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First-principles and classical molecular dynamics simulations have been performed to study the structural
and thermodynamic properties of Pd under pressure. By comparing the Gibbs free energy, in the quasiharmonic
approximation (QHA), of the face-centered cubic (fcc) phase with those of the hexagonal-close-packed (hcp) and
body-centered-cubic (bcc) phases we found that the fcc phase is stable up to 500 GPa and 5000 K. The predicted
high-temperature elastic constants of fcc Pd agree well with experiments. The phonon dispersion curves are
obtained at various pressures. In contrast with experiments we did not observe any phonon anomalies in Pd.
We reproduced the thermodynamic properties of Pd accurately by taking into account the electron and phonon
contributions to the free energy of Pd. The obtained thermal expansion coefficient, Hugoniot curves, and specific
heat capacity compare well with experiments. In particular, the excellent agreement of the thermal expansion
coefficients with experiment supports the validity of the QHA for Pd at high temperatures. Our QHA-based
Hugoniot curves also show good agreement with experiments and our dynamic shock simulations. Shocks along
[100] produced a melting temperature with a superheating of 18.3% at 226 GPa, compared with our high-pressure
melting curve of Pd from coexistence-phase simulations based on an embedded atom model.

DOI: 10.1103/PhysRevB.83.144113 PACS number(s): 05.70.−a, 65.40.−b, 62.20.−x, 74.10.+v

I. INTRODUCTION

Palladium has a wide range of applications in jewelery,
dentistry, metalizing ceramics, catalysis, hydrogen storage,
and so on. Recently, it has attracted an increasing interest from
researchers due to its fascinating features both in nanoscale
and bulk systems.1–3 In the nanoscale field, recent interest
in hydrogen storage systems and nanoscale devices fully
highlighted the key role that palladium plays.3 For bulk
systems, in high-pressure experiments Pd is commonly used as
a pressure standard because of its unique face-centered-cubic
(fcc) structure under high pressure, and its equation of state
(EOS) has been investigated experimentally.4–7

Although superconductivity in bulk Pd has not yet been
observed experimentally, Pd film irradiated by He+ ions can
be transformed into a superconductor, with the highest super-
conducting transition temperature (Tc) of 3.2 K.8,9 Recently,
using the full-potential linear muffin-tin orbital (FP-LMTO)
method Takezawa et al.10 reported a Tc value of 0.514 K at
ambient pressure for bulk Pd when the spin fluctuation effect
of the electrons are not considered. They suggested that Pd also
has the potential to be a superconductor under high pressure
where the spin fluctuation effect becomes less important, and
superconductivity appears.10 Most recently, a large spin Hall
conductivity (SHC) of Pd at low temperature was predicted by
first-principles band structure calculations, and as temperature
increases, the SHC in Pd decreases monotonically.11

First-principles calculations show that there exists an
anomalously large broadening for the transverse phonon mode

T1 in the � direction and this mode contributes most strongly
to the electron-phonon scattering processes on the Fermi
surface,12 consistent with experimental observations.13,14 In
addition, the experimentally13,15,16 observed Kohn anomaly17

along [110] in Pd was also reproduced using density functional
perturbation theory (DFPT),18,19 and paramagnons were found
to play no significant role in the [110] phonon dispersion.3

However, others10,20 observed no phonon anomalies in ab
initio studies.

Theoretical studies of the thermal EOS are complementary
to experiments and are particularly useful for extending the
domain to regions of phase space that cannot be reached
experimentally. The elastic properties of materials at high
pressures are also of key importance for us to understand
their underlying static and dynamic responses to pressure,
mechanical strength, and the EOS. Experimental studies of
the elastic constants of Pd are limited to ambient pressure21,22

or very low pressure (below 1 GPa).23 Furthermore, so far
no systematic investigations of the thermal EOS of Pd have
been reported. These are the main motivations for the present
work.

Here we apply DFPT18,19 and classical molecular dynamics
to perform a series of detailed simulations on a wide range
of properties for Pd, including elastic, lattice dynamic, and
thermodynamic properties. First, we examine the phase tran-
sition of Pd at high pressure, according to Gibbs free energy
differences of several possible structures after determining the
phonon dispersions of different phases at high pressures. Then,
based on phonon frequencies, we deduce the thermodynamic
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properties of fcc Pd within the framework of the quasiharmonic
approximation (QHA).

The rest of the paper is organized as follows. In Sec. II, we
describe the details of the calculations. In Sec. III, we present
the results of the lattice dynamics, elastic, and thermodynamic
properties. Finally, Sec. IV presents a discussion and conclu-
sions.

II. COMPUTATIONAL DETAILS

In the framework of the QHA, the Helmholtz free energy
of a metal system is written as

F (V,T ) = Estatic(V ) + Fel(V,T ) + Fzp(V,T ) + Fph(V,T ),

(1)

where Estatic(V ) is the first-principles zero-temperature energy
of a static lattice at volume V and Fel(V,T ) is the electronic
free energy arising from the electronic thermal excitations at
temperature T and volume V . Fel(V,T ) can be evaluated via
the standard methods of finite-temperature DFT developed by
Mermin (the Fermi-Dirac distribution):24

Fel(V,T ) = Eel(V,T ) − T Sel(V,T ). (2)

The electronic energy due to the electronic excitations is
given by

Eel(V,T ) =
∫

n(ε)f (ε)εdε −
∫ εF

n(ε)εdε, (3)

where n(ε) is the electronic density of states (EDOS) at the
energy eigenvalues ε, f is the Fermi distribution function, and
εF is the energy at the Fermi level.

The electronic entropy is calculated by

Sel(V,T ) = −2kB

∑
fi lnfi + (1 − fi)ln(1 − fi), (4)

where kB is Boltzmann’s constant.
The term Fzp in Eq. (1) is the zero-point motion energy of

the lattice given by

Fzp = 1

2

∑
q,j

h̄ωj (q,V ), (5)

where ωj (q,V ) is the phonon frequency of the j th mode of
wave vector q in the first Brillouin zone (BZ).

The last term in Eq. (1) is the phonon free energy due to
lattice vibrations, and it can be obtained from

Fph(V,T ) = kBT
∑
q,j

ln{1 − exp[−h̄ωj (q,V )/kBT ]}. (6)

Within the QHA, the phonon frequencies depend on
temperature slightly due to electronic excitations for transition
metals, but we neglected this dependence.

We determined the vibrational frequencies of Pd us-
ing DFPT,18,19 as implemented in the QUANTUM-ESPRESSO

package.25 For the exchange-correlation functional we have
taken the Perdew Zunger local-density approximation (LDA)26

and used an ultrasoft pseudopotential.27 We have also per-
formed the phonon calculations using the generalized gradi-
ent approximation (GGA) proposed by Perdew, Burke, and
Ernzerhof (PBE)28 and found a worse agreement of the
phonon dispersions of fcc Pd with experiments, just like

others’ previous conclusions with the GGA;3,10 therefore
all the calculated results are only based on the LDA. A
nonlinear core correction to the exchange-correlation energy
function was introduced to generate a Vanderbilt ultrasoft
pseudopotential for Pd with the valence electrons configuration
4d95s1, and the ultrasoft pseudopotentials were generated with
a scalar-relativistic calculation.

Careful tests on k and q grids, the kinetic energy cutoff,
and other technical parameters were performed to guarantee
convergence of phonon frequencies and free energies. For fcc
Pd, we computed the dynamical matrices using an 8 × 8 × 8 q
grid, giving 29 wave vectors q in the irreducible wedge of the
first BZ. The kinetic energy cutoff, the energy cutoff for the
electron density, and the k grids were chosen to be 60 Ry, 500
Ry, and 24 × 24 × 24 Monkhorst-Pack (MP)29 meshes in both
total energy and phonon dispersion calculations, respectively.
We computed the dynamical matrices at 29 wave (q) vectors
using the 8 × 8 × 8 q grid for body-centered cubic (bcc)
structures and 10 wave (q) vectors using the 5 × 5 × 3 q grid
for hexagonal-close-packed (hcp) structures in the irreducible
wedge of the first BZ, and the full phonon dispersion was
obtained through Fourier interpolation. We applied a Fermi-
Dirac smearing width of 0.032 Ry.

The geometric mean phonon frequency ω̄ is defined by

ln ω̄ = 1

Nqj

∑
qj

ln ωqj , (7)

where ωqj is the phonon frequency of the branch j at the wave
vector q and Nqj is the number of branches times the total
number of q points in the sum. For all volumes, the geometric
mean phonon frequency ω was converged to 1 cm−1 with
respect to the k mesh and kinetic energy cutoff was used.

III. RESULTS

A. Structural and elastic properties

Experiment and ab initio calculations indicated that Pd
has an fcc structure at least up to 77.4 GPa5 and 500 GPa,30

respectively. We also performed detailed calculations to verify
this. First, we calculated the zero-temperature energies of
the bcc, fcc, and hcp structures in the pressure range of
0–1000 GPa. For the hcp structure, the volume and the
ratio between the hexagonal c axis and a axis (c/a) were
optimized using the variable cell relax31 method for each
pressure and found to be around 1.64 and only weakly
dependent on pressure. The accuracy of the target pressure
for all calculations is better than 1 kbar. The optimized a and
c are plotted in the inset of Fig. 1. Second, we calculated
the enthalpies H = E + PV as a function of pressure for the
three structures. Then the enthalpy differences relative to the
fcc structure were deduced for all pressures between 0 and
1000 GPa (Fig. 1). The enthalpy differences are positive and
the fcc phase remains stable up to at least 1000 GPa, consistent
with experiments5 and other ab initio results.30

We also calculated the phonon dispersion curves of bcc
and hcp phases to further test the stability of the fcc phase at
high temperature and high pressure. The phonon dispersion
curves of bcc and hcp structures are presented in Fig. 2. One
of the three acoustical modes of the bcc phase along the
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FIG. 1. (Color online) Enthalpy differences �H of the bcc and
hcp structures with respect to fcc in Pd as a function of pressure.

�-N direction shows imaginary frequencies up to 800 GPa,
indicating the instability of bcc in the whole pressure range of
interest (in the framework of QHA). We did not find soft modes
for hcp, and the obtained phonon dispersion curves show good
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FIG. 2. (Color online) The phonon dispersion curves of bcc and
hcp Pd at different pressures.
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FIG. 3. Gibbs free energy differences �G of the hcp structure
with respect to fcc in Pd as a function of pressure at different
temperatures.

stability up to 1000 GPa. The Gibbs free energy G = F + PV

of the hcp and fcc phases as the function of temperature at
different pressures are derived from the phonon frequencies
calculated using the 30 × 30 × 30 Monkhorst-Pack k mesh.
The Gibbs free energy differences between hcp and fcc is
plotted in Fig. 3 (in which data beyond the melting temperature
are not displayed; see below). We do not find any crossings
of the Gibbs free energy curves at pressures below 500 GPa,
which implies that within the QHA fcc is more stable than
hcp in the range of pressure and temperature investigated. For
this reason, all calculations were performed for the fcc phase.
Of course, we recognize that anharmonic effects could still
change the relative stability of the structures investigated, but
a detailed study of anharmonic effects goes beyond the scope
of the present work.

A cubic lattice system has three independent elastic
constants, C11, C12, and C44; the relationship between the
elastic constants and the bulk modulus can be written as

B = C11 + 2C12

3
. (8)

To determine C11 and C12, we applied the following volume-
conserving strain matrix:

ε =

⎛
⎜⎝

δ 0 0

0 δ 0

0 0 (1 + δ)−2 − 1

⎞
⎟⎠ , (9)

where δ is the infinitesimal strain magnitude. Then the strain
energy is written as a function of the strain,

E(δ) = E(0) + 3(C11 − C12)V δ2 + O(δ3), (10)

where E(0) is the energy of the unstrained unit cell and V is
the corresponding volume. Combining this result with Eq. (8),
we derived C11 and C12 by fitting the third-order polynomial
curves to the E-δ data and finding the quadratic coefficients.
C44 is deduced by applying the following volume-conserving
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strain matrix to the unit cell:

ε =

⎛
⎜⎝

0 δ 0

δ 0 0

0 0 (1 − δ2)−1 − 1

⎞
⎟⎠ , (11)

and correspondingly the strain energy is

E(δ) = E(0) + 2C44V δ2 + O(δ4). (12)

Similarly, C44 is calculated by finding the quadratic coeffi-
cients.

To calculate the elastic constants accurately, we used the
40 × 40 × 40 Monkhorst-Pack29 k mesh in self-consistent
calculations. The high-pressure (HP) elastic constants and
high-temperature (HT) elastic constants of Pd are both
obtained by using the method described above. For HP
elastic constants, we first derived the volume as a function
of pressure by fitting a fourth-order finite-strain EOS33,34

to the calculated energy-volume data. Then we calculated
the elastic constants at each volume. For the HT elastic
constants we should use energy-stress data obtained at high
temperature. These could be calculated in a molecular dynamic
simulation (if the temperature is large enough to neglect
nuclear quantum effects), or by using the QHA free energies
(if the temperature is low enough so that anharmonic effects
are negligible). However, the largest effect of temperature is
that of making the crystal expand; therefore we have decided
to ignore the fine details of the dependence of the stresses
with temperature and assumed that they only depend on
temperature through the dependence on temperature of the
volume.35,36 This approximation only introduced small errors
for the elastic constants of the cubic systems.35 As expected
the calculated HT elastic constants are in very good agreement
with experiments.35 We first extrapolated the volume as a
function of temperature by fitting a fourth-order finite-strain
EOS33,34 to the calculated free energy versus volume data
within the QHA (see Sec. III B). Then we evaluated the elastic
constants at each volume using the same method for HP.

The calculated HP and HT elastic constants of Pd are
shown in Table I and Fig. 4, respectively. From Table I, one
notes that C44 agrees very well with experiment. However,
C11 is overestimated by 17.1% and C12 is underestimated by
16.9%, compared with experiment. The three elastic constants

TABLE I. The calculated 0 K elastic constants of fcc Pd under
high pressure. P , Cij , and B are in GPa. The experimental (Ref. 21)
elastic constants at 4.2 K and 1 atm are also listed.

P V (Å3) C11 C12 C44 B

0.01 14.8305 274.3 146.3 71.6 189.0
49.9 12.6613 564.2 311.5 134.5 395.7
103.6 11.5104 824.5 459.5 189.2 581.2
153.3 10.8056 1043.1 583.7 234.7 736.8
204.2 10.2641 1253.0 702.6 277.7 886.1
253.9 9.8430 1447.9 813.1 317.1 1024.7
304.1 9.4906 1636.9 920.0 355.4 1159.0
356.1 9.1812 1825.6 1026.7 392.9 1293.0
406.1 8.9234 2001.8 1126.1 427.9 1418.0
Expt. [ 21] 14.5104 234.1 176.1 71.2 195.5
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data of BT from Ref. 32.

increase as pressure increases and decrease with increasing
temperature linearly. The HT elastic constants and their
general trend are also in good agreement with experiment22

(Fig. 4). The temperature variation of C44 agrees well with
experiment, despite a small underestimation. The bulk moduli
at high temperature are also in good agreement with the
experimental data, whereas the trends of C11 and CL diverge
from experiment slightly, possibly due to the exchange-
correlation functional employed. Nevertheless, the general
trends of the elastic moduli with temperature are very similar
to the recent ab initio results of Al, Cu, Ni, Mo, and Ta.35

This appears to indicate that our approximation for calculating
elastic constants at HT, based on the neglect of the detailed
behavior of the stress at high temperature, is reasonable.

B. Phonon and thermodynamic properties

Within the DFPT, a unit cell is used for calculating the
phonon dispersion curves. Figure 5 shows the obtained dis-
persion curves at zero pressure along several high-symmetry
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FIG. 5. (Color online) Phonon dispersion curves of Pd at 0 GPa.
The solid circles are the neutron diffraction data (Ref. 15).
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directions in the first BZ for both transverse acoustical (TA)
and longitudinal acoustical (LA) branches. We note that
the agreement of the dispersion curves with experiment15 is
generally good, apart from the lowest acoustic branch in the �-
K (also observed in Ref. 3) and W -X directions. This possibly
can be attributed to the LDA exchange-correlation functional
and the ultrasoft pseudopotential used. Fortunately, the small
phonon deviations almost do not affect the calculations
of the thermodynamic properties. We repeated the phonon
calculations for another 15 different volumes, and from all
the phonon dispersion relations we obtained the phonon free
energies according to Eq. (1).

Miiller and Brockhouse observed the phonon anomalies
along the [110] direction in the first BZ of Pd in their
inelastic neutron scattering experiments.13,15,16 Savrasov and
Savrasov20 and Takezawa et al.10 indicated that they did
not find any phonon anomalies in Pd using the FP-LMTO
method.37 More recently, Stewart3 reported the anomalies in
Pd using DFPT and the pseudopotential approach as imple-
mented in the QUANTUM-ESPRESSO package.25 We reproduced
the phonon anomalies found by Stewart using his very same
parameters: MP k mesh (16 × 16 × 16), plane wave energy
cutoff (34 Ry), smearing function (Methfessel-Paxon), and
size of smearing (0.01 Ry). However, when we use our own
choice of parameters—MP k mesh (24 × 24 × 24), plane wave
energy cutoff (60 Ry), smearing function (Fermi-Dirac), and
size of smearing (0.032, 0.01 Ry, and smaller values)—we do
not find such phonon anomalies.

We derived the Helmholtz free energy as a function of
volume V and temperature T from Eq. (1) after taking into
account the thermal electronic excitation and phonon contri-
butions. In order to deduce the thermodynamic properties, we
fitted a fourth-order finite-strain EOS to the calculated free
energy versus volume data at each temperature. The fitted 300
K thermal EOS parameters and the isothermal compressional
curves are compared with experiments in Table II and Fig. 6,
respectively, and they show good agreement.

The thermal expansion coefficient is often used to check
the accuracy of the thermal properties from first-principles
calculations. The volume thermal expansion coefficient αV

can be calculated by

αV = 1

V

(
∂V

∂T

)
P

. (13)

Figure 7 shows the thermal expansion coefficient as a function
of temperature at different pressures. Our zero-pressure results
are in excellent agreement with experimental data38 in the
low-temperature region, while when the temperature is above
800 K (about half the melting point of 1828 K41) the zero-
pressure thermal expansion coefficient gradually deviates from
experiment. This is the result of the neglect of anharmonicity

TABLE II. The fitted 300 K EOS parameters compared with the
experimental data (Ref. 21).

V0 (Å3) B0 (GPa) B ′
0

Present 14.8305 189 5.23
Expt. 14.6231 193 —
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FIG. 6. (Color online) The isothermal compressional curves at
different temperatures. The experimental data are from Ref. 21.

caused by phonon-phonon interactions. This behavior is also
found in other transition metals, such as Ta42 and Pt.43

Generally, when temperature is below half the melting point
the QHA is accurate enough, while full anharmonicity effects
must be taken into account in the high-temperature region.42

The linear thermal expansivity was also obtained using
(a − a0)/a0, where a0 is the lattice constant at 0 K. In Fig. 8,
we plot the lattice constant and (a − a0)/a0 as a function
of temperature. Although one finds the systematic deviation
of our lattice constants from experiments, the deviation is
within the reasonable error of density functional theory (DFT)
(less than 1%). Thus the lattice constant and the linear
thermal expansivity are both in excellent agreement with
experiments.39,40

The Hugoniot curve is one of the fundamental properties
of materials; it reflects the response of the material to both
pressure and temperature simultaneously. We calculated the
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FIG. 7. (Color online) The thermal expansion coefficient as a
function of temperature at different pressures. Our zero-pressure
results are in excellent agreement with the experimental data
(Ref. 38).
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Hugoniot P -V and P -T curves according to the Rankine-
Hugoniot formula

UH − U0 = 1
2 (PH + P0)(V0 − VH ), (14)

where UH , PH , and VH are the molar internal energy, pressure,
and volume along the Hugoniot states, respectively, and U0

and V0 are the molar internal energy and volume at pressure P0

and room temperature. Although our theoretical results deviate
slightly from experiments4,44–46 above 150 GPa (Fig. 9), the
agreement of our P -V curve with experiments is reasonably
good in the whole pressure range of interest (Fig. 9).

In order to check our calculated Hugoniot P -T curve, we
also performed classical molecular dynamics (MD) simula-
tions to derive the shock behavior of Pd using the embedded-
atom-method (EAM) potential.47 Within the EAM formalism
the total potential energy Etot of a metal system containing N
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FIG. 9. (Color online) The Hugoniot P -V curve compared with
the shock experimental data (Refs. 4,44–46).

equal atoms can be written as a sum of the embedding energy
F and a pair potential φ:48

Etot =
N∑
i

Fi(ρi) + 1

2

N∑
i

N∑
j<i

φ(rij ), (15)

where rij is the distance between the atoms i and j . The
function Fi(ρi) is the energy needed to embed the atom i into
the background electron density ρi , which is the superposition
of the atomic densities,

ρi =
N∑

i �=j

ρj (rij ). (16)

For the specific form of the functions and their parameters, see
Ref. 48.

The details of the shock-wave simulations can be found in
our previous work.49 All the MD simulations were conducted
with the LAMMPS50–52 molecular dynamics code. For the shock
simulation, we used ∼ 2.5 × 105 Pd atoms in the fcc structure.
Loading with various piston velocities along the three typical
orientations [100], [110], and [111], we deduced the shock
us-up relations for the three orientations according to the
Hugoniot jump condition

pxx = ρ0usup, (17)

where pxx is the stress along the loading direction and ρ0 is
the initial density of single-crystal Pd. It should be noted that
Eq. (17) is only valid for the jump condition. The obtained
us-up relation along the [100] direction is compared with
the experiments4,44–46 in Fig. 10. The us-up relation of the
[100] orientation loading is very close to the polycrystalline
experiment because of the preferred [100] orientation in
annealed polycrystalline metals.49

The Hugoniot P -T curve (Fig. 11) from the shock sim-
ulations greatly supports the results from the QHA, while
the Hugoniot P -V curve deviates from it slightly. The high-
pressure melting curves of Pd are also calculated using the
two-phase coexistence simulations, and the system contained
8000 Pd atoms in the fcc structure. The details of the
coexistence-phase simulations are described in our previous
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in comparison with experiments (Refs. 4,44–46).

144113-6



STRUCTURAL AND THERMODYNAMIC PROPERTIES OF . . . PHYSICAL REVIEW B 83, 144113 (2011)

2

4

6

8

10

12

 0  50  100  150  200  250  300  350

T
em

pe
ra

tu
re

 (
10

3  K
)

Pressure (GPa)

shock, [100]
melting curve, 2−phase

QHA

FIG. 11. (Color online) The Hugoniot P -T curve from QHA
in comparison with the results of shock simulations along [100].
The high-pressure melting curve of Pd from the coexistence-phase
simulations is also displayed.

work.49,53 The obtained melting point of Pd at 0 GPa is 1750 K,
consistent with the experimental value of 1828 K.41 Shocks
along [100] (5855 K at 226 GPa) lead to the superheating of
18.3%, compared with our coexistence-phase results (4782 K
at 226 GPa). This is similar to the shock melting behavior of Pt,
which has a superheating of 18% at 280 GPa.49 Unfortunately,
there are no high-pressure experimental data to check our
melting curve of Pd under high pressure.

The specific heat at constant volume is defined by

CV =
(

∂U

∂T

)
V

, (18)

where U is the internal energy of the system. The thermal
expansion caused by anharmonic effects results in a difference
between CP and CV . The difference between CP and CV can
be written as

CP − CV = α2
V (T )B0V T, (19)

where αV is the volume thermal expansion coefficient and B0

is the bulk modulus.
Figure 12 shows CV as a function of temperature at various

pressures. CV increases dramatically as pressure increases and
finally approaches 3R.

From Eq. (19), we derived CP as a function of temperature
at fixed pressures and compared the results with experimental
data32,38,54,55 in Fig. 13. Our 0-GPa results are in perfect
agreement with the experiments below 200 K and diverge
slightly from the experiments above 200 K, but the largest
deviation is not larger than 8% in the whole temperature
range.

The isothermal bulk modulus BT can be obtained from

BT = 1

α

(
∂P

∂T

)
V

. (20)

The adiabatic bulk modulus BS correlates with BT via

BS − BT = −αγBT T . (21)

Figure 14 shows the isothermal and adiabatic bulk modulus
as a function of temperature and pressure. Our 0-GPa results
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FIG. 12. (Color online) The specific heat capacity at constant
volume as a function of temperature at different pressures.

for BT are consistent with experiment.56 The two moduli both
decrease with increasing temperature at fixed pressures. The
temperature dependence of the two moduli becomes weaker
with increasing pressure and BS is somewhat larger than BT

in each set of data at the same pressure.

IV. DISCUSSION AND CONCLUSIONS

We performed a detailed investigation on the lattice dynam-
ics, elastic, and thermodynamic properties of Pd under pressure
using DFPT and classical molecular dynamics techniques.
We found that the fcc phase is stable up to 500 GPa and
5000 K compared with bcc and hcp. Using volume-conserving
strains, we calculated high-pressure and high-temperature
elastic constants for fcc Pd. The high-temperature results are in
agreement with the available experimental data. This indicates
that the contribution of the strained lattice at high temperature
to the free energy is small and can be omitted for the cubic
systems of Pd.

Our phonon dispersion curve at 0 GPa agrees with experi-
ment, apart from the unobserved phonon anomalies along the
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FIG. 13. (Color online) CP as a function of temperature. The
experimental data are from Refs. 38, 32, 55, and 54.
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[110] direction in the first BZ. Based on the QHA, we deduced
a wide range of thermodynamic properties for Pd, including
isotherms, the thermal expansion coefficient, and Hugoniot
curves. At ambient pressure, the obtained thermal expansion
coefficient is in very good agreement with experiment.

We investigated the thermodynamic properties of Pd
within the quasiharmonic approximation, which appears to
be accurate to at least half the melting temperature, as our
zero-pressure results show. At higher temperature anharmonic
effects start to play a progressively important role, but these
have been neglected in the present work. We also ignored the
effects on the lattice dynamical properties and the change of
electronic structures with increasing temperature, as well as
the interactions among phonons and the interactions between
electrons and phonons. The Hugoniot P -V and P -T curves
are well reproduced up to 300 GPa, compared with the
experimental data and our shock simulations. This supports
the validity of the QHA for describing the shock behavior
of Pd at extreme conditions. The work presented here, and in
particular the systematic investigation of the EOS, is important
for the use of Pd as a pressure calibrator in shock-wave and
diamond-anvil-cell experiments.
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