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The Earth’s core is a ball of swirling hot metal at the centre of our planet, with a radius

roughly one half of the Earth’s radius. It is formed by two parts: a solid inner core, with

a radius of 1221 km, surrounded by a shell of liquid which extends up to 3480 km from

the centre. It is widely believe that the Earth’s core is mainly formed by iron, or iron

with up to 5 – 10% of nickel. It is also known that the core must contain a significant

fraction of light impurities, in the region of 2 – 3% in the solid and 6 – 7% in the liquid.

The nature of these light impurities is unknown. The temperature of the core is also

inaccessible to direct probing. Here we present a theoretical study on the temperature and

the composition of the Earth’s core. The investigation is based on the application of the

implementation of quantum mechanics known as density functional theory. We shall

show that these techniques are very accurate at predicting the properties of iron, and

therefore can be usefully used to study the properties of the core. We show that by

combining these techniques with direct observations it is possible to predict the

temperature of the core, in particular the temperature at the boundary between the solid

and the liquid core (the ICB), and put constraints on its composition. The result of this

study is that the temperature of the ICB is probably in the region of 5400 – 5700 K and

that the outer core contains a significant fraction (8 – 13%) of oxygen. As the Earth cools

down the solid core grows and expels oxygen in the liquid. Since oxygen is lighter than

iron it rises in the liquid, and its gravitational energy is available to drive the convective

motions in the liquid core that are responsible for the generation of the Earth’s

magnetic field.

1. Introduction

Ever since the publication of Voyage au centre de la Terre

(Journey to the Centre of the Earth) by Jules Verne in 1864

human knowledge about the interior of our planet has

certainly improved significantly. However surprising this

might seem though, virtually all our current knowledge is

based on indirect evidence, as the deepest holes that

mankind has been able to drill are only a few kilometres

deep (the record belongs to the Kola Superdeep Borehole

on the Kola Peninsula, a project started in 1970 which

achieved a depth of 12 262 m in 1989 [1]).

Given the great success of humankind at exploring space

in the past few decades, one might be forgiven for asking

why similar achievements have not been obtained in

directly exploring the interior of our own planet. There
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are two main reasons for this: high pressure and high

temperature. The conditions of temperature and pressure

under which we have evolved (P¼ 1 bar, T¼ 300 K) are, in

a sense, very close to those found in outer space, where the

pressure is (nearly) zero and the temperature can only

change by a few hundred degrees (the absolute minimum of

temperature is 0 K), provided we do not go too near to

stars. For this reason humankind is being very successful at

exploring space, including the outer planets in the solar

system, and has even been able to send some probes into

interstellar space with the Voyager 1/2 missions which are

still pacing their way towards other stars and planetary

systems. When it comes to going inside the Earth though

the rapid increase in temperature and pressure with depth

make the challenges quickly unsurmountable, although

there have been suggestions on how one might envisage

sending a probe even to the Earth’s core [2].

We therefore owe essentially all our knowledge about the

interior of the Earth to indirect measurements based on the

observation of seismic events. When an earthquake strikes

somewhere near the surface of the Earth (earthquakes are

due to fractures in the crust and the upper mantle, and

most of them are relatively shallow, though they can

happen even up to 800 km depth) seismic waves travel

through the Earth, and their speed and directions depend

on the characteristics of the materials they travel into.

Monitoring stations are distributed all around the globe,

and by analysing the travel times, the frequencies and the

amplitudes of the seismic waves that arrive at these

stations, it is possible to infer the properties of the materials

inside the Earth (see figure 1). Coupling these with

measurements of free oscillations (i.e. global oscillations

of the Earth, which after an earthquake rings like a bell)

and the Earth’s angular momentum, we now know that the

structure of the Earth can be broadly described in terms of

three main shells. The outermost is the crust, with a

thickness of only a few tens of kilometres, and it is mainly

formed by silicates (rocks). Below the crust we find the

mantle, which is customarily divided into an upper mantle

and a lower mantle, separated by a transition zone.

The mantle makes up most of the volume of the Earth,

extending to a depth of 2870 km, almost half way towards

the centre, and like the crust is also mainly formed by

silicates, and in particular by Mg(Fe)SiO3 with some

significant fraction of Mg(Fe)O and SiO2. Below the

mantle we find the core, which is divided into an outer

Figure 1. Earth’s structure and schematic picture of travelling seismic waves inside the Earth.

64 D. Alfè et al.
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liquid core extending from 2870 to 5125 km depths and an

inner solid core below that, down to the centre of the Earth

at 6346 km depth.

Figure 2 reports some of the Preliminary Reference Earth

Model data, best known as PREM [3], and in particular the

seismic velocities, the density and the pressure as a function

of depth. The figure shows very remarked discontinuities in

the seismic velocities and the density at about half of the

Earth radius, where the core begins. Here Vs represent the

shear waves, and Vp the pressure waves. Pressure waves are

oscillations parallel to the directions of propagation, very

much like sound waves. Shear waves instead have their

direction of oscillation in a plane orthogonal to the

direction of propagation, and for this reason cannot be

supported by fluids. The disappearance of shear waves at

2870 km indicates that the core is liquid. The second

interesting discontinuity is at a depth of 5125 km, where the

shear waves can be supported by a solid core. The large

discontinuity in the density, which essentially doubles at

2870 km, is due to the completely different nature of the

core which obviously cannot be made of the same materials

that make up the mantle. It is also necessary for this

material to be a metal, as the only credible mechanism for

the generation of the Earth’s magnetic field is the presence

of convective currents in the liquid part of the Earth’s core.

The only metal that is abundant enough in the solar

system and that almost matches the density of the core is

iron, and it is widely believed today that the Earth’s core is

mainly made by iron, with possibly up to 10% of nickel.

This is also the main composition of meteorites falling on

Earth, which keep a record of the building blocks of the

early solar system. Pure iron however, or the iron/nickel

mixture, is too dense, and therefore the core must also

contain a fraction of unknown light impurities which

reduce the density by *7% in the liquid with respect to the

density of pure iron under the same pressure – temperature

conditions. The leading light impurity candidates are S, Si

and O, although also C and H have sometimes been

suggested [4].

At 5125 km we find the boundary between the solid and

the liquid, and a second clear discontinuity is evident; the

solid core is 6.5+ 1.4% more dense than the liquid,

according to the latest estimates [5]. This discontinuity

cannot be entirely attributed to the density change on

melting and must be due to partition of light impurities

between solid and liquid. We shall see that this partitioning

plays a fundamental role in constraining the chemical

composition of the Earth’s core.

Understanding the Earth’s core is obviously important

for a number of reasons. A large part of the energy which

drives the dynamics of our planet comes from the cooling

of the core (a large part also comes from the decay of

radioactive material in the mantle and, possibly, in the

core). Moreover, the generation of the Earth’s magnetic

field is believed to be mainly driven by compositional

convection in the liquid core, with light elements being

released at the boundary between the liquid and the solid

(the inner core boundary, or ICB) as the solid core freezes,

and their gravitational energy being efficiently used to drive

convection. The distribution of the temperature inside the

planet, the geotherm, is also crucial to understand convec-

tion and heat transfer.

In order to estimate the geotherm in the core people

usually assume that the liquid is in a state of turbulent

convection, which implies that the distribution of the

temperature in the core follows an adiabat, and this leads to

the following expression for the dependence of temperature

T on radius r:

dT=dr ¼ �ð@T=@pÞS dp=dr ¼ �rgð@T=@pÞS ¼ rgTg=KS;

ð1Þ

Figure 2. Structure of the Earth from seismic data: (a) velocities vP and vS of longitudinal (pressure) and transverse (shear)

seismic waves, (b) density, and (c) pressure as a function of depth.

Temperature and composition of the Earth’s core 65
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where p is pressure; the second equation follows from the

first, since the variation of pressure with radius is dp/dr¼
7rg, with r the mass density and g the acceleration due to

gravity at radius r; the third equation expresses the

adiabatic variation of T with p in terms of the Grüneisen

parameter g and the adiabatic bulk modulus KS. Since KS

and g can be obtained from seismic measurements, the only

unknown is g, which can be estimated from experiments [6]

or, as we shall see below, from first principles calculations.

In order to integrate equation (1) one needs at least one

fixed point. A long-established strategy to obtain a fixed

point is to exploit the presence of the ICB, which by

definition must be at the melting temperature. Since the

pressure of the ICB is accurately known (329 GPa), and

since the main constituent of the core is Fe, a first

approximation of the temperature of the ICB can be found

by measuring the melting temperature of Fe at 329 GPa.

The past couple of decades have seen strenuous efforts

dedicated to the solution of the problem of determining the

high pressure melting behaviour of Fe [7 – 17]. In parti-

cular, the only data available on the temperature of iron at

core conditions are those obtained in shock wave experi-

ments [15 – 17]. In these experiments a high velocity

projectile is fired at the sample, and high pressure, high

temperature conditions are produced upon impact. The

natural outcome from these experiments is the relation

between the volume and the pressure of the sample, which

follows the so-called Hugoniot equation of state, p(V). To

identify melting one uses the discontinuity in the speed of

sound, which can also be measured accurately, as this

changes significantly when the system transforms from

solid to liquid. The temperature is not readily available in

these experiments, but this can be obtained by integrating

an appropriate thermodynamic relation from a known

starting point [16]. For this, one needs to know the

Grüneisen parameter and the constant volume specific

heat, which need to be estimated or, as mentioned above,

calculated with the help of first principles simulations.

At lower pressure it is possible to perform diamond anvil

cell experiments, in which the sample is compressed inside a

pressure medium and the temperature, in principle, is

directly measured. However, these experiments are not easy

to perform either, and they are prone to a whole range of

technical problems: for example, the pressure is deduced by

the volume of the pressure medium, ruby or gold are two

possibilities, but their equation of state is still being

debated; the temperature is sometimes measured by fitting

the electromagnetic radiation emitted by the sample to the

Planck function, but this can only be done after some

assumption on the emissivity of the sample as a function of

the wavelength. Moreover, it was recently pointed out that

chromatic effects induced by the diamond windows can be

substantial, and may lead to an underestimate of melting

temperatures of several hundred degrees [14]. Finally, there

is the problem of identifying the correct melting transition

(this problems is also present in shock wave experiments),

as the possibility of confusing this with a solid – solid tran-

sition cannot be excluded. The difficulty of getting reliable

and definite results for the melting curve of iron even at a

pressure as low as 60 GPa is evident in the scattering of the

data from different experimental groups [8 – 14], with

differences as large as 500 – 1000 K on a presumed melting

temperature of about 3000 K (see figure 5, section 3.3,

which include some of these experimental results).

The development of theoretical methods based on the

very basic laws of nature of quantum mechanics (developed

80 years ago), coupled with the recent staggering increase of

computer power (*500-fold in the past 10 years), has made

it possible to approach these problems from a theoretical –

computational point of view. When high level first-

principles methods are used, the results are often compar-

able in quality with experiments, sometimes even providing

information in regions of the pressure – temperature space

inaccessible to experiments. Here one applies the basic laws

of quantum mechanics to describe the interactions between

nuclei and electrons. These interactions uniquely define the

chemical potentials of the elements involved, which

completely determine the thermodynamic properties of

the system, including melting temperatures. As we shall see,

knowledge of the chemical potentials of different light

elements in solution in Fe can also be used to put

constraints on the composition of the Earth’s core.

The exact quantum mechanical treatment of a system

containing a large number of atoms is a formidable task.

The starting point of nearly every quantum mechanical

calculation is the so-called adiabatic approximation, which

exploits the large difference of mass between the nuclei and

the electrons. Since the electrons are much lighter, they

move so much faster that on the time-scale of their

movement the nuclei can be considered as fixed. Therefore

one solves only the electronic problem in which the nuclei

are fixed and act as an external potential for the electrons.

The energy of the electrons plus the Coulomb repulsion of

the nuclei, is therefore a function of the position of the

nuclei, and can act as a potential energy for the nuclei. This

can be mapped in configuration space to create a potential

energy surface, which can later be used to study the motion

of the nuclei. Alternatively, forces can be calculated as

the derivatives of the potential energy with respect to the

position of the nuclei, and these can be used to move the

atoms around, relax the system, solve the Newton’s

equations of motion and perform molecular dynamics

simulations, or calculate harmonic vibrational properties

like phonons. The potential energy can also be differ-

entiated with respect to the simulation cell parameters,

which provides information on the stress tensor and

therefore the pressure in the system. The solution of the

electronic problem also provides insights into the electronic

66 D. Alfè et al.
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structure of the system, which can be examined to study

physical properties like bonding, charge distributions,

magnetic densities, polarizabilities and so forth.

Most first-principles studies of the high pressure and

temperature properties of Earth’s forming materials are

based on the implementation of quantum mechanics known

as density functional theory (DFT). This is a technique that

was introduced more than 40 years ago by Hohenberg and

Kohn [18], and Kohn and Sham [19] in an attempt to

simplify the calculation of the ground state properties of

materials (in fact, later shown to be useful also for finite

temperature properties [20]). The basic Hohenberg and

Kohn idea was to map the system of interacting, correlated

electrons acted on by a potential VðrÞ onto a system of

independent non-interacting electrons acted on by an

effective potential VKSðrÞ, known as the Kohn – Sham

potential. The price to pay for this apparent enormous

simplification is a modification of the basic equations with

the introduction of new terms, one of which, called

exchange-correlation energy, is unfortunately unknown.

However, Kohn and Sham proposed a simple form for the

exchange-correlation functional, known as the local density

approximation (LDA) [19], that would prove later as the

insight which has made DFT so successful and so wide-

spread today. More sophisticated exchange-correlation

functionals were developed in the following decades, and

are still being developed today, making DFT an evolving

technique with increasingly higher accuracy. One addi-

tional attractive feature of DFT is the favourable scaling of

computational effort with the size of the system. Tradi-

tional DFT techniques scale as N3, where N is the number

of electrons in the system, but large effort is being put into

so-called o(N) techniques, which for some materials already

provide a scaling which is only directly proportional to the

size of the system [21,22].

A wide range of properties of materials have already

been predicted using DFT techniques, like structural and

electronic properties, phase diagrams, thermoelastic prop-

erties, speed of sound, transport properties, melting,

solutions and partitioning.

The limitations in accuracy due to the current state of the

art of density functional theory are expected to be progres-

sively removed, either through the formulation of new

exchange-correlation functionals, or with the developments

of alternative techniques. Among these dynamical mean

field theory [23] and quantum Monte Carlo [24] are proba-

bly the most promising on a time-scale of 5 to 10 years.

After this introduction, the article is divided in three

main sections. In the first we will briefly review the main

ideas behind first-principles simulations, and in particular

density functional theory and the pseudo-potential approx-

imation. In section 3 we will try to explain how these first

principles techniques can be used to calculate chemical

potentials, and how these chemical potentials can be used,

in particular, to calculate the melting temperature of pure

Fe at ICB conditions. Finally, in section 4 we will describe

how chemical potentials can be used to put constraints on

the composition of the Earth’s core, and to refine the

temperature of the ICB.

2. First principles techniques

We begin this section by recalling the basic equation of

quantum mechanics, the Schrödinger equation, which in

the time-independent form is

Ĥ C ¼ E C; ð2Þ

where Ĥ is the Hamiltonian of the system, E is the total

energy and C is the many-body wave-function, which is a

function of the coordinates of the M nuclei fRig and the N

electrons frig : C ¼ CðR1;R2; . . . ;RM; r1; r2; . . . ; rNÞ. If the
system is isolated, in the non-relativistic approximation the

Hamiltonian is given by

ĤðR1;R2; . . . ;RM; r1; r2; . . . ; rNÞ ¼ �
XM
i¼1

�2

2Mi
r2

Ri
�
XN
i¼1

�2

2m
r2

ri

þ 1

2

XM
i;j¼1;i6¼j

ZiZje
2

4pE0jRi�Rjj
þ 1

2

XN
i;j¼1;i6¼j

e2

4pE0jri� rjj

�
XM
i¼1

XN
j¼1

Zie
2

4pE0jRi� rjj
; ð3Þ

where the first two terms are the kinetic energy operators

for the nuclei and the electrons respectively, with � the

Planck’s constant h divided by 2 p, and Mi and m

the masses of the nuclei and the electrons, respectively.

The third and the fourth terms in the equation represent the

Coulomb repulsive energy between the nuclei and between

the electrons respectively, with Zi the charges of the nuclei

in units of e, the charge of the electron, and E0 is the

dielectric constant of the vacuum. The last term of the

equation represents the electrostatic interaction between

the electrons and the nuclei.

The only experimental inputs in the Schrödinger

equation in the non-relativistic approximation are four

fundamental constants plus the mass of the nuclei. The four

constants are the Plank’s constant h, the charge of the

electron e, the mass of the electron m and the dielectric

constant of the vacuum E0.
As mentioned in the introduction, solving the

Schrödinger equation is essentially impossible for any real

system more complicated than the hydrogen atom, or more

generally any system which contains two or more electrons,

and therefore approximations are needed to make the

problem manageable. The first approximation which can be

introduced is the Born –Oppenheimer approximation, also

called the adiabatic approximation. Here, one recognizes

Temperature and composition of the Earth’s core 67
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that the masses of the nuclei Mi are much larger than the

mass of the electron m (the lightest possible atom is the

hydrogen atom, which is almost 2000 times heavier than

the electron), which therefore move on a much faster time-

scale. This means that, without much loss of accuracy

for most systems, one can separate the electronic problem

from that of the nuclei, or in other words solve the

Schrödinger equation for the electrons only, with the nuclei

positions kept fixed. Therefore, we can rewrite equation

(2) thus

Ĥðr1; r2; . . . ; rN; fRigÞCðr1; r2; . . . ; rN; fRigÞ
¼ EfRigCðr1; r2; . . . ; rN; fRigÞ; ð4Þ

where now the Hamiltonian depends only parametrically

from the positions of the nuclei fRig, and so do the wave-

function C and the energy E. Once equation (4) is solved,

the energy EfRig can be interpreted as a potential energy

for the motion of nuclei. At high temperature (above the

Debye temperature), the quantum nature of the nuclei

becomes negligible, and with essentially no loss of accuracy

one can treat their motion as they were classical particles.

This allows one to perform molecular dynamics simula-

tions, in which the Newton equations of motion for the

nuclei are solved using the quantum mechanical forces

evaluated from the derivative of EfRig with respect to the

positions fRig.

2.1 Density functional theory

Halving the difficulty of an impossible problem still leaves it

impossible to solve, and it was not until the introduction of

density functional theory in 1964 by Hohenberg and Kohn

[18] that significant steps forward were made. We will

briefly outline here the main ideas of density functional

theory, for an in depth description of DFT the reader may

consult the original papers or the excellent books by Parr

and Wang [25] or Gross and Dreizler [26], or the recent

book by Martin [27]. A simplified (almost) non-mathema-

tical explanation of DFT has been given by one of the

authors in an article in this very same journal [28].

Hohenberg and Kohn [18] proved that the external

potential Vext acting on the electrons is uniquely deter-

mined (up to a trivial additive constant) by the electron

ground state density nðrÞ ¼ hCjn̂ðrÞjCi ¼
R
dr2 . . . drNjC

ðr; r2; . . . ; rNÞj2, where C is the ground state wave-function

of the system and n̂ðrÞ is the density operator. Here we have

omitted the dependence of C from the positions of the

nuclei for simplicity. Since nðrÞ determines also the number

of electrons N, and since Vext and N fix the Hamiltonian of

the system, it turns out that the electron density completely

determines all the electronic ground state properties of the

system, and in fact, as shown later by Mermim [20], also the

finite temperature properties. One important property of

the system is the energy, which can be written as

E½n� ¼ FHK½n� þ
Z

VextðrÞnðrÞ dr; ð5Þ

with

FHK½n� ¼ hC½n�jT̂þ V̂eejC½n�i; ð6Þ

where T̂ and V̂ee are, respectively, the kinetic energy and the

electron – electron interaction operators, and C[n] is the

ground state wave-function of the system. The quantities

E[n] and FHK[n] are functionals of the density n, i.e. they

represent a number which depends on the whole density n.

Note that FHK[n] does not depend on the external potential

and therefore it is a universal functional. This is the crucial

result of DFT. Using the variational principle Hohenberg

and Kohn also proved that the ground state density of the

system is the one which minimizes E[n], and the minimum

of E[n] is equal to the ground state energy E0. It is clear the

importance of these two results, the only quantity which is

needed is the electron density, no matter how many

electrons are present in the system.

One year after the publication of the Hohenberg and

Kohn paper Kohn and Sham invented an indirect method

to solve the problem [19]. The idea is to write the energy

functional as an easy part plus a difficult part.

F½n� ¼ T0½n� þ EH½n� þ Exc½n�; ð7Þ

where T0[n] is the ground state kinetic energy of an

auxiliary non-interacting system whose density is the same

as the one of the real system, EH[n] is the repulsive

electrostatic energy of the classical charge distribution nðrÞ
and Exc[n] is the exchange-correlation energy defined

through equation (7).

Minimizing the total energy E[n] under the constraints of

orthonormality for the one-particle orbitals of the auxiliary

system,
R
c�i ðrÞcjðrÞ dr ¼ dij, one finds a set of one-particle

Schrödinger-like equations:

� �2

2m
r2 þ VKSðrÞ

� �
ciðrÞ ¼ EiciðrÞ; ð8Þ

where the Kohn and Sham potential is

VKSðrÞ ¼VextðrÞþ
Z

nðr0Þ
jr� r0j dr0 þVxcðrÞ; VxcðrÞ ¼

dExc½n�
dnðrÞ ;

ð9Þ

and

nðrÞ ¼
X
i

fðEi � EFÞjciðrÞj
2; ð10Þ
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with f(x) the Fermi –Dirac distribution and EF the Fermi

energy fixed by the conditionZ
nðrÞ dr ¼ N: ð11Þ

Here dExc½n�=dnðrÞ is the functional derivative of the

exchange-correlation functional evaluated at position r.

This represents the variation of the functional Exc[n] with

respect to a variation of the charge density n at position r.

These are the famous Kohn and Sham equations, they

must be solved self-consistently because VKS is a functional

of the orbitals itself. The generalization to finite tempera-

ture is obtained by replacing E with the electronic free

energy U¼E7TS, where S is the electronic entropy, given

by the independent-electron formula S¼72 kB T Si[fi ln

fiþ (17 fi) ln (17 fi)], with fi the thermal (Fermi –Dirac)

occupation number of orbital i.

It is tempting to identify the single particle eigenvalues Ei
with the energy of quasi-particles, and therefore their

distribution with the electronic density of states of the

system. This would be conceptually wrong, as the Kohn

and Sham eigenvalues are only an artificial mathematical

tool to obtain at the ground state density of the system.

Nevertheless, it turns out that these DFT density of states

often resemble very accurately the real density of states of

systems, and they are therefore often used to analyse their

electronic structure. However, it is important to remember

that even if the exact exchange-correlation functional Exc[n]

were known, one should not expect the DFT density of

states to be an exact representation of the real density of

states of the system.

When self-consistency is achieved the electronic free

energy of the system is

U ¼
XN
i¼1

fðEi � EFÞEi �
1

2

Z
nðrÞnðr0Þ
jr� r0j drþ Exc½n�

�
Z

VxcðrÞnðrÞ drþ Eion � TS; ð12Þ

where Eion is the ionic electrostatic repulsion term. This

would be the exact electronic free energy of the system if we

knew Exc[n] (which also depends on temperature, although

very little is known about this dependence). Unfortunately

the exact form of the exchange-correlation (free) energy is

not (yet) known.

2.1.1. Exchange correlation functionals. Kohn and Sham

[19] also provided an approximate expression for the

exchange-correlation functional, called the Local Density

Approximation (LDA). In the LDA the dependence of the

functional on the density has the form

ELDA
xc ½n� ¼

Z
nðrÞExcðnðrÞÞ dr; ð13Þ

and Exc(n) is taken to be the exchange-correlation energy

per particle of a uniform electron gas whose density is nðrÞ.
This has been accurately calculated using Monte Carlo

simulations [29] and parameterized in order to be given in

an analytic form [30].

By construction, this approximation yields exact results

if the density of the system is uniform, and should not be

very accurate for those systems whose density is highly dis-

homogeneous, as for example atoms and molecules.

However, it turns out to work better than expected for a

wide range of materials. In molecules, for example, the

LDA usually overestimates the binding energies, but it

yields in general good results for equilibrium distances and

vibrational frequencies. It was the evidence of the very high

quality of the LDA that has been mainly responsible for the

tremendous success of density functional theory.

Nowadays, a number of sophisticated functionals have

become available, like the so-called generalized gradient

corrections (GGA) (e.g. [31]), or the recently developed

metaGGA [32,33], and hybrid functionals which contain a

certain fraction of exact exchange according to various

recipes (e.g. the B3LYP functional [34]), but it is not

obvious which one to prefer in general, with the good old

LDA itself being competitive in accuracy in a variety of

cases. It is also worth mentioning that, when used in

combination with plane-waves methods (see next section),

exchange-correlation hybrid functionals usually require a

computational effort that is orders of magnitudes higher

than what is required by local exchange-correlation

functionals like the LDA or the GGAs.

Whatever functional is used, these type of calculations all

go under the classification of ab initio, in the sense that no

experimental input is allowed, a part from the four

fundamental constants mentioned above. Of course, it

would be desirable to have a unique functional with the

highest possible accuracy for any system, but at the time of

writing we are not at this stage yet.

2.1.2. Pseudo-potentials and basis sets. In practical cases, it

is often necessary to introduce one additional approxima-

tion in order to speed up the calculations, known as the

pseudo-potential approximation [35 – 37]. In essence, this is

a way to freeze the electrons of the core of the atoms, and

remove them from the calculations. The justification for

doing this is that the core electrons are so tightly bound to

the nuclei that they are essentially undisturbed by the

chemical bonding, or, conversely, the chemistry of materi-

als is unaffected by the behaviour of the core electrons. This

implies a saving in complexity and computer time which is

proportional to the number of electrons that have been

frozen, but as we shall see in a moment, the saving becomes

enormous in the most widely diffused computer codes

which are based on plane wave expansions of the single

particle Kohn and Sham orbitals.
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In order to solve the Kohn and Sham equations, it is

necessary to expand the auxiliary Kohn and Sham

orbitals in terms of some known basis functions. A

variety of possible choices are available. Traditional

quantum chemistry codes often use gaussians, which are

quite well suited for very localized orbitals, and in the

course of the years a large amount of expertise has been

accumulated to create high quality basis sets for a wide

range of materials. The drawback of gaussians is that the

quality of the basis set depends on the choices of the user,

and transferability can be an issue when different systems

are compared. An alternative set of functions which are

totally unbiased and systematically improvable are plane

waves. They also have the additional advantage that they

adapt naturally to calculations in which periodically

boundary conditions are employed, which is a very useful

set-up even in a system which has no periodicity, in order

to reduce finite size effects. Plane wave calculations are

relatively simple, and the evaluation of forces and the

stress tensor are not much more difficult than the evalua-

tion of the total energy. A drawback of plane waves is

that a large number of them may be needed for describing

rapidly varying functions, like the very localized core

orbitals, or the valence wave-functions in the core region

which need to oscillate widely in order to be orthogonal

to the core orbitals. For this reason plane-wave cal-

culations are almost always associated with the use of

pseudo-potentials.

The first aim of pseudo-potentials is to eliminate the core

electrons from the explicit calculations because they do not

participate in the chemical properties of matter, at least

until their binding energy is much higher than the energy

involved in the chemical properties one wants to study. So

one freezes them around the nuclei and redefines the system

as if it was formed by ions plus valence electrons. We are

left now with the problem of dealing with the oscillations in

the core region of the valence wave-functions, due to the

orthogonalization to the core wave-functions. The solution

to this is the introduction of a pseudo-potential, which

substitutes the ionic Coulomb potential in such a way that:

(i) the valence pseudo-eigenvalues are the same as the all-

electron ones on some reference configuration in the atom;

(ii) the pseudo-wave-functions coincide with the all-electron

ones from a fixed core radius on, and are as smooth as

possible below the core radius, with the only constraint to

be normalized (norm-conserving pseudo-potentials). To

satisfy these requirements the pseudo-potential usually

must be angular momentum dependent, i.e. pseudo-wave-

functions corresponding to different angular momenta are

eigenfunctions of different potentials. However, the long-

range behaviour of these different potentials must resemble

the true one, because above the core radius the pseudo-

wave-functions are identical to the all-electron ones. This

mean that the difference must be confined in the core

region. The quality of the pseudo-potential depends on its

transferability properties, i.e. the capability to reproduce

the all-electron results over a wide range of electronic

configurations, and of course for the atom in different

environments.

2.1.3. Ultra-soft (Vanderbilt) pseudo-potentials. The require-

ment of norm conservation for the pseudo-wave-functions

can be a limiting factor for numerical calculations when

also the valence electrons are very localized around their

nuclei. This is a particularly serious problem for first row

elements, like carbon and more so for nitrogen, oxygen,

and for transition metals, where the d-electrons are

localized as shallow core states but have an extraction

energy which is not much larger then valence energies, and

for this reason cannot be excluded from the calculations.

Iron for example is one of these elements. If this is the

case the utilization of norm-conserving pseudo-potentials

requires huge plane-waves basis sets to achieve an

acceptable accuracy. In a work published in 1990

Vanderbilt [38] showed that, introducing a generalized

formalism, the norm conservation constraint could be

removed. In this way one can construct much smoother

pseudo-wave-functions, with the only constraint of

matching the all-electron ones at and above a fixed core

radius. The price to pay for having such smooth pseudo-

wave-functions is that, due to the fact that the pseudo-

wave-functions are not normalized anymore, the charge

density has to be restored by adding an ‘augmentation’

part:

nðrÞ ¼
X
i

jfiðrÞj
2 þ naugðrÞ; ð14Þ

and the Kohn and Sham equations take the generalized

form

HKSjfii ¼ EiSjfii; ð15Þ

where S is a non-local overlap operator.

2.1.4. The projector augmented wave method. In 1994

Blöchl invented a method to reconstruct the all-electron

wave-function inside the core region [39]. The method,

called Projected Augmented Wave (PAW), is closely

related to Vanderbilt’s Ultrasolf Pseusopotential method,

as shown by Kresse and Joubert [40], but has been

shown to be capable of reproducing essentially the same

results of all-electron calculations, effectively removing

the pseudo-potential approximation. The PAW method is

still only available in a handful of computer codes, but as

evidence of its advantages accumulate it is likely that it

will become a standard method for DFT-plane-waves

calculations.
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3. Melting of Fe at Earth’s core conditions

Having introduced the main computational tools we now

turn the discussion to the two main topics of this article,

namely the calculation of the iron melting curve at Earth’s

core conditions in this section, and the constraints on

the composition of the Earth’s core in the next section. The

reason why we begin with the melting of Fe will become

clear as we proceed. This has to do with the fact that

the technique to put constraints on the composition of the

Earth’s core builds on previous knowledge of the thermo-

dynamic properties of pure iron at the melting point.

All the calculations described in this article have been

performed with the code VASP [41].

The thermodynamic stability of a system is determined

by the minimum of its Gibbs free energy G¼Fþ pV, where

F is the Helmholtz free energy, p is the pressure in the

system, given by p¼7@F/@VjT and V is the volume. Below

the melting temperature the system is solid, and therefore

the Gibbs free energy of the solid is lower than that of the

liquid. The converse happens above the melting tempera-

ture, where the system is liquid. Therefore, the thermo-

dynamic condition at which a solid coexists with its liquid

at pressure p and temperature T is determined by the

equality:

Gsðp;TÞ ¼ Glðp;TÞ; ð16Þ

where subscripts ‘s’ and ‘l’ indicate solid and liquid,

respectively.

The condition stated in equation (16) gives us a strategy

to obtain the melting temperature of Fe at any pressure,

provided we can calculate the Gibbs free energies of solid

and liquid as a function of pressure and temperature

(see figure 3). Since G¼Fþ pV it is possible to calculate G

from knowledge of F. In the following we now describe

how this can be done.

3.1 The Helmholtz free energy: low temperature and the

quasi-harmonic approximation

For solids at not too high a temperature, it is often accurate

enough to use the quasi-harmonic approximation, in which

the potential energy of the crystal is expanded to second

order in the displacement of the atoms from their equili-

brium positions. This quasi-harmonic potential usually

provides a very accurate description of the dynamical

properties of the system at low temperature, and gives easy

access to the free energy of the system, which can be calcu-

lated analytically as a function of temperature. The prefix

quasi is there to indicate that this quasi-harmonic potential

depends on the volume of the system. In practice, the quality

of the thermodynamics obtained within the quasi-harmonic

approximation is often preserved also to temperatures not

far from the melting temperature, although at such high

temperatures a full account of anharmonic effects becomes

necessary, at least to asses the validity of the quasi-harmonic

approximation. For highly anharmonic solids and for

liquids one has to resort to molecular dynamics or Monte

Carlo techniques to sample the phase space. Molecular

dynamics simulations are particularly attractive because

they also provide dynamical information like diffusion. We

shall come back to this in the next subsection.

In a perfect crystal the quasi-harmonic approximation is

obtained by expanding the potential (free) energy function

U around the equilibrium positions of the nuclei. The first

term of the expansion is simply the energy of the system

calculated with the ions in their equilibrium positions,

Eperf(V, T) (this is a free energy at finite temperature due to

electronic excitations, and therefore depends both on V and

T ). If the crystal is in its minimum energy configuration the

linear term of the expansion is zero, and by neglecting

terms of order three and above in the atomic displacements

we have that the quasi-harmonic potential is

Uharm ¼ Eperf þ
1

2

X
lsa;l0tb

Flsa;l0tbulsaul0tb; ð17Þ

where uls denotes the displacement of atom s in unit cell l, a
and b are Cartesian components, and Flsa, l0tb is the

force-constant matrix, given by the double derivative

@2U/@ulsa@ul0tb evaluated with all atoms at their

equilibrium positions. This force constant matrix gives

the relation between the forces Fls and the displacements

ul0t, as can be seen by differentiating equation (17) and

ignoring the higher-order anharmonic terms:

Flsa ¼ �@U=@ulsa ¼ �
X
l0tb

Flsa;l0tbul0tb: ð18Þ

Figure 3. Schematic plot of Gibbs free energies GS and GL

of solid and liquid as a function of temperature at fixed

pressure, to illustrate procedure for determining melting

temperature.
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Within the quasi-harmonic approximation, the potential

energy function Uharm completely determines the physical

properties of the system, and in particular the Helmholtz

free energy, which takes the form

FðV;TÞ ¼ EperfðV;TÞ þ FharmðV;TÞ; ð19Þ

where the quasi-harmonic component of the free energy is

Fharm ¼ kBT
X
n

ln ð2 sinh ð�on=2kBTÞÞ; ð20Þ

with on the frequency of the nth vibrational mode of the

crystal. In a periodic crystal, the vibrational modes can be

characterized by a wave-vector k, and for each such wave-

vector there are three vibrational modes for every atom in

the primitive cell. If the frequency of the sth mode at

wave-vector k is denoted by oks, then the vibrational free

energy is

Fharm ¼ kBT
X

ks

ln ð2 sinh ð�oks=2kBTÞÞ: ð21Þ

The vibrational frequencies oks can be calculated from first

principles, and we shall see below how this can be done.

Once this quasi-harmonic free energy is known, all the

thermodynamic properties of the system can be calculated.

In particular, the pressure is given by

p ¼ �@F=@VjT ¼ �@Eperf=@VjT � @Fharm=@VjT: ð22Þ

The last term in the equation above is the ionic component

of the thermal pressure, and it is different from zero

because the vibrational frequencies oks depend on the

volume of the crystal. In fact, it is easy to see from equation

(21) that even at zero temperature there is a finite

contribution to the quasi-harmonic free energy, given by

FharmðV; 0Þ ¼
X

ks

�oks

2
: ð23Þ

This zero point energy contribution to the harmonic free

energy is also responsible for a contribution to the pressure.

Since usually the vibrational frequencies oks increase with

decreasing volume, these contributions are positive, and are

responsible for the phenomenon of thermal expansion in

solids.

The dependence of Eperf (V, T) on T also means that there

is an electronic contribution to the thermal pressure, which is

also positive, and in some cases (i.e. iron at Earth’s core

conditions) can be a significant fraction of the thermal pres-

sure, and a non-negligible fraction of the total pressure [42].

We will now describe how the vibrational frequencies

oks can be calculated.

3.1.1. Calculation of phonon frequencies. There are two

different first-principles strategies for calculating phonon

frequencies. The method that is easier to understand starts

from the fact that the force-constant matrix expresses the

proportionality between displacements and forces, when

the displacements are small enough for this relationship to

be linear (see equation (18)). All that has to be done in

principle is to displace a single atom t in cell l0 in Cartesian

direction b, all other atoms being held fixed at their

equilibrium positions; the forces Fls a on all the atoms then

give directly the elements of the force constant matrix

Flsa,l0tb for the given (l0 tb). If this procedure is repeated for

all other (l0tb), all the elements of the force-constant matrix

can be obtained. Translational invariance implies that the

number of separate calculations required to do this is at

most three times the number of atoms in the primitive cell,

but for most materials symmetry relations can be used to

reduce this number substantially. This strategy, sometimes

called the small displacement method [43], is implemented

for example in the PHON code [44]. Although the small

displacement method is widely used, and can be very

accurate, a word of caution is in order. Since DFT

calculations on condensed matter always use periodic

boundary conditions, the repeating cell (the super-cell)

must be large enough so that the elements Flsa,l0tb have all

fallen off to negligible values at the boundary of the super-

cell. This is readily achieved for some materials, particu-

larly metals. However, in ionic materials the force constant

elements fall off only as r73, and convergence can be slow.

Moreover, in polar materials Coulomb forces produce a

macroscopic electric field in the limit of zero wave-vector.

This electric field is responsible for a splitting in the

frequencies of the vibrational modes parallel and perpen-

dicular to the electric field (the so-called LO-TO splitting).

It turns out that the behaviour of the dynamical matrix in

the limit of small wave-vector is non-analytical, and has the

following form [45]

Dna
sa;tb ¼ ðmsmtÞ�1=2

4pe2

O

ðk�Z�s Þaðk�Z
�
t Þb

k�E1�k ; ð24Þ

where Z�s is the Born effective charge tensor for atom s, E?

is the high frequency static dielectric tensor and ms, mt are

the mass of the atoms. These two quantities can be

calculated in the framework of density functional perturba-

tion theory [45 – 47] (DFPT), which also provides a second

elegant strategy for the calculation of phonons in crystals.

The main idea in DFPT, pioneered by Baroni et al. [46] is to

exploit the Hellmann –Feynman theorem to show that a

linear order variation in the electron density upon

application of a perturbation to the crystal is responsible

for a variation in the energy up to second (in fact, third

[48]) order of the perturbation. Using standard perturba-

tion theory, this linear order variation of the electronic

charge density can be calculated using only unperturbed

wave-functions, which therefore only require calculations

72 D. Alfè et al.
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on the ground state crystal. If the perturbation is a phonon

wave with wave-vector k, calculation of the density change

to linear order in the perturbation can be used to determine

the force constant matrix at wave-vector k. This can be

done for any arbitrary wave-vector, without the need of the

construction of a super-cell. The implementation of the

method is by no means straightforward, and for further

details the reader should consult the original papers [45,46].

For Fe the small displacement method [44] works very

well, and only super-cells of modest size (36 atoms) are

necessary to obtain free energies accurate enough so that

their contribution to the error in the melting temperature is

no more than a few tens of K.

As a matter of illustration of the accuracy of these first

principles techniques in describing the vibrational proper-

ties of Fe we show in figure 4 the phonon curves of

ferromagnetic Fe from GGA calculations [49] compared

with experimental results, which show a very satisfactory

agreement.

3.2 The Helmholtz free energy: high temperature and

thermodynamic integration

At high temperature anharmonic effects in solids may start

to play an important role, and the quasi-harmonic

approximation may not be accurate enough. Moreover, if

the system of interest is a liquid, the quasi-harmonic

approximation is of no use. In this section we shall describe

a method to calculate the free energy of solids and liquid in

the high temperature limit, provided that the temperature is

high enough that the quantum nature of the nuclei can be

neglected. If this is the case, the Helmholtz free energy F is

defined as [50]:

F ¼ �kBT ln

�
1

N!L3N

Z
V

dR1 . . . dRN

� exp ½�bUðR1; . . . ;RN;TÞ�
�
; ð25Þ

where L¼ h/(2pMkBT)
1/2 is the thermal wavelength, with

M the mass of the particles, h Plank’s constant, b¼ 1/kBT,

kB is the Boltzmann constant, and UðR1; . . . ;RN;TÞ is the
potential energy function, which depends on the positions

of the N particles in the system and on temperature because

of electronic excitations. The multidimensional integral

extends over the total volume of the system V.

Performing the integral in equation (25) to calculate F is

extremely difficult. However, it is less difficult to calculate

changes in F as some specific variables are changed in the

system. For example, by taking the derivative of F in

equation (25) with respect to volume at constant T we

obtain (minus) the pressure. Therefore, the difference of F

between two volumes can be obtained by integrating the

pressure p, which can be calculated using a molecular

dynamics simulation [50]. Similarly, by integrating the

internal energy E one obtains differences in F/T.

It is equally possible to calculate differences in free

energy between two systems having the same number of

atoms N, the same volume V, but two different potential

energy functions U0 and U1. This can be done by

introducing an intermediate potential energy function Ul

such that for l¼ 0; Ul¼U0, and for l¼ 1; Ul¼U1, and

such that for any value of 05 l5 1,Ul is a continuous and

differentiable function of l. For example, a convenient

form is

Ul ¼ ð1� fðlÞÞU0 þ fðlÞU; ð26Þ

where f(l) is an arbitrary continuous and differentiable

function of l in the interval 0� l� 1, with the property

f(0)¼ 0 and f(1)¼ 1. According to equation (25), the

Helmholtz free energy of this intermediate system is

Fl ¼ �kBT ln

�
1

N!L3N

Z
V

dR1 . . . dRN

� exp ½�bUlðR1; . . . ;RN;TÞ�
�
: ð27Þ

Differentiating this with respect to l gives

dFl

dl
¼
R
V dR1 . . . dRN exp ½�bUlðR1; . . . RN;TÞ�ð@Ul=@lÞR

V dR
1

. . . dRN exp ½�bUlðR1; . . . RN;TÞ�

¼ @Ul

@l

� �
l
; ð28Þ

Figure 4. Phonon dispersion relations of ferromagnetic bcc

Fe. Lines and open squares show first-principles theory and

experiment, respectively. Symbols �, H and N represent

special points in the Brillouin zone. Reproduced with

permission from [49]. Copyright 2000 American Physical

Society.
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and therefore by integrating dFl/dl one obtains

DF ¼ F1 � F0 ¼
Z 1

0

dl
@Ul

@l

� �
l
: ð29Þ

This also represents the reversible work done on the system

as the potential energy function is switched from U0 to U1.

In most cases a suitable choice for the function that mixes

U0 and U1 is simply f(l)¼ l, and the thermodynamic

formula (29) takes the simple form:

DF ¼ F1 � F0 ¼
Z 1

0

dl U1 �U0h il: ð30Þ

This way to calculate free energy differences between two

systems is called thermodynamic integration [50]. The

usefulness of the thermodynamic integration formula

expressed in equation (29) becomes clear when one

identifies U1 with the DFT potential (free) energy function,

and with U0 some classical model potential for which the

free energy is easily calculated, to be taken as a reference

system. Then equation (29) can be used to calculate the

DFT free energy of the system by evaluating the integrand

hU17U0il using first principles molecular dynamics simula-

tions at a sufficiently large number of values of l and

calculating the integral numerically.

Thermodynamic integration can be used to calculate the

free energies of both solids and liquids. It is clear from

equation (29) that the choice of the reference system is

almost completely irrelevant (of course, the stability of the

system cannot change as l is switched from 0 to 1), provided

that DF can be calculated in practice. So, if the goal is to

obtain ab initio free energies, it is essential to minimize the

amount of ab initio work in order to make the calculations

feasible. This is achieved by requiring that: (i) the integrand

in equation (29) is a smooth function of l, (ii) the thermal

averages hU17U0il can be computed within the required

accuracy on the time-scales accessible to first principles

molecular dynamics and (iii) the convergence of DF as a

function of the number of atoms N in the system is again

achieved with N accessible to first-principles calculations.

In high pressure high temperature Fe it turns our that a

remarkably good reference potential is given by a simple

inverse power model of the form UIP(r)¼B/ra, where r is

the distance between two ions and B and a are two

adjustable parameters appropriately chosen. The parameter

a turns out to be slightly less than 6, which indicates that

under these extreme conditions Fe behaves like an ensemble

of soft spheres.

3.3 Melting curve of Fe

Once the Helmholtz free energy of the system is known, it

can be used to derive its thermodynamic properties, and in

particular its melting curve. So, we obtain the Gibbs free

energy from the Helmholtz free energy, and we apply

equation (16) to obtain the melting curve of Fe. This can be

done in a whole range of pressure spanning the Earth’s

core, and the results are shown in figure 5, where an error

band of about plus or minus 600 K has to be added to the

calculated melting curve. For a more in depth discussion of

the technical points in these calculations we refer the reader

to the original papers [42,51 – 53]. We also show on the

figure a number of experimental points. In the low pressure

region these are diamond anvil cell experiments, while in

the high pressure region they correspond to shock

experiments. The scattering between these points reminds

us how difficult it is to perform these experiments. The

theoretical predictions are in good agreement with the

shock data experiments [16,17] and with some late diamond

anvil cell experiments [13].

4. Constraints on the composition of the Earth’s core

We can now turn the discussion to the topic of the

composition of the Earth’s core. It will be shown that by

combining first principles calculations of free energies, or

more precisely chemical potentials, with seismic data, it is

possible to put constraints on the composition of the core.

In particular, we shall show that no binary mixture of Fe/S,

Fe/Si or Fe/O can explain the seismic data, and we propose

an Earth’s core composition based on ternary and

Figure 5. Comparison of melting curve of Fe from DFT

calculations and experimental data: black solid first-

principles results of [51] (plus or minus 600 K); black

chained and maroon dashed curves: diamond anvil cell

measurements of [8,11]; green diamonds and green filled

square: diamond anvil cell measurements of [10,13]; black

open squares, black open circle and magenta diamond:

shock experiments of [15]. Error bars are those quoted in

original references.
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quaternary mixtures of Fe with all three light elements

considered. In the discussion we will ignore the presence of

Ni in the core, which we believe should not influence the

results and the final conclusions significantly. The most

important results from our discussion will be that oxygen

almost completely partitions in the liquid, and therefore is

expelled by the mixture as this freezes at the inner core

boundary. The availability of light buoyant oxygen at the

bottom of the liquid core is a source of gravitational

energy, which can be efficiently used to produce the

geodynamo and the resulting Earth’s magnetic field.

4.1 Solutions

Consider two different substances, mix them together and

in general they will form a solution, like sugar and coffee.

We call solvent the substance present in the largest quantity

(coffee), and solute the other (sugar). In general solutions

may have more than one solute, and/or more than one

solvent, but for simplicity we will focus here only on binary

mixtures.

We mentioned at the beginning of the previous section

that the phase stability of a system is determined by the

minimum of its Gibbs free energy. More generally, equili-

brium in a multi-species system is determined by the

chemical potentials mi, with i running over the different

species, which represents the constant of proportionality

between the energy of the system and the amount of the

specie i [54]:

mi ¼
@E

@Ni

� 	
S;V

; ð31Þ

where S is the entropy, and Ni is the number of particles of

the specie i. Alternative equivalent definitions of the

chemical potential are [54,55]:

mi ¼
@F

@Ni

� 	
T;V

¼ @G

@Ni

� 	
T;p

¼ �T @S

@Ni

� 	
E;V

: ð32Þ

Equilibrium between two phases is determined by the

condition of equality of the chemical potential of each

individual specie in the two phases, as we shall see in the

next subsection.

4.1.1. Solid liquid equilibrium. We want to study now the

conditions that determine equilibrium between solid and

liquid, and in particular how the solute partitions between the

two phases and how this partitioning affects the melting pro-

perties of the solution. This will allow us to interpret the sei-

smic data at the ICB, which is the place where a liquid mixture

of Fe with light impurities coexists with a solid mixture.

Thermodynamic equilibrium is reached when the Gibbs

free energy of the system is at its minimum, and therefore

0¼dG¼ d(GlþGs), where superscripts ‘s’ and ‘l’ indicate

quantities in the solid and in the liquid, respectively. In a

multicomponent system the Gibbs free energy can be

expressed in terms of the chemical potentials of the species

present in the system [54,55]:

G ¼
X
i

Nimi: ð33Þ

We also recall the Gibbs –Duhem equation, which relates

the changes in the chemical potentials of the various

components in the system and their amount [54]:

X
i

Ni dmi ¼ 0: ð34Þ

Using equation (33) and the Gibbs –Duhem equation (34),

we obtain

dG ¼
X
i

mi dNi: ð35Þ

If the system is isolated, particles can only flow between the

solid and the liquid, and we have dNs
i ¼ �dNl

i, which

implies

dG ¼
X
i

dNiðmli � msi Þ: ð36Þ

If mli < msi there will be a flow of particles from the solid to

the liquid region (dNi 4 0), so that the Gibbs free energy

of the system is lowered. The opposite will happen if

mli > msi . The flow stops at equilibrium, which is therefore

reached when mli ¼ msi . In particular, in our two components

system, equilibrium between solid and liquid implies that

the chemical potentials of both solvent and solute are equal

in the solid and liquid phases:

msXðp;Tm; c
s
XÞ ¼ mlXðp;Tm; c

l
XÞ;

msAðp;Tm; c
s
XÞ ¼ mlAðp;Tm; c

l
XÞ;

ð37Þ

where Tm is the melting temperature of the solution at

pressure p. As the concentration of the solute is reduced the

number of ways it can be arranged in the solvent increases,

and therefore the entropy increases. In the limit of zero

concentration the entropy diverges, which causes a

divergence in the chemical potential. This is a logarithmic

divergence and can be separated out, and the chemical

potential can be conveniently rewritten as

m ¼ kBT ln cþ ~mðp;T; cÞ; ð38Þ

where ~mðp;T; cÞ is a well behaved function of concentration

c. We can now use this expression to rewrite the first of the

two equations above as

~msXðp;Tm; c
s
XÞ þ kBTm ln csX

¼ ~mlXðp;Tm; c
l
XÞ þ kBTm ln clX: ð39Þ
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From which we obtain an expression for the ratio of

concentrations of solute between the solid and the liquid:

csX=c
l
X ¼ exp f½~mlXðp;TmÞ � ~msXðp;TmÞ�=kBTmg: ð40Þ

In general ~mlX < ~msX, because the greater mobility of the

liquid can usually better accommodate particles of solute,

and therefore their energy (chemical potential) is lower.

This means that the concentration of the solute is usually

smaller in the solid.

4.1.2. First principles calculations of chemical potentials. To

calculate mX it is useful to consider the difference in

chemical potential between the solute and the solvent

mXA¼ mX7 mA, which is equal to the change of Helmholtz

free energy of the system as one atom of solvent is

transmuted into an atom of solute at constant volume V

and constant temperature p. Here the solvent is Fe and the

solute one of the three impurities considered S, Si or O.

This transmutation does not obviously correspond to a real

physical process, but provides a perfectly rigorous way of

calculating the difference of chemical potentials:

mXA ¼ kBT ln
cX

1� cX
þ 3kBT ln LX LA=ð Þ þmðcXÞ; ð41Þ

where LX and LA are the thermal wavelengths of solute and

solvent, and

mðcXÞ ¼ �kBT ln

R
V dR exp ½�bUðNA � 1;NX þ 1; RÞ�R

V dR exp ½�bUðNA;NX; RÞ�
;

ð42Þ

with UðNA;NX; RÞ the potential energy of the system with

NA atoms of solvent and NX atoms of solute, and

UðNA � 1;NX þ 1; RÞ the one for the system in which one

of the atoms of solvent has been transmuted into solute.

Since we will be interested in differences of chemical poten-

tials between solid and liquids, the term 3kBT ln (LX/LA)

cancels out and can therefore be ignored for this purpose.

The thermodynamic integration technique described in

section 3.2 can now be used to compute m(cX) in the liquid

state. This is done by defining an intermediate potential

Ul ¼ lUðNA � 1;NX þ 1; RÞ þ ð1� lÞUðNA;NX; RÞ, so

that m(cX) can be expressed as

mðcXÞ ¼
Z 1

0

dl UðNA � 1;NX þ 1Þ �UðNA;NXÞh il: ð43Þ

In practice, the calculation of m(cX) is done by performing

two separate simulations, one with NA atoms of solvent

and NX of solute and the other with NA71 atoms of

solvent and NXþ 1 atoms of solute. At the end of each time

step forces are computed in both systems, and their linear

combination fl¼ lf (NA71,NXþ 1)þ (17l)f(NA,NX) is

used to evolve the system in time in order to compute the

thermal average hU(NA71,NXþ 1)7U(NA,NX)il. This is

repeated at a number of different values of l and the

integral is performed numerically.

To improve statistics, it is useful to transmute many

atoms of solvent into solute. In this case one does not

obtain directly mXA at a chosen concentration, but an

integral of this over a range of concentrations. However, by

repeating the calculations transmuting a different number

of atoms at a time, it is possible to extract information

about the value of mXA in a whole range of concentration,

as described in [56].

In the solid state, thermodynamic integration is not the

most appropriate way of calculating the chemical potential

difference mXA. This is clear, because in the zero tempera-

ture limit, at infinite dilution m(cX ! 0) is simply the

change in internal energy when one atom in the perfect

lattice of solvent is replaced by a solute atom, the impurity

system being relaxed to equilibrium. At finite temperatures

in the infinite dilution limit, m(cX ! 0) can be obtained

from the quasi-harmonic vibrational frequencies of the

pure A system and the system containing a single X

impurity. If anharmonic effects are significant, as they are

in the case of O substituted in solid hexagonal closed

packed Fe [57], thermodynamic integration can be used to

estimate the anharmonic effects. These methods can also be

generalized to include the variation of m(cX) with cX to

linear order in cX [56].

The evaluation of m(cX) only gives access to the

difference between the chemical potential of the solute

and that of the solvent. However, we can obtain mX by our

knowledge of mA, in our case the free energy of pure Fe,

which we know from the discussion in section 3.

Equation (40) can now be used to put constraints on the

composition of the Earth’s core [56,58,59]. The constraints

came from a comparison of the calculated density contrast

at the inner core boundary, and that obtained from

seismology, which is between 4.5+ 0.5% [60] and

6.5+ 1.4% [5]. This density contrast is significantly higher

than that due to the crystallization of pure iron (which is

1.8% according to first principles calculations [51]), and

therefore must be due to the partitioning of light elements

between solid and liquid. As mentioned above, here we

considered sulphur, silicon and oxygen as possible impu-

rities. The results are summarized in figure 6. The top panel

shows the density of the liquid core as a function of

concentration of light impurities Si, S and O. For example,

if O is the chosen light impurity, the figure shows that it is

necessary to put 18% of O in liquid Fe to match the density

of the core. The mid panel shows the relation between the

concentration of impurities in solid and liquid. Here two

main behaviours are apparent: for S and Si the two

concentrations are almost identical, while O hardly goes

76 D. Alfè et al.
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into the solid. The bottom panel used the results displayed

in the mid panel to obtain the density jump at the ICB.

Since the concentration of S and Si is almost the same in

solid and liquid, the density contrast of a Fe/S or a Fe/Si

system is not much different from that of pure Fe, and is

still too low when compared with the seismological data.

By contrast, for oxygen the partitioning between solid and

liquid is very large, and this results in a much too large

density contrast, which also does not agree with the

seismological data.

The conclusion from these calculations is that none of

these binary mixtures can be viable for the core. The density

contrast can of course be explained by ternary or

quaternary mixtures. Assuming no cross-correlated effects

between the chemical potentials of different impurities, and

based on the seismological density contrast of 4.5+ 0.5%

[60] we [56,58] proposed an inner core containing about

8.5% of sulphur and/or silicon and almost no oxygen, and

an outer core containing about 10% of sulphur and/or Si,

and an additional 8% of oxygen. The more recent seismo-

logical datum of 6.5+ 1.4% [5] would change the estimate

of the core composition to an inner core containing about

7% of sulphur and/or silicon and still almost no oxygen,

and an outer core containing about 8% of sulphur and/or

Si, and an additional 13% of oxygen. One consequence of

the large partitioning of oxygen between solid and liquid is

that as the solid core grows it expels oxygen in the liquid,

which by converting its gravitational energy helps driving

the convective motions that are responsible for the

generation of the Earth’s magnetic field [61].

Figure 6. Liquid and solid impurity mole fractions clX and clX of impurities X¼S, Si and O, and resulting densities of the inner

and outer core of the Earth predicted by first-principles simulations. Solid, dashed and chain curves represent S, Si and O,

respectively. (a) Liquid density rl (kg m73 units); horizontal dotted line shows density from seismic data [3,60]; (b) mole

fractions in solid resulting from equality of chemical potentials in solid and liquid; (c) relative density discontinuity d r/rl at
the ICB; horizontal dotted and dashed lines are values from free oscillation data [5,60]. Adapted from [58], with permission.

Copyright 2002 Elsevier.
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4.1.3. Shift of freezing point. The partitioning of the solute

between the solid and the liquid is generally responsible for

a change in the melting temperature of the mixture with

respect to that of the pure solvent. This is because the solute

usually finds better accommodation in the liquid, and this

flow from the solid to the liquid is responsible for a

decrease of the Gibbs free energy of the liquid with respect

to that of the solid. This lowering of Gibbs free energy in

the liquid produces a depression of the freezing point. This

is the reason why, for example, sea water freezes only when

the temperatures are well below zero, it is because of the

salt dissolved into it. Similarly, this effect is commonly

exploited to reduce the formation of ice on public roads by

the spreading of salt. The dissolution of salt lowers the

freezing point of water. If the concentration of solute is

small, the depression of the freezing point is given by

dT ¼ kTm

Ds
ðcsX � clXÞ; ð44Þ

where Ds is the entropy change on melting of the pure

solvent and Tm is the melting temperature of the pure

solvent.

Using equation (44), and the composition estimated from

the density contrast of 4.5% we can now estimate a

depression of about 600 – 700 K of the melting temperature

of the core mixture with respect to the melting temperature

of pure Fe, which would produce an inner-core boundary

temperature of about 5700 K. This estimate would go

down by a further 300 K if the latest estimate of 6.5% for

the density contrast at ICB was used [5], which would

therefore result in a temperature at the ICB of about

5400 K. Combining this with equation (1), which describes

the variation of temperature with depth assuming that the

temperature distribution is adiabatic, we can also obtain an

estimate for the temperature at the top of the core, which is

approximately equal to 4000 K.

5. Summary

We have discussed in this paper the development of a

number of first principles calculations techniques used to

infer the properties of the Earth’s core. These techniques

are based on the fundamental laws of nature as described

by quantum mechanics. In particular, we have shown that

it is possible to calculate chemical potentials from first

principles, and that with the knowledge of these chemical

potentials for a number of pretenders it is possible to

estimate the temperature and the composition of the

Earth’s core. We have described that these results can be

obtained by combining experimental knowledge about the

Earth’s core, mainly from seismic observations, with first

principles calculations. The first seismic observation which

comes into play is the discovery of a solid and a liquid core,

and therefore a boundary between the two (the ICB).

Thermodynamic equilibrium between solid and liquid at

the ICB can be used to estimate the temperature of the

ICB. The additional seismic observations of the density

jump at the ICB can be used to put constraints on the

composition of the Earth’s core. We have shown that these

constraints result in an ICB temperature of 5400 – 5700 K,

and require the presence of a significant amount of oxygen

in the liquid core. This oxygen is expelled by the mixture

with Fe as the ICB grows, and its gravitational energy

becomes available to maintain the convective motions in

the liquid core which are responsible for the generation of

the Earth’s magnetic field. The estimate of the temperature

of the Earth’s core provides a fixed point that can be used

to infer the thermal structure of the core, which in turn can

be used to understand better convection and heat transfer.

The results of this work are graphically summarized in

figure 7.

The reliability of these results is supported by the large

amount of experimental data that first principles calcula-

tions reproduce very accurately. Here we have only

mentioned a very limited number of these. The robustness

of first principles calculations gives confidence that they

have useful predictive power, and they can even be used in

regions where experiments cannot be performed. In

particular, in the present discussion density functional

theory has been the first principles tool of choice, as it has

shown to be a very reliable instrument to predict the

thermodynamic properties of iron.

We conclude by reminding that we focused our discus-

sion on the thermodynamic properties of a rather limited

set of light impurities, i.e. S, Si and O, and based our

estimate for a core composition on these elements only,

because these three are thought to be the most likely

Figure 7. Schematic summary of the results presented in

this article for the temperature and composition of the

Earth’s core.
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candidates to be in the core. In principle other elements like

C and H have been proposed as possible light elements in

the core, so a possible natural development of this research

could be to apply the techniques discussed here to look at

these other light elements too.
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[49] D. Alfè, G. Kresse and M.J. Gillan, Phys. Rev. B 61 132 (2000).

[50] D. Frenkel and B. Smit, Understanding Molecular Simulation

(Academic Press, San Diego, 1996).
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