonons and quasiharmonic approximation

The lattice contribution to the Helmholtz free energy in the
framework of QHA is given by

Fharm(V, T ) = kBT

�

∫
BZ

dq
∑

s

ln

[
2 sinh

(
h̄ωq,s(V )

2kBT

)]
,

(19)

where � = (2π )3

V is the volume of the Brillouin zone, and
ωq,s(V ) is the volume-dependent frequency of the sth vibra-
tional mode of the crystal at wave-vector q.

The calculation of the phonon frequencies in the QHA
is performed using the small displacement method with the
PHON [24] code. In the case of insulators, the long range
forces make it more difficult to calculate phonons in the whole
BZ using the small displacement method, mainly because the
longitudinal optical frequencies are split from the transverse
ones at the 
 point due to a nonanalytic term in the dynamical
matrix, which is not captured. However, in the thermodynamic
limit (infinite crystal) the contribution of a single vibrational
mode does not influence the total free energy, and it has
been shown [24] that the thermodynamic properties of MgO
obtained with a supercell including 128 atoms are unaffected
by the nonanalytic term in the dynamical matrix.

Forces between atoms are computed using VASP: the DFT
calculations are performed with a 128 atoms supercell, sam-
pling the Brillouin zone with a 4 × 4 × 4 Monkhorst-Pack
mesh in the case of MgO. Including iron impurities dramati-
cally reduces the symmetry of the system, therefore numerous
displacements are needed in the small displacement method.
For this reason, we used only the 
 point for ferropericlase,
which is a good compromise between accuracy and computa-
tional cost. In fact, tests on MgO show that using a 2 × 2 × 2
or a 4 × 4 × 4 k points in the computation of the forces, leads
to a variation in the transition pressures of 0.1%–0.2% at
low temperatures and 2%–3% for temperatures higher than
∼5000 K. An analogous result is obtained comparing tran-
sition pressures computed with the 2 × 2 × 2 k points and
only the 
 point in the case of Mg63Fe1O64. For this reason
we reasonably expect this approximation to not significantly
influence our results.

The cutoff energy for the plane-wave set is 500 eV, while
the break condition for the electronic self-consistent equa-
tion is 10−7 eV.

The integral over the Brillouin zone in Eq. (19) is ap-
proximated with a finite sum over a uniformly distributed
32 × 32 × 32 q-points grid.
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FIG. 1. Phonon dispersion curves of MgO in B1 crystalline structure at ∼0, 300, and 500 GPa (on the left) and the respective density of
states (on the right). Experimental data (yellow squares) are taken from Refs. [30,31].

The harmonic contribution is computed for all volumes
described in the previous section, spanning temperature in
the range 0–1000 K with step 100 K and in the range 1000–
7000 K with step 500 K. Fitting the curve F (V, T ) = E (V ) +
Fharm(V, T ) to the EOS for every temperature T , the total
pressure (in the quasiharmonic approximation) is computed
as P(T ) = − ∂F

∂V |T .

D. Anharmonicity and thermodynamic integration

At high temperature anharmonic effects in solids may start
to play an important role, and the quasiharmonic approxima-
tion may not be accurate enough. To compute the full free
energy of the system we use the thermodynamic integration
procedure [25]. We write the total potential energy of the
system as

U (R1, . . . , RN ) = U ({R}) = Uharm({R}) + U ′({R}), (20)

where Ri is the position of ith atom, N is the number of
atoms in the crystal, Uharm is the harmonic potential, and U ′
is, by definition, the error committed in approximating U with
Uharm. Since anharmonicity is only going to be important in
the high temperature limit, we can compute it assuming the
classical approximation for the partition function. In this case,

the anharmonic contribution to the free energy is

F ′ = F − Fharm =
∫ 1

0
dλ〈U ′〉λ, (21)

where 〈 〉λ defines the canonical ensemble average in the
ensemble with the intermediate potential energy

Uλ = (1 − λ)Uharm + λU . (22)

Canonical averages are computed as time averages using
trajectories generated with molecular dynamics simulations.
Each MD simulation was 5000 steps long with a time step of
0.5 fs. Ergodicity is insured by coupling the system with an
Andersen heat bath [26].

The anharmonic contribution to the free energy has been
computed in the case of MgO considering the 128 atoms su-
percell. High accuracy molecular dynamics simulations, i.e.,
simulations with a high density k points grid, are very ex-
pensive. However, the anharmonic contribution is the smallest
term in the decomposition:

F (V, T ) = E (V ) + Fharm(V, T ) + F ′(V, T ), (23)

therefore using a low density grid should give a signifi-
cant error in E (V ) that might be less important for Fharm,
and even less for F ′. For this reason we compromised with
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FIG. 2. Phonon dispersion curves of MgO in B2 crystalline structure at ∼0, 500, and 600 GPa (on the left) and the respective density of
states (on the right).

computational cost and use only the 
 point in the Brillouin
zone, without significantly affecting the total accuracy.

In order to verify this assumption, we used the perturbative
expansion of thermodynamic integration. In detail, indicating
with �U the difference between the energy of the system
computed with a 2 × 2 × 2 k-points grid and using only the

 point (for a fixed V, T configuration), i.e.,

�U = U (2 × 2 × 2) − U (
), (24)

then is easy to show that the difference in the respective free
energies can be approximated as

�F = F (2 × 2 × 2) − F (
)

∼ 〈�U 〉λ=0 − 1

2kBT

[〈�U 2〉λ=0 − 〈�U 〉2
λ=0

]
, (25)

where the intermediate potential is

Uλ = (1 − λ)U1 + λU2. (26)

Computing independently, the quantities

�U0 = U0(2 × 2 × 2) − U0(
),

�Fharm = Fharm(2 × 2 × 2) − Fharm(
),

we used the perturbative expansion method to estimate the
effect of the 2 × 2 × 2 k-points grid on the anharmonic cor-
rections as

�F ′ = F ′(2 × 2 × 2) − F ′(
) = �F − �U0 − �Fharm.

(27)

E. Spatial distribution of iron impurities and the free energy
of mixing

We analyzed the thermodynamics stability of the
MgxFe1−xO ferropericlase by gradually substituting one Mg
atom with one Fe atom in the 128 atoms supercell. Once the
number of impurities is greater than one, it is necessary to
study also the spatial distribution of the iron atoms. In fact,
due to the translational invariance, the analysis of Mg63Fe1O
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FIG. 3. Phase diagram of periclase. aRef. [9]. bRef. [11]. The
small difference between our GGA result (black solid line) and
Ref. [11] is due to the different type of exchange-correlation func-
tional, as showed by our LDA result (black dashed line).

is independent of the position of the impurity: we can fix
it in 64 different ways that are all equivalent. By contrast,
when the number of impurities is n > 1, we can consider(64

n

)
different configurations (not all independent), which give

different contributions to the free energy of the system. This
configurational contribution has been studied using again the
technique of the thermodynamic integration, coupled with a
Monte Carlo algorithm to explore the configurations space of
the canonical ensemble. Indicating with ck all the possible
configurations, with k = 1, . . . ,

(64
n

)
, and with c∗ the config-

uration corresponding to the minimum of the free energy (for
a fixed V, T ), then the Helmholtz free energy can be written as

F (V, T ) = Ec∗ (V ) + Fharm,c∗ (V, T ) + Fconf(V, T ), (28)

where Ec∗ and Fharm,c∗ are, respectively, the electronic ground
state and ions harmonic contribution in the configuration c∗,
while the term Fconf is the additional contribution due to the
possible spatial distribution which needs to be computed. The
term Fconf, which is the so-called excess free energy of mixing,
is computed using thermodynamic integration as

Fconf(V, T ) =
∫ 1

0
dλ〈Umix〉λ, (29)

where Umix is the iron atoms interaction energy in the different
configurations, that is Umix(c∗) = 0 and

Umix(ck ) = Eck + Fharm,ck − Ec∗ − Fharm,c∗ . (30)

The canonical ensemble averages are computed in the system
with potential energy Uλ = λUmix, which is sampled, in each
simulation (that is fixed V , T , and λ), using the Metropolis
algorithm with 107 steps among the total configurations. This
procedure is repeated for λ = 0, 0.1, . . . , 1.0, and then we
computed the integral in Eq. (29) by numerical methods.

III. RESULTS AND DISCUSSION

The methods described in the previous section were used
to compute the landscape of the Helmholtz and Gibbs free
energy of the minerals periclase and ferropericlase, inves-
tigating the region from 100 to 1000 GPa and from 0 to
7000 K, which are relevant for the interior of Earth and
super-Earths.

A. Thermodynamics of MgO

1. Equation of state

The equation of state parameters are first computed for
MgO in the B1 crystalline structure fitting the electronic
ground state contribution E (V ) to the Birch-Murnaghan EOS
[Eq. (18)]. Subsequently, using the phonon frequencies we
computed the zero-temperature ionic contribution to the free
energy, i.e., the zero-point energy given by

Fharm(V, 0) = 1

�

∫
BZ

dq
h̄ωq,s(V )

2
, (31)

therefore we computed the corrections to the EOS parame-
ters due to the lattice contribution. The obtained results are
reported in Table I, together with both previous theoretical
(static lattice) results and experimental data (obtained at P =
0 and T = 300 K).

2. Vibrating lattice

Figure 1 shows the phonon dispersion curves of MgO in
the B1 crystalline structure at ∼0, 300, and 500 GPa. In the
first case experimental data are also displayed, taken from
Refs. [30,31].

The difference between the frequencies at 
 is due to
the fact that the LO frequency at 
 is wrongly described
as degenerate with the two TO frequencies, and therefore
the Fourier interpolation of the frequencies is wrong. As
mentioned above, this has no effect on the accuracy of the
computed free energy of the crystal.

The first two cases are still within the stability field of
the B1 structure, while the latter one is in the region of the
phase transition. At all these pressures, the structure remains
dynamically stable, the phonon spectrum extends to higher
frequencies, acquires a more complicated structure, and a
pseudogap develops in the middle of the spectrum.

Figure 2 shows the phonon dispersion curves of MgO in
the B2 crystalline structure at ∼0, 500, and 600 GPa. The first
case is in the stability field of the B1 structure, 500 GPa is
in the region of the phase transition, while 600 GPa is in the
stability field of the B2 structure. This phase is dynamically
unstable at 0 GPa, and has whole soft phonon branches (neg-
ative frequencies representing imaginary values). However, it
becomes dynamically stable above ∼110 GPa.

3. Anharmonicity

We computed the anharmonic corrections at 2000, 4000,
and 7000 K for the analyzed volumes. The anharmonic term
is F ′ ∼ 10−3 eV at 2000 K for both crystalline structures, cor-
responding to a correction of ∼1% to Fharm, while it becomes
F ′ ∼ 10−1 eV at 7000 K, corresponding to a correction of
∼10% to Fharm.
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FIG. 4. Phonon dispersion of Mg63Fe1O64, Mg62Fe2O64, and Mg61Fe3O64 in the B1 crystalline structure at ∼500 GPa.

As described in Sec. II D we used the perturbative ex-
pansion method to estimate the difference in the anharmonic
correction due to the use of a 2 × 2 × 2 k-points grid.
In detail, we computed the anharmonic contribution at 9.0
and 10 Å3 for both crystalline structures at T = 2000 and
7000 K, finding that using only the 
 point leads to a slight
underestimation of the anharmonic contribution. However, we
find that using the higher-density grid, the quantity F ′

B1 − F ′
B2,

i.e., the anharmonic term influencing the variation in the tran-
sition pressure, changes only of ∼4% at T = 2000 K, and
∼20%-30% at T = 7000 K, therefore the use of only the 


point in the computation of F ′ does not influence significantly
the accuracy of our results.

4. B1-B2 phase transition

Resolving Eq. (1) with numerical methods we obtained the
phase diagram associated with the solid-solid phase transition,
reported in Fig. 3 together with previous recent results. In
particular, we also report our results for the transition curve in
the framework of local density approximation (LDA), show-

ing that the choice of the exchange-correlation functional
(between LDA and GGA) does not significantly affect the
transition pressure. It is also reported the static transition pres-
sure, i.e., the zero-temperature transition pressure obtained
without taking into account the zero-point energy. In partic-
ular, the zero-temperature lattice contribution is responsible
for a diminution of ∼15 GPa of the static transition pressure.

Moreover, we have verified that the difference between our
curves (GGA or LDA) and the transition curve from Ref. [9],
(or other previous results, e.g., Ref. [27]) is due to the choice
of valence electrons in the Mg pseudopotential. In fact, Fig. 3
also shows our result (GGA) obtained considering only 2
valence electrons (3s2) in the Mg pseudopotential, which is
in very good agreement with Ref. [9]. The significant dif-
ference between the curves with different valence electrons
(∼30 GPa) means that at these high pressures there is an
important response of 2s and 2p electrons that cannot be
neglected for an high-accuracy description of Mg.

Finally, we notice that even the small contribution of the
anharmonic term at 2000 K defines an observable variation
(∼1%) of the transition pressure. It is really clear that the

134109-7



F. DELLA PIA AND D. ALFÈ PHYSICAL REVIEW B 105, 134109 (2022)

FIG. 5. Phonon dispersion of Mg63Fe1O64, Mg62Fe2O64, and Mg61Fe3O64 in the B2 crystalline structure at ∼500 GPa.

domain of validity of the QHA has to be taken cautiously, par-
ticularly when looking at phase transitions where differences
of a few meV [at 7000 K we find a variation of ∼60 meV
for GB1(P), and ∼100 meV for GB2(P)] in the Gibbs free
energy can induce a difference of several GPa on the transition
pressure (the correction is ∼15% at 7000 K).

B. Thermodynamics of ferropericlase

Our method successfully reproduces previous results on
MgO phase transition. Moreover, using the phonon fre-
quencies and the free energy of the system we computed
thermodynamic properties such as specific heat at constant
volume and the volume thermal expansion coefficient (re-
ported in the Supplemental Material [17]), obtaining a good
agreement with experimental results. Now we extended the
previous study to the MgxFe1−xO ferropericlase.

The percentage of iron impurities in ferropericlase in the
Earth’s mantle is generally believed to be ∼5%-15%, how-
ever, we start with substituting just one Mg atom with an Fe

atom in the 128 atoms supercell (corresponding to an iron
impurities’ percentage of ∼1.5%) and then progressively raise
the number of Fe atoms, to show how MgO properties are
gradually modified by the impurities in Mg62Fe2O64 (cFe ∼
3%) and Mg61Fe3O64 (cFe ∼ 5%).

1. Vibrating lattice

Figures 4 and 5 show the phonon dispersion of
Mg63Fe1O64, Mg62Fe2O64, and Mg61Fe3O64 in the B1 and B2
crystalline structures at P ∼ 500 GPa. In both cases, increas-
ing the number of impurities gradually reduces the highest
frequency of the spectrum, with a more significant effect in
the B2 structure.

It is important to mention that we found that the insta-
bility of the B2 phase persists at significant higher pressures
compared to MgO (unstable below ∼110 GPa), in fact there
are imaginary frequencies almost till ∼300 GPa. Marcondes
et al. [13] recently studied the dynamical stability of B1 phase
around the high-spin (HS) to low-spin (LS) transition, and
found that there are no soft phonons modes across the HS-LS

134109-8



B1-B2 PHASE TRANSITION OF FERROPERICLASE … PHYSICAL REVIEW B 105, 134109 (2022)

0 1000 2000 3000 4000 5000 6000 7000
-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

FIG. 6. Functions μ†,B1(P, T ), μ†,B2(P, T ) at P = 400 GPa. The
curves are offset by μ†,B1 in order to evidence the difference μ†,B2 −
μ†,B1.

crossover and for all pressures relevant for the Earth’s mantle.
Here we are mainly interested in the region of the B1-B2
transition pressure, where iron is LS, and so all our calculation
have been performed without including spin polarization.

2. Repulsive Fe-Fe interactions

The contribution of the iron spatial distribution has been
computed according to the procedure described in Sec. II E.
Here we only report the main aspects of this calculation.
More details can be found in the SM [17], together with a
description of the effects of iron impurities on the volume
thermal expansion coefficient.

First, we computed the free energy F (V, T ) = E (V ) +
Fharm(V, T ) for several ferropericlase configurations with two
iron atoms in the 128 atoms supercell. If the impurities get
very close to each other (first or second nearest neighbors),
there is a repulsive interaction that is ∼0.2 eV in the B1
structure and ∼0.7 eV in the B2 one. This interaction becomes
negligible when the two atoms are third nearest neighbors.

Adding one more iron atom, we find that three-body effects
are almost negligible in the B1 structure, in fact the energy of
a “clustered” configuration (three couples of first or second
nearest neighbors) is ∼0.6 eV, i.e., is approximately given by
the sum of the interaction energy of each couple (computed
in previous case). Differently, the three-body effects seem to
play a more important role in the B2 case, since the repulsive
interaction of a clustered configuration (∼1.9 eV) is less than
the sum of the couple interaction energy computed in the two
impurities case.

However, first of all, clustered configurations are dis-
advantaged from the entropic weight, i.e., the number of
configurations with first or second nearest neighbors Fe atoms
are few if compared with the weight of all the other configura-

tions. Moreover, since the energy gaps are ∼103–104 K, these
configurations are rarely visited along the Monte Carlo sim-
ulations, i.e., they give a small contribution (∼0.01–0.1 eV)
to the free energy. This small contribution is almost equal in
the two crystalline structures, therefore it barely affects the
transition pressure.

3. B1-B2 phase transition

Once we have computed the Gibbs free energies
G(NMg, NFe) for NFe = 0 (pure MgO) and NFe = 1, 2, 3, we
used Eq. (16) to compute the chemical potentials μ̄Fe(cFe) for
cFe = 0.007, 0.015, 0.023. Then we can fit Eq. (7) as a func-
tion of the concentration cFe and obtain the functions μ†,i, λi

for both crystalline structures. For instance, we report in Fig. 6
the chemical potentials μ†,i(P, T ) in the B1 and B2 phases
as a function of temperature, at P = 400 GPa. Analogously,
Fig. 7 shows the functions μ†,i(P, T ) [Fig. 7(a)] and λi(P, T )
[Fig. 7(b)] as functions of pressure at the fixed temperature
T = 3000 K.

However, the term taking part in the evaluation of the ex-
ponential in Eq. (8) is the function λi(P, T ) multiplied by the
correspondent concentration ci

Fe, which is in general different
between the two phases. For this reason, in Fig. 7(c) we also
show the functions λici

Fe considering, for instance, an initial
iron concentration of cB1

Fe ∼ 2% and possible concentrations
cB2

Fe (fractions of cB1
Fe ).

We find

�μ
†
B1,B2 = μ†,B2 − μ†,B1 ∼ 1 eV, (32)

�λB1,B2 = λB2cB2
Fe − λB1cB1

Fe ∼ [−0.5, 0.1] eV. (33)

This means that for small initial iron concentrations (cB1
Fe <

5%), even in the extreme case of cB2
Fe → 0, the term that

controls the behavior of the phase boundary (and of the iron
concentration between the two phases) is �μ

†
B1,B2, which

is independent of concentration. Therefore, we can compute
the phase boundary also for concentrations slightly higher
than cB1

Fe = 0.023, expecting to commit a small error due to
a possible variation of �λB1,B2. In particular, to check this
approximation, we proceeded as follows: the accurate analysis
of Mg62Fe2O64 and Mg61Fe3O64 showed that the excess free
energy of mixing determines a very small correction to the
transition pressure (almost 0.1 GPa at low temperatures and
at most 1 GPa at T ∼ 7000 K). For this reason, using the
same technical parameters of the previous case, we computed
the Gibbs free energy also for Mg58Fe6O64, corresponding to
an iron concentration of ∼10%. For simplicity we consider
a partially clustered configuration of the six iron impurities,
since it led to a higher symmetry structure and significantly
reduces the number of displacements needed to compute the
force constant matrix. According to the previous analysis,
we expect to overestimate the transition pressure at most
by ∼2-3 GPa, therefore it is a good compromise to explore
almost completely the range of iron percentage that should
characterize ferropericlase at planetary interior conditions.
Once we have the Gibbs free energy Gi(NMg = 58, NFe = 6),
we can re-interpolate the chemical potential μ̄i

Fe (as a function
of the concentration) and carry out the ab initio functions
μ†,i(P, T ) and λi(P, T ). In particular, the new contribution
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FIG. 7. Functions μ†,B1(P, T ), μ†,B2(P, T ) (a) and λB1(P, T ), λB2(P, T ) (b) at T = 3000 K. The curves μ† are offset by the minimum
of μ†,B1 in order to highlight the difference μ†,B2 − μ†,B1. (c) Functions λB1(P, T )cB1

Fe , λB2(P, T )cB2
Fe , considering, for instance, an initial iron

concentration of cB1
Fe ∼ 2% and possible concentrations cB2

Fe (fractions of cB1
Fe ). The plot is reported on the same scale of the functions μ†, in

order to compare the two terms taking part to the evaluation of the exponential in Eq. (8).

defines a slight correction to the linear behavior of μ̄Fe in the
B1 crystalline structure, with a 1% variation of the parameters
μ†, λ, while it is more important in the B2 phase (parameters’
variation of ∼10%).

This approximation allowed us to solve Eqs. (6) and (13)
simultaneously for an initial iron concentration of cB1

Fe =
0.007, 0.015, 0.023, 0.031, 0.047 (for several fixed pres-
sures), obtaining the concentration ratio cB2

Fe /cB1
Fe and the

transition temperature associated with the beginning of the
phase transition, i.e., the transition from the B1 structure to
the B1 + B2 coexisting region.

In Fig. 8 we report the percentage ratio cB2
Fe /cB1

Fe ,
computed with an initial iron percentage cB1

Fe =
0.007, 0.015, 0.031, 0.047. It is clear that, according to
our data, there is a nonhomogeneous distribution of the iron
impurities among the phase transition: based on Eq. (32), we
can observe that the chemical potential in the B2 crystalline
structure is higher than the one in the B1 phase. This
means that, in particular at low temperatures (high transition
pressures), the exponential function in Eq. (8) is much
greater than 1, and so cB1

Fe � cB2
Fe . The difference in the

chemical potentials decreases with temperature, leading
to an increase in the concentration of iron atoms flowing
into the simple cubic structure. This effect becomes in
particular more important as the iron concentration increases.
As noted before, this analysis is valid only for small iron
concentrations, where the difference �λB1,B2 [Eq. (33)] plays
a minor role compared to �μ

†
B1,B2 [Eq. (32)].

Using the ratio cB2
Fe /cB1

Fe we can compute the iron concentra-
tion in the B2 phase for all the transition pressures defining the

limit between the B1 phase and the coexisting region, and yet
obtain the transition curve corresponding to the limit between
the B1 + B2 region and the B2 structure.

360 380 400 420 440 460 480
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FIG. 8. Concentration of iron impurities in the B2 crystalline
structure. On the y axis is reported the percentage ratio cB2

Fe /cB1
Fe .
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FIG. 9. Transition pressure of MgO periclase and MgxFe1−xO
ferropericlase as a function of iron concentration for several fixed
temperatures.

All the results are reported in Fig. 9. Increasing the number
of iron substitutions defines a gradual rise in the transition
pressure at fixed temperature, therefore the impurities con-
tribute to improving the high-pressure stability of the B1
crystalline structure. The width of the coexisting region de-

creases in the high temperature limit, consistently with the
more homogeneous distribution of the iron impurities and
with the high temperature limit of Eq. (8).

Fixing the iron concentration and fitting the transition
curve delimiting the B1 and B2 phases, we can finally re-
construct the phase diagram of MgxFe1−xO ferropericlase for
a fixed iron percentage. However, we notice that due to the
low temperature (high transition pressure) nonhomogeneous
iron distribution between the two phases, we were able to
reconstruct the transition line between the coexisting region
and the B2 crystalline structure only for very low iron concen-
trations. In Fig. 10, in particular, we report the phase diagram
for the lowest analyzed concentration, i.e., cFe ∼ 0.007 and
cFe∼0.015. The transition line between the coexisting region
and the B2 structure is represented with a red thick band,
defined by the error bars of the fit.

As a consequence of the linear approximation in Eq. (11),
in the zero-temperature limit the equilibrium condition be-
comes independent on the iron concentration and simplifies
in the equilibrium condition of pure MgO, explaining the
loop closure and the zero-temperature value of the transition
pressure. Above zero temperature, our data show that even a
small concentration of iron increases the stability of the B1
structure.

Very recently, the B1-B2 phase transition of pure FeO
and MgO has been experimentally investigated [14], and a
pressure-concentration phase diagram relative to the phase
transition in ferropericlase, at the fixed temperature of T =
4000 K, has been proposed in the approximation of an ideal
mixing between the two end members, showing a decrease
of the pure MgO transition pressure due to the introduction

FIG. 10. Phase diagram of MgO periclase and MgxFe1−xO ferropericlase, with iron concentrations cFe ∼ 0.007, 0.015. The transition line
from the coexisting region to the B2 structure is represented with a red thick band, defined by the error bars. The large coexisting region is due
to the strong partitioning of iron atoms in the B1 structure, caused by the relatively large difference between the iron excess chemical potentials
in the two phases. The coexistence loop closes at high temperature, as iron begins to partitions more uniformly between the two phases, and
also as T → 0, where the effect of the presence of iron on the chemical potential of MgO vanishes [see Eq. (11)].
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of iron impurities. Our result suggests that the ideal mixing
approximation may not be accurate enough to reproduce the
phase diagram in the limit of low impurities’ concentration.
However, since the B1-B2 transition pressure of FeO is lower
than that of MgO, we believe that the increase of the transition
pressure with increasing iron concentration should change for
iron concentrations higher than the ones explored in our work.
Moreover, while this paper was in submission, a new theoret-
ical study of the B1-B2 phase transition in ferropericlase was
published on the arXiv [15], reporting the phase diagram of
ferropericlase, in the temperature range from 3000 to 8000 K,
and for a concentration cFe = 0.1, which is higher than the
ones considered in our work. The results are qualitatively in
agreement in predicting an increase of the B1 to B2 transition
pressure due to the presence of iron impurities and a de-
crease of the coexisting region width in the high-temperature
limit, even though the coexisting region width is larger for
the small concentration considered in our work. However,
as noted before, including simulations with higher impurities
concentration could significantly influence the phase diagram
in Fig. 9, therefore our data do not allow an accurate pre-
diction on the phase diagram for concentrations significantly
higher than the ones we have considered.

Limited by our computational resources we did not com-
pute the anharmonic effects for ferropericlase, and for this
reason we only report the comparison between the ferroper-
iclase phase boundary and the periclase quasiharmonic one.
A complete analysis certainly requires further investigation in
the future. However, considering the effects of the anharmonic
contribution in the MgO, we reasonably expect this term only
to raise the transition pressure in the high-temperature region,
without influencing the general trend of the phase diagram
obtained in the QHA limit.

IV. CONCLUSIONS

We have developed a high-accuracy method to analyze the
crystal structure and the thermodynamic stability of materials
at planetary interior conditions. Furthermore, we provided a
technique to include the configurational contribution to the
free energy due to the possible spatial distribution of substitu-
tional alloys in a solid.

In detail, we used this method to study the phase transition
between the B1 and the B2 crystalline structures in periclase
and ferropericlase.

High-accuracy results, which include anharmonic effects
in the computation of the vibrational free energy, are carried
out only for MgO, therefore further simulations are needed
to obtain a complete comparison between the two different
materials.

We showed how the increasing number of iron impurities
gradually determines an increase in the transition pressure
at a fixed temperature, i.e., the iron impurities contribute to
improving the structural and thermodynamic stability of the
low-pressure structure. Therefore, according to our results,
the presence of iron atoms confirms that the phase transition
does not occur in the Earth’s mantle. However, it can still
happen in high-density super-Earths, where the pressure can
reach values up to the TPa. According to our data, there is
a significant low temperature nonhomogeneous distribution
of the Fe atoms among the phase transition, which is due to
the higher nonconfigurational part of the chemical potential
of Fe in the B2 crystalline structure. The increase of the
chemical potential in the B2 phase perhaps could be ascribed
to geometrical differences between the two structures, or to
a different electron transfer between the iron atom and the
oxygen around it. Increasing both the temperature and the
initial iron concentration lead to a more homogeneous distri-
bution of the impurities between the two phases. This allows
us to describe the phase diagram of ferropericlase only for
the small iron concentrations considered in our simulations,
and further investigation is certainly necessary in order to
extend this analysis to concentrations relevant to the Earth’s
and super-Earths’ mantle.
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