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Probing the nucleation of iron in Earth’s core using molecular dynamics
simulations of supercooled liquids
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Classical nucleation theory describes the formation of the first solids from supercooled liquids and predicts
an average waiting time for a system to freeze as it is cooled below the melting temperature. For systems at
low to moderate undercooling, waiting times are too long for freezing to be observed via simulation. Here a
system can be described by estimated thermodynamic properties, or by extrapolation from practical conditions
where thermodynamic properties can be fit directly to simulations. In the case of crystallizing Earth’s solid iron
inner core, these thermodynamic parameters are not well known and waiting times from simulations must be
extrapolated over approximately 60 orders of magnitude. In this work, we develop a new approach negating the
need for freezing to be observed. We collect statistics on solidlike particles in molecular dynamic simulations
of supercooled liquids at 320 GPa. This allows estimation of waiting times at temperatures closer to the melting
point than is accessible to other techniques and without prior thermodynamic insight or assumption. Our method
describes the behavior of nucleation at otherwise inaccessible conditions such that the nucleation of any system
at small undercooling can be characterized alongside the thermodynamic quantities which define the first formed
solids.
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I. INTRODUCTION

In order for a pure liquid to freeze, it must cool significantly
below its melting temperature (Tm; e.g., [1]). This requirement
is the result of an interface separating the two phases when
a solid forms. While the solid is thermodynamically favored
for temperatures below Tm, a solid-liquid interface remains
unfavorable and so a commensurate difference between liq-
uid and solid free energies is required. The phenomenon of
supercooling is well studied in metallurgy and meteorology
where precipitation is important (e.g., [2,3]). It also forms
the basis of this work’s motivation, the inner core nucleation
paradox [4], where the cooling rate of the Earth’s core cannot
be reconciled with sufficient undercooling to have crystal-
lized the seismically observed solid inner core. According to
classical nucleation theory (CNT), for the inner core to have
crystallized, undercooling on the order of 1000 K is appar-
ently required. However, if this were the case, after the onset
of crystallization all material below Tm will freeze resulting in
an inner core that is much larger than observed.

CNT (e.g., [1]) describes the nucleation rate (I) of solids
in supercooled liquids via three components [Eq. (1)]: (1)
A free energy associated with forming a nucleus (�G). (2)
Boltzmann statistics defining the probability of atoms forming
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a solidlike arrangement representing a nucleus. The stochastic
nature of the nucleation process is represented here; a nucleus
with a low probability of forming will correspond to a long
average duration before such a configuration is randomly
sampled, referred to as the waiting time (τw). (3) A density
of available nucleation sites and rate at which atoms can be
attached define a prefactor (I0) which scales the nucleation
rate

I = I0 exp

(−�G

kBT

)
. (1)

�G is described in CNT by the interfacial energy (γ ), which
is scaled to the surface area of the growing nucleus, combined
with a volumetric free-energy difference between perfect solid
and liquid (gsl ). When nuclei are spherical,

�G = 4
3πr3gsl + 4πr2γ . (2)

This description sees �G increase with nucleus radius (r) to
a peak at some critical size, above which the probability of
further growth increases exponentially. A critical size exists
for each supercooled temperature where the value of �G
defines the probability of formation and therefore τw. The
form of �G predicts the conditions under which freezing
will occur spontaneously within a homogeneous liquid. In
heterogeneous nucleation �G is reduced by a preexisting site
lessening the penalty of a solid-liquid interface.
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CNT has been found to successfully describe nucleation
in many cases (e.g., hard-sphere colloids [5] and water [6]);
however, this simple representation of the nucleation process
is not expected to predict the behavior of complex systems
such as polymers and enzymes (e.g., [7]). For example, be-
havior where the initially nucleating phase differs from the
critical nucleus is neglected [8]. Stranski and Totomanow [9]
suggested that the nucleating phase is not the most stable,
but is instead the phase with the smallest �G, contrasting
the assumption made in CNT where the difference in free
energies is that between the most stable solid and the liquid
(e.g., [4]). In simple liquids [10] and face-centered cubic
(fcc) stable metals [11–13] it has been shown that there is
a preference for body-centered cubic (bcc) arrangements to
nucleate despite other phases being more stable. Nonclassical
nucleation is then required to describe this kind of behavior
(e.g., [7]). Here we will constrain the applicability of CNT
to the Earth’s core and examine whether it can sufficiently
describe the nucleation process to be useful in resolving the
inner core nucleation paradox.

It is not always possible to observe the freezing of a
system despite undercooling. CNT predicts that the aver-
age duration before a supercooled system undergoes freezing
varies exponentially with T . The Earth’s core has cooled at
50–150 K Gyr−1 [14–18] and thus crystallization of the inner
core must have occurred at relatively small undercooling and
therefore with large τw (∼1032 sm−3). The timescales relevant
here are clearly not practicable to experiment or simula-
tion. Where long waiting times exist, such as with the inner
core nucleation paradox, one of two approaches is typically
employed when using CNT. First, known thermodynamic
properties can be used to estimate �G and I0 and predict
the relationship between undercooling and waiting time. We
call this the thermodynamic estimate, which was used by
Huguet et al. [4]. This requires explicit knowledge of free
energies of both phases and the interface between them, all
of which are nontrivial to obtain and often only accessible
to theoretical studies (e.g., [19]). Alternatively, freezing can
be observed directly in simulations at far larger undercooling;
this provides waiting times for which CNT is used as a fitting
model. Observed τw are then fitted with thermodynamic quan-
tities being free parameters; we call this direct simulation.
Equation (1) is then used with these properties to extrapolate
to the conditions under study (e.g., [20]). Herein lies great
difficulty as waiting time increases exponentially with tem-
perature; Davies et al. [20] extrapolate observed waiting times
over approximately 60 orders of magnitude. The advantage of
direct simulation over the thermodynamic estimate is that no
assumption need be made about some of the more uncertain
thermodynamic quantities such as interfacial energy, although
an assumption of nucleating phase is typically still applied.
Both Huguet et al. [4] and Davies et al. [20] assume gsl to be
represented by liquid iron and hexagonal-close-packed (hcp)
iron, while the latter use γ and I0 to fit observed waiting times.
Additionally, both assume the individual components of CNT
to well represent the nucleation of iron at extreme pressure
and temperature.

In this study we apply an approach to testing the ap-
plication of CNT to the Earth’s core, circumventing the
disadvantages of both direct simulation and thermodynamic

estimate approaches. We use previously developed techniques
to identify subcritical nuclei in the supercooled liquid and use
CNT to describe their distributions. CNT then predicts criti-
cal nuclei from these distributions and allows the calculation
of all necessary thermodynamic quantities without observing
freezing. We therefore test the description of I0 and �G within
CNT and their ability to describe nucleation in the Earth’s
core. The efficiency of this approach allows temperatures
close to the melting point to be characterized, removing the
need for extrapolation. Crucially, we make no assumption of
the nucleating phase, a limitation of CNT and the previous
attempts to resolve the nucleation paradox.

II. METHODS

I (which has units of per unit time per unit volume) is
recorded for all observed nucleus sizes at temperatures below
the melting point of iron at 320 GPa. These distributions
predict the critical radii rc. rc is defined in CNT by γ (which
has small temperature dependence) and gsl via Eq. (2) where
d�G

dr = 0, meaning that the distribution of nuclei characterizes
the thermodynamics of the system. I0 and the Zeldovich factor
(z) can also be extracted from molecular dynamics informa-
tion of prefreezing nuclei and so τw, defined as

τw = τ0 exp

(
�G(r)

kBT

)
, (3)

where τ0 = z
I0

, can be estimated for temperatures below the
melting point without the need for freezing events to be
observed. As such, little extrapolation is needed to predict
behavior at small undercooling.

Calculations are performed using the Large-scale
Atomic/Molecular Massively Parallel Simulator [21]. The
embedded atom model of iron by Alfè et al. [22] is applied
with a cut-off distance of 5.5 Å. 6912 atoms are used, with a
face-centered-cubic initial configuration (12 × 12 × 12 unit
cells) and volume is varied to maintain 320 GPa in the liquid at
each temperature. A 6912-atom system is found to be suitably
large, given reproduction of liquid structure, pressure, and
energy within error of a 40 000-atom system. Furthermore,
Davies et al. [20] show that this same comparison of system
sizes produces near identical average waiting times to observe
freezing. Liquid initial conditions are set by randomly
prescribing initial velocities corresponding to a kinetic energy
of 10 000 K within the NVT ensemble. This is thermally
equilibrated for 10 ps before cooling to a target temperature
over 1 ps, followed by a minimum observation time of 1 ns
(provided freezing does not occur). The simulation time
step is 1 fs and atomic positions are recorded every 100
steps. Calculations are performed in the NVE ensemble as
the onset of freezing produces a significant temperature
rise in the system under constant energy conditions. This
provides a marker for the freezing of the system independent
of structural analysis and a direct comparison to the results of
Davies et al. [20].

Separate challenges exist for examining large and small
undercoolings. At small undercooling, nucleation events are
less common; we use long observation times to offset this.
For large undercooling, nucleation events are more common;
however, successful nucleation events (freezing the system)

214113-2



PROBING THE NUCLEATION OF IRON IN EARTH’S … PHYSICAL REVIEW B 103, 214113 (2021)

FIG. 1. Per-atom values of crystallinity (structure correlation,
upper panels) and number of correlated neighbors (lower panels) for
hcp Fe with a planar defect in the Y plane (left) and an approximately
spherical solidlike nucleus of 14 atoms surrounded by liquid (right,
circles and squares, respectively). Grid spacing is 2.5 Å.

are also more common and limit the duration of observation.
In order to collect suitable statistics, 100 unique trajectories
per temperature are collected between 4800 and 5800 K.
Between 4100 and 4600 K, 40 trajectories are found to be
sufficient to predict a critical radius consistent with the over-
all temperature behavior, albeit with larger uncertainty than
temperatures with more observed nuclei due to overall longer
aggregate observation time.

Prefreezing nuclei can be defined as collections of atoms
that exhibit solidlike behavior. Here the categorizing behavior
is that the bonding environment of an atom is similar to that
of solid iron and that this configuration is strongly correlated
with that of neighboring atoms, meaning the structure is not
limited to a single atom. We follow a previously developed
method whereby spherical harmonics are used to categorize
bonding environments surrounding each atom [23–25]. A
suite of spherical harmonics is selected which construct local
order parameters around atoms giving a measure of crys-
tallinity which describes the distribution of atoms around a
central atom in terms of similarity to a solid bonding con-
figuration (see Supplemental Material for details of solidlike
behavior identification [26]). In order for this to be effective,
the local order parameters are tuned to give a positive response
to bonding environments consistent with all phases of iron
relevant to the core (bcc, fcc, and hcp) without strongly fa-
voring or overlooking any one specifically. Crystallinity does
not solely characterize a solidlike particle. When a threshold
number of eight neighboring atoms all have a crystallinity
� 0.5, the central atom is considered to be confined within
a solid structure and is defined as solidlike. A criteria of eight
neighbors is chosen as we find that pure liquids rarely see
eight or more of these connections per atom (consistent with
previous studies, e.g., [24]). The solid phases should have
some number of connections below the coordination number
of the perfect crystal due to thermal vibrations. Figure 1 shows
examples of crystallinity and connections for a defect and a

nucleus. In the example of a planar defect, all atoms remain
strongly crystalline but the disruption in connections forms
a discontinuity in the solidlike structure. In the case of a
solidlike nucleus, solidlike atoms in isolation do not constitute
a nucleus. Within each snapshot solidlike atoms are identified
and those within bonding distance (defined by the solid radial
distribution function) are considered to belong to the same
nucleus. Nuclei sharing greater than half of the same unique
atoms in adjacent snapshots are determined to be the same
nucleus.

Removing terms that are constant at fixed temperature from
Eqs. (1) and (2) we can describe a proportional form of the
free-energy barrier:

−ln[IT (r)] ∝ �GT (r). (4)

This allows us to use the distribution of observed nuclei sizes
to produce a representation of the free energy associated with
forming each nucleus size. We find that nuclei with fewer
than ten atoms force nonspherical geometry, but all nuclei
are pseudospherical with sphericity increasing with size and
therefore find a spherical form to the scaling of gsl and γ is
necessary. This single temperature distribution is then

�GT (r) = 4/3πr3A + 4πr2B, (5)

where A and B are fit to simulation data to estimate the radius
corresponding to the peak of the free-energy barrier

rc = −2B/A. (6)

Care must be taken in applying Eqs. (5) and (6). In order
for a well represented distribution of nucleation rates to be
collected, the simulation must run for a considerable time,
exponential to temperature, where freezing presents a limit
to the observation of I . Clearly, without freezing being ob-
served, nuclei at or beyond the peak of �G will be scarce
(the probability of a nucleus growing increases exponentially
above the critical size making their observation without freez-
ing unlikely) and so the fitting can only be applied to the
distribution of nuclei smaller than the critical radius (see inset
of Fig. 2). We are able to predict rc up to 5800 K (reported in
Fig. 2) above which the form of nucleation rate is too poorly
represented to be robustly fit with the form of Eq. (5) given
number, size, and duration of simulations in this study.

Applying this methodology to the aggregate of all simula-
tion distributions, we construct rc at each temperature (points
in Fig. 2) but not the temperature dependence, to avoid a
requirement of I0. These rc are fitted via gsl and γ where for
pure iron

gsl ≈ h f
δT

Tm
(1 − hcδT ) (7)

approximates the temperature dependence of gsl . h f is the
enthalpy of fusion and hc is a correction to account for the
nonlinear behavior of gsl , which has been found necessary for
iron at these conditions [20]. δT is undercooling relative to the
melting temperature, Tm, set at 6215 K for 320 GPa following
Alfè et al. [27]. rc then varies with temperature as

rc(T ) = −2γ

h f
δT
Tm

(1 − hcδT )
. (8)
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FIG. 2. Critical radii of prefreezing nuclei with temperature. Es-
timates of critical radius from nucleation rate are calculated at each
temperature (purple circles) via Eq. (6) where A and B are only used
for these points and absolute values of ∝ �GT are not meaningful
without inclusion of I0. Temperature dependence of critical radii
is fitted with hf , hc, and γ as free parameters via Eq. (8) (purple
line) and compared to the prediction from direct simulation [20]
(orange line). Increasing uncertainty with undercooling is due to
less recorded nuclei, an intractable combination of fewer simulations
and freezing events halting observation. The effect on statistical
uncertainty of fewer nucleation events at higher T is more than
compensated by the long observation periods. Inset: fitting of an
example nucleation rate distribution at 4200 K and 320 GPa.

We assume interfacial energy to be constant with tem-
perature, a standard assumption in classical and nonclassical
nucleation theory (e.g., [1] and [7]) that is confirmed by our
results (see Sec. III). We fit γ to observed waiting times using
Eqs. (3), (2), and (7). h f and hc are treated as free parameters
in defining rc(T ) (Fig. 2). This allows us to fit the predicted
critical radius from molecular dynamics to describe gsl with
no assumption of the phases involved.

The kinetic prefactor (e.g., [28]) can be defined by

τ0 = z

NS
, (9)

where N is the number of available nucleation sites, S is the
rate at which atoms are attached to nuclei, and z relates the rate
of growth to the principle that clusters have some probability
of shrinking having grown to a given size. In nucleation theory
z is known as the Zeldovich factor and is a dimensionless
quantity taken from the second derivative of free energy at
the top of the free-energy barrier

z =
( 4

3πr3
c gsl

kBT

)−1/2

. (10)

We calculate N as the average number of nuclei of any size
present at any one snapshot and S as the average growth rate
of nuclei between snapshots.

TABLE I. Thermodynamic quantities required to calculate wait-
ing times [Eq. (3)] from nucleation rates in this study, compared
to those used in the thermodynamic estimate and direct simulation
methods.

Thermodynamic Direct
Name Units This study estimatea simulationb

τ0 s m−3 5.742 × 1044 5 × 1039 7.04 × 1047

hf J m−3 7.119 × 1010 1 × 1010 0.98 × 1010

hc 6.609 × 10−5 1 7.05 × 10−5

γ J m−2 1.02065 1.2 1.08
δTcore K 807 1000 730

aHuguet et al. [4].
bDavies et al. [20].

III. RESULTS

rc is found to decrease with increasing undercooling, a
key prediction of CNT and direct validation of the expected
nucleation behavior of a supercooled liquid. The change in
rc with temperature agrees well with the prediction of Davies
et al. [20], especially at large undercooling where that study’s
observations are made (see Fig. 2). At low undercooling (tem-
peratures greater than 4600 K), the critical radius is larger than
the previous prediction (26% larger than Davies et al. [20] at
6000 K) but is still captured well by the formalism of CNT.

We examine the assumption applied in CNT that inter-
facial energy is a temperature invariant quantity. Using free
energies of solid and liquid to estimate gsl independently, we
calculate γ for each prediction of rc. The solid free energy
is taken as hcp Fe from Alfè et al. [29] and the liquid value
is obtained by extrapolation from the melting curve of Alfè
et al. [27] (where Gl = Gs) using thermodynamic properties
from Ichikawa et al. [30]. We find that rc(T ) accommodates
a maximum of 10−4J m−2 K−1 gradient of γ , while the mean
value of γ is 1.42 J m−2. The single value of γ which produces
the best fit to observed waiting times and all predicted rc

is 1.020 65 J m−2, slightly smaller than that found by previ-
ous works [19,20]. Enthalpy of fusion is 7.119 × 109 J m−3

with a temperature dependence of 6.609 × 10−5 resulting in
a smaller value of gsl at all temperatures when compared to
the previous studies (18% and 28% less than Huguet et al. [4]
and Davies et al. [20]; see Supplemental Material for details
of free-energy differences [26]). All values and comparisons
are shown in Table I.

τ0 is found to vary little with temperature due to a
compensatory effect of N and z with S (see Supplemental
Material for details of temperature dependence of τ0 [26]).
An average value across temperatures is 5.742 × 1044 s m−3,
significantly smaller than Davies et al. [20] (1048) who deter-
mined I0 as a freely fitted parameter, and larger than Huguet
et al. [4] (1040) who note that an exact value is of little
importance due to a small temperature sensitivity compared to
the free-energy barrier term (see Table I). Our value is similar
to that of Christian [1] (1042) where the value is estimated
from reasonable nucleus densities and enthalpy of fusion at
observable conditions and is assumed to be mostly tempera-
ture invariant.
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FIG. 3. Waiting times for nucleation predicted by the analysis of
subcritical nuclei in supercooled liquids (this study, purple circles) is
compared to direct simulations (squares and orange circles). Fitting
for these two approaches is shown as lines (purple and orange,
respectively) and the dashed line represents the waiting time required
to freeze the present volume of the Earth’s inner core given an age of
1 Gyr.

Where simulations regularly freeze (at large δT ) we com-
pare to direct simulation (also at 320 GPa) [20] and find good
agreement (Fig. 3). In these cases we consistently find hcp
Fe with planar defects, which eventually relax. The predicted
waiting time to observe freezing (Fig. 3) is found to be consis-
tent with Davies et al. [20] at large undercooling, and is longer
at small undercooling where this work is able to sample more
directly. This is due to the difference in hc as well as gsl being
smaller at all temperatures. When evaluating the undercooling
required to produce freezing after 4.43 × 1032 s m−3 (consis-
tent with the predicted first nucleation of the Earth’s inner core
at 1 Ga [20]) we find an 807 K undercooling is required. This
is intermediate to 730 K from Davies et al. [20] and 1000 K
from Huguet et al. [4].

IV. CONCLUSION

The distribution of prefreezing nuclei in supercooled liq-
uids is found to accurately predict the critical radius for
nucleation in liquid iron at the high pressures and tempera-
tures relevant to the Earth’s core (320 GPa, 4000–5800 K).
Our method provides insight into the behavior of supercooled
liquids at temperatures close to Tm and at much smaller un-
dercooling than is accessible to other methods which follow
CNT. We test the validity of CNT through its prescription of
a kinetic prefactor and free-energy barrier description of the
nucleation process. We do this solely through the observation
of prefreezing nuclei in molecular dynamics and find that the

distribution of nuclei can predict waiting times for freezing of
high pressure liquid iron in agreement with studies which take
different routes to applying CNT.

The 5% smaller value of interfacial energy compared to
Davies et al. [20] can perhaps be explained by a difference in
structure in small nuclei compared to the bulk solid, consistent
with a smaller difference in free energies and an overall reduc-
tion in the free-energy barrier. Stranski and Totomanow [9]
pose the first nucleating phase is not that with the lowest free
energy, but that with the smallest free-energy barrier. In cases
where simulations completely freeze, at large undercooling,
we observe defects relaxing from the solid some time after
a successful nucleation event. This is commensurate with a
less negative value of gsl at all temperatures compared to
other works which assume the enthalpy of fusion to be that
of forming hcp iron [4,20]. We make no assumption about
the nature of the nucleating phase, nor its thermodynamic
properties. Instead we find the properties that best describe the
behavior of subcritical nuclei in the supercooled liquid. These
properties reveal that the nucleating solid is less favorable
than hcp iron and so while generally describing the system,
this fundamental assumption of CNT is not valid for Earth’s
core, and nonclassical nucleation theory provides a more
appropriate description. The structure of nucleating material
we observe is best described as defect-rich hcp; however, a
detailed structural analysis is beyond the scope of this study.

We compare estimates of undercooling required to freeze
in a system (for a given waiting time) with studies which apply
CNT through thermodynamic estimate and direct simulation
methods. The key assumption made in this work is simply
that the energy of small nuclei is representative of critical
nuclei, very different to those made by previous works; how-
ever, we arrive at a similar prediction of waiting times. An
undercooling of 807 K is found to be intermediate to previous
works, where the waiting time is related to the time required
to produce the Earth’s solid inner core. While the inner core
nucleation paradox remains unresolved through the study of
a pure iron system, the study of prefreezing nucleation gives
access to undercoolings which were previously unattainable
and describes the thermodynamic properties of nucleating
systems which must otherwise be assumed. This provides a
framework for examining nucleation in impure systems at
core conditions, towards resolving the inner core nucleation
paradox.
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