
Theoretical investigation of the high pressure structure, lattice dynamics,
phase transition, and thermal equation of state of titanium metal

Cui-E Hu,1,2,a� Zhao-Yi Zeng,1,2 Lin Zhang,1,b� Xiang-Rong Chen,2 Ling-Cang Cai,1 and
Dario Alfè3

1National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics,
Chinese Academy of Engineering Physics, Mianyang 621900, People’s Republic of China
2Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan
University, Chengdu 610065, People’s Republic of China
3Department of Earth Sciences and Department of Physics and Astronomy, Materials Simulation Laboratory
and London Centre for Nanotechnology, University College London, Gower street, WC1E 6BT,
London, United Kingdom

�Received 23 January 2010; accepted 24 March 2010; published online 4 May 2010�

We report a detailed first-principles calculation to investigate the structures, elastic constants, and
phase transition of Ti. The axial ratios of both �-Ti and �-Ti are nearly constant under hydrostatic
compression, which confirms the latest experimental results. From the high pressure elastic
constants, we find that the �-Ti is unstable when the applied pressures are larger than 24.2 GPa, but
the �-Ti is mechanically stable at all range of calculated pressure. The calculated phonon dispersion
curves agree well with experiments. Under compression, we captured a large softening around �
point of �-Ti. When the pressure is raised to 35.9 GPa, the frequencies around the � point along
�-M-K and �-A in transverse acoustical branches become imaginary, indicating a structural
instability. Within quasiharmonic approximation, we obtained the full phase diagram and accurate
thermal equations of state of Ti. The phase transition �-Ti→�-Ti→�-Ti at zero pressure occurs at
146 K and 1143 K, respectively. The predicted triple point is at 9.78 GPa, 931 K, which is close to
the experimental data. Our thermal equations of state confirm the available experimental results and
are extended to a wider pressure and temperature range. © 2010 American Institute of Physics.
�doi:10.1063/1.3407560�

I. INTRODUCTION

The titanium group elements titanium �Ti�, zirconium
�Zr�, hafnium �Hf�, and their alloys have tremendous scien-
tific and technological interest. These materials are very im-
portant in technology due to their mechanical strength, stiff-
ness, resistance to degradation with rise in temperature, light
weight, and corrosion resistance.1 The scientific interest for
these materials stem from the fact that they have a narrow d
band in the midst of a broad sp band, which has an impact on
their electronic and superconducting properties. The elec-
tronic transfer between the broad sp band and the narrow d
band is the driving force behind many structural and elec-
tronic transitions in these materials.2–4 Ti can also be alloyed
with other elements such as iron, aluminum, vanadium, and
molybdenum, to produce strong lightweight alloys for aero-
space, military, industrial processing, automotive, and other
applications. As the mechanical properties depend upon the
crystallographic phase, studies of the structural stability,
phase diagram, and the mechanisms of the phase transforma-
tions have been vigorously pursued.5–12

At ambient condition, Ti is in the hexagonal-close-
packed �hcp� crystal structure �� phase�, and then transforms
to a body-centered-cubic �bcc� structure �� phase� when the
temperature is higher than 1155 K.12 At room temperature,
the � phase transforms to the hexagonal � phase �three at-

oms per unit cell� when the pressure is increased. This �-�
transition is a representative example of martensitic transfor-
mations. The pressure driven �-� transformation in pure Ti
has significant technological implications in the aerospace
industry because the phase formation lowers toughness and
ductility.10 Recently, two high pressure phases �-Ti �dis-
torted hcp�11 and �-Ti �distorted bcc�5 have been found. Joshi
et al.7 carried out total energy calculations employing the
full-potential linear-augmented-plane wave �FPLAPW�
method to examine the stability of the � and � phases with
respect to the � and � structures. They found that the �
phase observed in the experiments is a metastable phase that
could be formed due to the shear stresses present in the ex-
periments, and the � phase is not at all stable at any com-
pression.

The thermal properties and phase boundaries among �-,
�-, and �-Ti have attracted wide attention. But the complete
pressure-temperature �P-T� phase diagram of Ti has not been
well studied theoretically due to the well-known soften pho-
non modes of the �-Ti at low temperatures. Ostanin and
Trubitsin9 first worked on the phase diagram of �-, �-, and
�-Ti using the Debye model. The fitting parameters of the
�-Ti were obtained without detailed justifications. Hennig et
al. studied the P-T phase diagram of Ti using molecular
dynamics �MD� simulations based on modified embedded
atom potential.6 But the calculated �-� phase boundary is
nearly independent on pressure, which is not consistent with
the experimental results. Recently, Mei et al. also studied the
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phase diagram using the combination of the density func-
tional theory �DFT� and the Debye model. But they shifted
the total energy of �-Ti down by 8 kJ mol−1 artificially to
match the experimental values, which should be treated with
caution. Experimentally, the shock wave Hugoniot measure-
ments showed that the metastable �-phase branched to 12
GPa where the transformation to the �-phase began.13 Zhang
et al.14 reported the phase diagram of Ti using the synchro-
tron x-ray diffraction. And they showed that the equilibrium
phase boundary of �-� transition has a dT /dP slope of 345
K/GPa, which is much larger than all the previous
results.12,15 In addition, during the �-� transition, their asso-
ciated entropy change is 0.57 J mol−1 K−1, which is also
much smaller than the previous datum 1.49 J mol−1 K−1.15

By in situ high-pressure diffraction experiments, Zhang et
al.16 also investigated the structural properties and thermal
equation of state �EOS� of Ti up to 8.2 GPa and 900 K. The
measured axial ratios �c /a� for both �- and �-Ti remain
constant over the experimental pressures, which is against
the diamond anvil cells �DAC� results for �-Ti.17 These dis-
putations still remain inconclusive and need to be clarified.

In our previous work,18 we only obtained the phase tran-
sition and EOS of �- and �-Ti by using the Debye model.
But in the present work, we describe a systematical investi-
gation of the high pressure behaviors of Ti, including accu-
rate structural and elastic properties, the phase diagram, and
thermal EOS. The present investigation is more complete
than our previous work.18 First-principles quantum-
mechanical calculations have been very successful in pre-
dicting the phase stability and EOS for a wide class of
crystals.19–21 Here, we first used static first-principles calcu-
lations within DFT to investigate the structural and elastic
properties of Ti under high pressure. Then we employed the
quasiharmonic approximation �QHA� to study the phase dia-
gram, thermal EOS, and thermodynamic properties. The or-
ganization of this paper is as follows; Sec. II, we give a brief
description of the theoretical computational methods. The
results and discussions are presented in Sec. III. A short con-
clusion is drawn in Sec. IV.

II. DETAILS OF CALCULATIONS AND MODELS

The static calculations were based on the DFT, and per-
formed with the VIENNA AB INITIO SIMULATION PACKAGE,22

using a highly accurate frozen core all-electron projector
augmented wave method.23 The exchange and correlation
potentials were treated within the generalized gradient ap-
proximation of Perdew–Burke–Ernzerhof.24 In order to avoid
core overlap at high pressure, we treated semicore states 3s
and 3p as valence electrons. This is at variance with our
previous work,18 where we used a potential in which the
valence electrons for Ti were in the 3d and 4s configuration.
The plane-wave energy cutoff was 700 eV, which is much
larger than 500 eV in the previous work. The calculations
were conducted with 18�18�10, 12�12�18, 20�20
�20, and 16�8�10 �-centered k meshs for �-, �-, �-, and
�-Ti, respectively. All necessary convergence tests were per-
formed and the self-consistence convergence of the energy
was set to 10−6 eV /atom. To obtain the equilibrium struc-

tures of unit cells at applied pressures, internal atomic posi-
tions were optimized until the residual forces became less
than 1�10−3 eV /Å. Phonon calculations were performed
using the small displacement method.25 The forces were ob-
tained using first-principles calculations with 54, 81, and 64
atoms for �-, �-, and �-Ti, respectively. To obtain the force
constants for the phonon calculations, atomic displacements
of 0.03 Å were employed.

The Helmholtz free energy F can be accurately separated
as

F�V,T� = Estatic�V� + Fphon�V,T� + Felec�V,T� , �1�

where Estatic�V� is the energy of a static lattice at zero tem-
perature T and volume V, Felec�V ,T� is the thermal free en-
ergy arising from electronic excitations, and Fphon�V ,T� is
the phonon contribution. Both Estatic�V� and Felec�V ,T� can
be obtained from static first-principles calculations directly.
The phonon vibrational contribution Fphon�V ,T� has been
calculated in the QHA

Fphon�V,T� =
kBT

�
�

BZ
dq�

s

ln�2 sinh�	�qs/2kBT�� , �2�

where �= �2
�3 /V is the volume of the Brillouin Zone �BZ�,
kB is the Boltzmann constant, 	 is the Plank constant divided
by 2
, and �qs are the phonon frequencies. Unfortunately,
within the present QHA, we are unable to obtain the free
energy of �-Ti, since imaginary frequencies of the soft
modes occur throughout the BZ. Though the �-Ti is unstable
at zero temperature, it is stable when the temperature is
higher than 1155 K.12 Here we also assume that the �-Ti is
stable at high temperature, and then we use the quasihar-
monic Debye model26,27 to calculate vibrational Helmholtz
free energies and other thermodynamic properties. By using
this model, the vibrational contribution Fvib can be expressed
as

Fvib��;T� = nkBT�9

8

�

T
+ 3 ln�1 − e−�/T� − D��/T�� , �3�

where n is the number of atoms per unit cell and D�� /T� is
the Debye integral. The Debye temperature � is expressed
by

� =
	

kB
�6
2V1/2n�1/3f���	BS

M
, �4�

where M is the molecular mass per formula unit, BS is the
adiabatic bulk modulus, and f��� is given by

f��� = 
3�2�2

3

1 + �

1 − 2�
�3/2

+ �1

3

1 + �

1 − �
�3/2�−11/3

, �5�

where � is the Poisson’s ratio and can be obtained from the
experimental elastic constants.28 It is clear that once the pa-
rameters are defined, the Debye model can be used also in
region where the �-Ti structure is not stable. We will do this
later in the paper for completeness, but with the understand-
ing that we will not assign any physical meaning to the prop-
erties obtained in this way.

The elastic constants are defined by means of a Taylor
expansion of the total energy, E�V ,��, for the system with
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respect to a small strain � of the lattice primitive cell volume
V. The energy of a strained system is expressed as follows:

E�V,�� = E�V0,0� + V0��
i

i�i�i +
1

2�
ij

Cij�i� j� j� , �6�

where E�V0 ,0� is the energy of the unstrained system with
equilibrium volume V0, i is an element in the stress tensor,
and �i is a factor to take care of Voigt index.29 For a cubic
structure we considered three independent volume-
nonconserving strains.30,31 A hexagonal crystal structure pos-
sesses five independent elastic constants, so we use five in-
dependent strains. The detailed accounts of the calculation
method of the elastic constants have been reported in the
previous calculations �hcp-Zr �Ref. 32� and bcc-Mo �Ref.
21��.

III. RESULTS AND DISCUSSION

A. Structural properties

To understand the properties of Ti at high pressure and
temperature, we must know accurate information on the lat-
tice structures first. We calculated the static energy-volume
�E-V� curves for �-, �-, �-, and �-Ti. The equilibrium vol-
ume �V0�, the static energy �E0�, the bulk modulus �B0�, and
its pressure derivative �B� and B�� of �-, �-, and �-Ti, which
are obtained by fitting the E-V data to the fourth-order finite
strain EOS,33 are listed in Table I. The agreement of our
results with the experimental data11,16,17 is satisfactory. At
zero pressure and temperature, the stable phase is �-Ti. By
comparing the enthalpies of �- and �-Ti, we found that a
transformation from the �-Ti phase to the �-Ti phase would
appear at a negative pressure of �5.0 GPa, which is consis-
tent with other theoretical data �3.0 GPa �Ref. 34� and �3.7
GPa.35 The equilibrium lattice parameters of �-Ti are a
=2.94, b=5.09, and c=4.65 Å. The bulk modulus B0 and its
pressure derivative B� are 105.43 GPa and 3.48 GPa, respec-
tively. The phase transition from �-Ti to �-Ti occurs at 110
GPa, consistent with the experimental datum 116�4 GPa.11

At the transition pressure, the lattice parameters for �-Ti are
a=2.39, b=4.51, and c=3.96 Å, which also agree with the
experimental data a=2.388, b=4.484, and c=3.915 Å at 118
GPa.11 Meanwhile, the internal parameter varies from 0.166
at zero pressure to 0.108 at 110 GPa �the experimental datum
is 0.10 at 118 GPa�.11 The calculated 0 K isotherms are

shown in Fig. 1, together with the experimental results.11,17

The present EOS agrees very well with the experimental data
at all range of pressure.

At zero pressure and temperature, �-Ti has an axial c /a
ratio of 1.583, smaller than the ideal value 1.633 for an hcp
crystal. This behavior in hcp metals is generally attributed to
highly anisotropic bonding properties, namely a strongly co-
valent bond character, with a component aligned along the
c-axis.16 The pressure dependence of the lattice parameters
and the corresponding c /a ratios for �- and �-Ti are illus-
trated in Figs. 2�a� and 2�b�. It can be seen that there are
nearly identical axial compressibility along the a- and c-axis
for �-Ti. As a result, the ratio c /a varies only slightly under
pressure, indicating an isotropic compression, which con-
firms the latest experiment.16 But the DAC experiments re-
vealed that the c /a ratio of the �-Ti increases gradually from
1.583 at atmospheric pressure to 1.622 at 14.5 GPa.17 For
�-Ti, the c /a ratio in the present work stays about constant
to 0.617 at high pressure. From the experiments by Zhang et
al.,16 we can see that the c /a ratio stays constant up to 8.2
GPa. Whereas, the c /a ratio in DAC experiments raises
slightly from 0.609 at ambient pressure to 0.613 at 16 GPa.17

The increase in the c /a ratio �both for �- and �-Ti� in the
DAC experiments may be attributed to the uniaxial compres-
sion in nonhydrostatic conditions. Zhang et al. provided a

TABLE I. The equilibrium axial ratio c /a, volume V0 �Å3 /atom�, zero pressure bulk modulus B0 �GPa�,
pressure derivative B�, B� �1/GPa�, and static energy E0 �eV/atom�.

c /a V0 B0 B� B� E0

� Present 1.583 17.38 110.02 3.59 �0.0477 �7.945
Expt. �Ref. 17� 1.583 17.70�0.05 117.0�9.0 3.9�0.4
Expt. �Ref. 11� 1.585 17.74 102.0 3.9
Expt. �Ref. 16� 1.587 17.64 114.0�3.0 4.0

� Present 0.618 17.14 110.51 3.60 �0.0462 �7.951
Expt. �Ref. 17� 0.609 17.40�0.08 138.0�10.0 3.8�0.5
Expt. �Ref. 11� 0.614 17.37 142.0 3.9
Expt. �Ref. 16� 0.613 17.29 107.0�3.0 4.0

� Present 17.23 105.14 3.40 �0.0527 �7.836

FIG. 1. �Color online� Zero temperature isotherms of Ti. The solid lines are
the present work. The solid and open symbols are experimental data from
Vohra and Spencer �Ref. 11� and Errandonea et al. �Ref. 17�, respectively.
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uniform compression in all six directions of a cubic cell,16

which leaded a quasihydrostatic compression similar to the
theoretical hydrostatic condition. Our results generally agree
with theirs. The other available calculated results35 are also
shown in Fig. 2�b�. For the similar hcp metal �-Zr,36 the
calculations showed a constant axial ratio 0.623 at different
pressures. In addition, in our previous calculations on �-Fe,
another hcp transition metal, we also found that the c /a ratio
increases slightly �less than 0.01� with increasing pressure.37

Experimentally, Weinberger et al.38 investigated the hcp
metal Os, and showed a nearly constant c /a ratio up to 30
GPa along hydrostatic stress conditions. So the constant c /a
ratios under hydrostatic compression are reasonable proper-
ties in both �- and �-Ti.

B. Elastic properties

For each volume of the unit cell, the complete sets of
elastic constants of Ti were deduced from a polynomial fit of
the strain energy for specific deformations. Ten symmetric
values of � in the range �5% were used to make the strain
energy fit at each strain type. For pressure, the value was
calculated from the static EOS. The obtained elastic con-
stants for �-, �-, and �-Ti are listed in Table II, together with
the experimental data.28,39 The elastic constants of �-Ti at
equilibrium structure parameters are in good agreement with
the experimental data with errors of less than 10%. Unfortu-
nately, no experimental data for �- and �-Ti at ambient con-
dition are available for comparison. From Table II, one can
see that all the elastic constants increase with increasing
pressure except C44 of �-Ti.

The theoretical polycrystalline elastic modulus can be
determined from an appropriate combination of elastic con-
stants. The average isotropic bulk modulus B and shear
modulus G of polycrystalline can be calculated according to

FIG. 2. �Color online� Lattice parameters a, c, and axial ratio c /a as a
function of pressure for �a� �-Ti and �b� �-Ti. The solid and open circles are
the experimental data from Zhang et al. �Ref. 16� and Errandonea et al.
�Ref. 17�, respectively.

TABLE II. The calculated elastic modulus �GPa�, Poisson’s Ratio � of Ti under pressure �GPa� at 0 K. The experimental data �Refs. 28 and 39� for �-Ti were
measured at room pressure �RP� and 293 K, and for �-Ti were at 1273 K.

Ti P V /V0 C11 C12 C13 C33 C44 B Ba Bc G E �

� 0 1.00 175.0 82.6 74.7 196.0 41.8 112.1 324.3 363.4 41.0 109.7 0.337
RPa 162.4 92.0 69.0 180.7 46.7
RPb 106.43 43.99 115.98 0.318
3.56 0.97 186.2 96.5 85.9 215.0 41.7 124.7 356.5 415.1 40.7 110.0 0.353
7.66 0.94 199.1 111.8 98.2 236.6 41.1 138.7 392.2 474.0 40.2 109.5 0.368
12.38 0.91 207.8 132.9 111.1 258.0 39.8 153.3 430.2 533.3 37.0 102.8 0.388
17.78 0.88 218.9 154.9 128.2 276.4 37.5 170.3 475.3 600.3 33.6 94.7 0.407
23.95 0.85 230.4 180.3 147.4 288.8 33.9 188.5 531.5 648.1 28.7 82.0 0.427
31.08 0.82 232.5 220.2 168.4 299.7 28.5 208.6 601.4 681.3 16.1 47.2 0.462

� 0 1.00 199.2 81.5 50.4 247.1 54.8 112.1 326.8 357.3 53.7 138.9 0.293
3.57 0.97 215.1 93.7 61.1 269.9 57.5 125.6 363.5 406.6 56.0 146.3 0.306
7.70 0.94 232.9 107.7 71.6 293.5 60.1 139.9 404.3 454.4 58.4 153.7 0.317
12.44 0.91 251.7 121.4 81.7 316.4 62.3 154.2 446.1 499.4 60.9 161.4 0.326
17.87 0.88 274.8 136.8 95.3 343.9 64.2 171.8 496.3 558.4 64.0 170.8 0.334
24.10 0.85 301.0 151.9 110.7 373.9 65.6 191.1 550.3 625.4 67.7 181.7 0.342
31.37 0.82 330.1 168.9 128.1 405.3 66.3 212.5 611.2 697.6 71.4 192.7 0.349

� 0 1.00 91.8 114.4 40.8 106.9 �14.1 �44.4 0.569
RPb 97.7 82.7 37.5 87.7

aReference 39.
bReference 28.
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Voigt–Reuss–Hill approximations.40 The polycrystalline
Young’s modulus �E� and the Poisson’s ratio ��� are then
calculated from B and G as follows:

E =
9BG

3B + G
, � =

3B − 2G

2�3B + G�
. �7�

To qualify the mechanical anisotropy of �- and �-Ti, one can
define bulk modulus along the a-axis �Ba� and the c-axis �Bc�
as follows:41

Ba = a
dp

da
=

�

2 + �
, Bc = c

dp

dc
=

Ba

�
, �8�

� = 2�C11 + C12� + 4C13� + C33�
2, �

=
C11 + C12 − 2C13

C33 − C13
. �9�

The values of B, Ba, Bc, G, E, and � are also shown in Table
II. Both G and E of �-Ti have the trend to decrease with the
increasing pressure. In our calculated pressure range, the
maximal change of Ba /Bc is 0.1 for �-Ti and 0.038 for �-Ti,
suggesting that the mechanical behavior of these two struc-
tures varies little under compression. This also confirms our
results that the axial ratios of both �-Ti and �-Ti are nearly
invariant under compression. The Poisson’s ratio of �-Ti in-
creases more quickly than that of �-Ti. At high pressure, the
Poisson’s ratio of �-Ti approaches to 0.5, which indicates the
instability under compression. For the bcc structure �-Ti, we
can see that the values of G and E are negative, indicating
the instability. The Poisson’s ratio is larger than the liquid
value of 0.5, which is physically implausible since �-Ti is a
solid.

For the cubic structure the mechanical stability under
isotropic pressure can be judged by

C̃44 � 0, C̃11 � �C̃12�, C̃11 + 2�C̃12� � 0 �10�

and for the hexagonal structure, the mechanical stability is
judged by

C̃44 � 0, C̃11 � �C̃12�, C̃33�C̃11 + C̃12� � 2C̃13
2 , �11�

where

C̃�� = C�� − P�� = 1,3,4�, C̃12 = C12 + P, C̃13 = C13 + P .

�12�

We now apply the stability criterion for the three structures.
For �-Ti the C11 is smaller than C12, which indicates the �
phase is unstable. For �-Ti, when the pressure is larger than

24.2 GPa at 0 K C̃11− �C̃12��0, which suggests that the �-Ti
becomes mechanically unstable at this pressure. For the
�-Ti, we can see that it is stable in whole range of calculated
pressures.

The isotropically averaged aggregate velocities can be
obtained as follows:

VP = ��B + 4/3G�/��1/2, VB = �B/��1/2, VS = �G/��1/2,

�13�

where VP, VB, and VS are the compressional, bulk, and shear
sound velocities, respectively. The aggregate velocities ver-
sus pressure are shown in Fig. 3. As pressure increases, the
VB of �-Ti and �-Ti are nearly equivalent and increase
monotonically. At zero pressure, the VP and VS for �-Ti are
smaller than those of �-Ti. With increasing pressure, the VP

of �-Ti increases with pressure significantly while the VS

increases only a little. For �-Ti, the VS has a trend to decline.
The softening of the VS also indicates the instability of �-Ti
under pressure.

C. Phonon dispersions

The calculated phonon dispersion curves of �-, �-, and
�-Ti along several symmetry directions at equilibrium struc-
tures are displayed in Figs. 4�a�–4�c�. For �-Ti, the calcu-
lated phonon dispersion reproduces the overall trend of the
inelastic-neutron-scattering measurement by Stassis et al.42

At the K point, the calculated high-energy optical frequen-
cies show the largest deviations from experiment. However,
the agreement of the acoustic branches is quite good. There
are no experimental data available for high-pressure �-Ti,
but our results are consistent with some previous
calculations.6,8 In contrast to �-Ti, the deviations for the op-
tical branches of �-Ti are smaller and more uniform across
the BZ.

The predicted 0 K phonon dispersion of �-Ti is shown in
Fig. 4�c�, together with the experimental data measured at
1293 K.43 The soft mode around P point in L-�111� is respon-
sible for the � to � transformation, while the unstable pho-
non branch in the T-�110� direction corresponds to the � to �
transformation.43 Though the present phonon dispersions re-
flect the instability, a large discrepancy exists. The reason is
that the QHA only includes the part of anharmonic effects
due to the volume dependence of the phonon frequencies,
with the phonon frequencies at a given volume independent
of temperature �a part from a possible dependence on the

FIG. 3. �Color online� The aggregate sound velocities �VP, VB, and VS� of �-
and �-Ti vs pressure at 0 K.
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electronic temperature�. But in real crystals this is not the
case. The effects of anharmonicity make each phonon fre-
quency to suffer a shift. At high temperature, these shifts are
proportional to the temperature and depend on frequencies.43

There should be larger anharmonic effects when the tempera-
ture rises up to the �-� phase transition point.

We repeated the phonon calculations for other ten differ-
ent pressures of both �- and �-Ti. Some of the dispersion
curves are plotted in Figs. 5�a� and 5�b�. For �-Ti, the pho-
non frequencies increase with increasing pressure. But for

�-Ti, all the frequencies decrease with increasing pressure,
except the highest-energy optical frequency. As pressure in-
creases, the softening becomes more and more obvious. Un-
der compression �P=35.9 GPa�, the frequencies around the
� point along �-M-K and �-A in the transverse acoustical
�TA� branches soften to imaginary frequencies, indicating the
structural instability. This is consistent with our static elastic
constant calculations, where the �-Ti phase is unstable when
the pressure is larger than 24.2 GPa. The modes softening
behaviors are related to the particular mechanism which is
responsible for the phase transition. For the �-Ti phase, the
phonon dispersions at different pressures are not shown here,
as the variations in the dispersion curves are mainly depen-
dent on temperature and not on pressure.

The mode Grüneisen parameter ��q, j� describes the vol-
ume dependence of the frequency of the jth vibration mode
of the lattice and is defined as

��q,j� = − d�ln���q,j���/d�ln �� . �14�

Figure 6 displays the dispersion curves of mode Grüneisen
parameters of �- and �-Ti along the high symmetry direc-
tions at 0 GPa. The mode Grüneisen parameters of �-Ti are

FIG. 4. Phonon dispersion curves of �a� �-, �b� �-, and �c� �-Ti at 0 GPa
and 0 K. The solid circles in �a� and �c� are the experimental data measured
by Stassis et al. �Ref. 42� and Petry et al. �Ref. 43�, respectively. The
experimental data for �-Ti were measured at 1293 K.

FIG. 5. �Color online� Phonon dispersion curves of �a� �-Ti and �b� �-Ti at
different pressures.
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positive throughout the whole BZ for all three branches. But
there are several negative branches of �-Ti, especially along
the �-A direction, which indicate the instability. It can be
seen that the Grüneisen parameter is mode dependent and
that the longitudinal modes are more sensitive to compres-
sion than the transverse ones.

D. Phase diagram

The difference of Gibbs free energy �G of �- and �-Ti
with respect to �-Ti can be obtained with two methods. The
first is using the phonon density of states �DOS�, and obtain-
ing the free energy according to Eq. �2�. Using this method,
we find that the phase transition from �-Ti to �-Ti occurs at
146 K at zero pressure. Since the phonon modes of �-Ti
have imaginary frequencies, this prevents us from calculat-
ing the free energy using the DOS directly, so we need to
employ the alternative approach of obtaining the free energy
using the quasiharmonic Debye model. We can also calculate
the free energies of �- and �-Ti using this approach. Within
the Debye model, the � phase transforms to � phase at 152
K, and then transform to the � phase at 1143 K, which agree
with the corresponding transition temperatures 186 and 1114
K from Mei et al.8 By comparing the Gibbs free energy of
�-, �-, and �-Ti at different pressures and temperatures, we
can obtain the phase diagram of Ti. The full phase diagram
of Ti is shown in Fig. 7, which generally agrees with previ-
ous theoretical6,8 and experimental12,14 data. The predicted
triple point located at 9.78 GPa, 931 K, which is close to the
experimental data 9 GPa, 940 K.12

At 300 K, the �-� transition occurs at 2.02 GPa �using
the phonon DOS� and 2.16 GPa �using the Debye model�,
which are in excellent agreement with experimental data
2.0�0.3 GPa estimated from samples under shear
stress.44,45 The slope �dT /dP� of the �-� boundary �76
K/GPa from phonon DOS and 81 K/GPa from Debye model�
is close to the previous studies from Young,12 but signifi-
cantly different from the findings by Zhang et al.14 �345
K/GPa�. The experiments from Zhang et al. display a pecu-
liar feature, i.e., if one extrapolates their �-� phase boundary
from 300 to 0 K, a wrong ground state would be found at

low temperature. Our slopes of the �-� and �-� boundary
are �21 K/GPa and 2.4 K/GPa, respectively. But Hennig et
al.6 showed that the transition temperature between the � and
� phase is nearly independent of pressure. Their classical
MD results deviated from all other theoretical and experi-
mental data, which could be due to transferability issues of
their modified embedded atom model. The parameters were
obtained by fitting energies, defect energies, forces, and elas-
tic constants to DFT calculations at zero pressure and tem-
perature. But the validity of those parameters at high pres-
sure and temperature is unknown.

E. Thermal EOS

The thermal EOS is a measurement of the relationship
among pressure, volume, and temperature �P-V-T�. The cal-
culated isotherms and isobars obtained by the quasiharmonic
Debye approximation are compared with experiments in
Figs. 8�a� and 8�b�. The 0 K isotherm �including zero point
motion� is almost the same as the one at 300 K and this is
due to the small free energy contribution from the lattice
vibrations at 300 K. At 300 K, the volume expands 0.61%
��-Ti� and 0.58% ��-Ti� comparing with the corresponding
static values. For �- and �-Ti, our isotherms agree well with
the experimental data with increasing pressure.16 The calcu-
lated volume of �-Ti at 1300 K and 0 GPa is 18.16 Å3,
which agrees well with the experimental data 18.13 Å3 �at
1273 K �Ref. 46�� and 18.22 Å3 �at 1293 K �Ref. 43��. For
the isobars, when the temperature goes from 0 to 1500 K at
0 GPa, the calculated volume expands about 5.73% ��-Ti�
and 5.75% ��-Ti�. Under high pressure, the thermal expan-
sion is suppressed quickly by pressure. Our isobar for �-Ti at
8 GPa �the right panel of Fig. 8�b�� is consistent with the
experimental data at 8.1 GPa.

The accurate thermodynamic properties as functions of
pressure and temperature can directly provide the valuable
information for understanding the phase diagram and the dy-
namical response of materials under extreme conditions. The

FIG. 6. �Color online� Mode Grüneisen parameter � of �-Ti and �-Ti at
zero pressure.

FIG. 7. �Color online� Phase diagram of Ti. The thin solid and thick grey
lines are the present results. The dashed line and dashed-dotted line are the
theoretical results from Mei et al. �Ref. 8� and Henning et al. �Ref. 6�,
respectively. The dashed-dotted-dotted and dotted lines are the experimental
data from Zhang et al. �Ref. 14� and Young �Ref. 12�, respectively.
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thermal pressure with respect to that of �-Ti at 300 K as
functions of volume and temperature are shown in Fig. 9. At
low temperature, the thermal pressures show little volume
dependence. At elevated temperature, they clearly increase
but only slightly with increasing volume. At the same condi-
tion, the thermal pressure of �-Ti is larger than that of �-Ti
and the thermal pressure of �-Ti is the smallest one. The
calculated data by Zhang et al.16 at 900, 673, and 300 K for
�-Ti are also shown in Fig. 9. Our results are larger than that
of them. In addition, Zhang et al. considered that the thermal
pressure is independent of volume and have the same con-
stant slope of 0.00282 GPa/K for almost all the volumes. But
in our calculations, the slopes increase from 0.0038, 0.0039,
and 0.0036 at 16 Å3 to 0.0040, 0.0042, and 0.0039 at 18 Å3

for �-, �-, and �-Ti, respectively. The behavior reported by
Zhang et al.16 may be due to the inflexibility of their third

order Birch–Murnaghan EOS in the calculations. The similar
volume dependence of the slopes of the thermal pressure has
also been found in our previous investigation on the bcc
Mo.21 Meanwhile Sha and Cohen47 and Liu et al.48 also
found that the slopes of the thermal pressure were strongly
volume dependent for both bcc Fe and Ta.

The temperature and pressure dependences of BT and BS

of Ti are illustrated in Figs. 10�a� and 10�b�. The BT and BS

are nearly constant from 0 to 100 K and then they decrease
almost linearly with increasing temperatures. Our values for
�-Ti are lower than the corresponding experimental
ones.46,49 As temperature increases up to 1000 K, the devia-
tion is about 3%. The reason for the difference is probably
due to anharmonic effects in the thermal expansion. At 1300
K, the BT of �-Ti is 83.6 GPa in the present work, which
consists with the experimental datum 87.7 GPa at 1273 K.28

At room temperature, the temperature derivative of BT and
BS of �-Ti are −0.0175 GPa K−1 and −0.010 GPa K−1, re-
spectively. Our results agree with the datum
−0.011�7� GPa K−1 for BT based on the measured P-V-T
data.16 The first and second order pressure derivative of BT

�B� and B�� versus temperature and pressure are shown in
Figs. 11�a� and 11�b�, respectively. The first order pressure
derivative B� increases with increasing temperature at a
given pressure and decreases with increasing pressure at a
given temperature. Whereas, the variation in the second or-
der pressure derivative B� is opposite to that of B�.

Figure 12 shows the entropy of Ti as functions of tem-
perature and pressure. From Fig. 12�a�, we can see that at the
�-� transition temperature 146 K, the entropy changes be-
tween the �- and �-Ti is 1.3 J mol−1 K−1, consistent with
the datum 1.49 J mol−1 K−1 from previous study,15 but larger
than the recent investigation 0.57 J mol−1 K−1.14 The reason
for the small value of 0.57 obtained by Zhang et al. is that

FIG. 8. �Color online� Thermal EOS of �a� �-, �b� �-, and �-Ti, together
with the experimental data �solid symbols� at the same condition �Ref. 16�.
The solid circles in the right plane of �b� are the experimental data at 8.1
GPa �Ref. 16�, the grey line in the right plane of �b� locate at T=1100 K.

FIG. 9. �Color online� The thermal pressure as a function of volume and
temperature. The solid triangles, circles, and squares in the left panel of the
figure are the calculated data at 900, 673, and 300 K for �-Ti �Ref. 16�. The
grey line in the right panel of the figure is the linear fitted results for the
calculated data �open circles� �Ref. 16�.
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they calculated the entropy change using the Clausius–
Clapeyron equation and the dT /dP of their �-� boundary is
too large. At the �-� transition temperature 1143 K, the en-
tropy changes between the �- and �-Ti is 5.2 J mol−1 K−1,
which is consistent with the experimental datum.50 The large
entropy change between the �- and �-Ti demonstrates that
the �-� phase transition is driven by entropy. From Fig.
12�b�, it is found that the entropy decrease with the increas-
ing pressure and the entropy change among �-, �-, and �-Ti
keeps nearly constant at high pressure.

IV. CONCLUSIONS

We employed first-principles calculations to investigate
the structures, elastic constants, and phase transitions of Ti.
At zero pressure and temperature, the stable phase is �-Ti
and it transforms to �-Ti at 110 GPa. The static EOS agrees
with the experiments at all range of pressure. The axial ratios
of both �-Ti and �-Ti are nearly invariant under compres-
sion. From the high pressure elastic constants, we find that
the �-Ti is unstable when the applied pressure is larger than
24.2 GPa, while the �-Ti is mechanical stable at all range of

calculated pressures. The calculated phonon dispersion
curves agree well with experiments. Under compression, we
captured a large softening around the � point of �-Ti. As
pressure increases, the softening becomes more and more
obvious. When the pressure is raised to 35.9 GPa, the fre-
quencies around the � point along �-M-K and �-A in the TA
branches soften to imaginary frequencies, indicating a struc-
tural instability. For �-Ti, all the frequencies are positive
under pressure.

Within QHA, the phase boundary of �-Ti and �-Ti from
phonon DOS and quasiharmonic Debye model are consistent
with each other. Based on the agreement of our calculated
�-� boundary with previous experiments and calculations,
the full phase diagram and accurate thermal EOS of Ti are
obtained. The phase transition �-Ti→�-Ti→�-Ti at zero
pressure occurs at 146 and 1143 K. The transition pressure
from �-Ti to �-Ti at 300 K is 2.02 GPa and the predicted
triple point is at 9.78 GPa, 931 K, which is close to the
experimental data. Thermodynamic properties are very im-
portant to extrapolate thermophysical properties to higher
pressures and temperatures. We predicted the thermal EOS
properties including isotherms, isobars, and thermal pressure,
which confirmed the latest experimental results and were ex-
tended to a wider pressure and temperature range.

FIG. 10. �Color online� The isothermal bulk modulus BT and adiabatic bulk
modulus BS vs �a� temperature at 0 GPa and �b� pressure. The solid and open
stars are the experimental data from Ogi et al. �Ref. 46� and Fisher et al.
�Ref. 49�, respectively. The two grey vertical lines in �a�, including Figs.
11�a� and 12�a�, located at 146 K and 1143 K, respectively.

FIG. 11. �Color online� The first and second order pressure derivative of BT

�B� and B�� vs �a� temperature at 0 GPa and �b� pressure.
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