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ABSTRACT
The drug discovery process currently employed in the pharma-
ceutical industry typically requires about 10 years and $2–3 bil-
lion to deliver one new drug. This is both too expensive and too
slow, especially in emergencies like the COVID-19 pandemic. In
silico methodologies need to be improved both to select better lead
compounds, so as to improve the efficiency of later stages in the
drug discovery protocol, and to identify those lead compounds
more quickly. No known methodological approach can deliver this
combination of higher quality and speed. Here, we describe an
Integrated Modeling PipEline for COVID Cure by Assessing Better
LEads (IMPECCABLE) that employs multiple methodological inno-
vations to overcome this fundamental limitation. We also describe
the computational framework that we have developed to support
these innovations at scale, and characterize the performance of this
framework in terms of throughput, peak performance, and scien-
tific results. We show that individual workflow components deliver
100× to 1000× improvement over traditional methods, and that
the integration of methods, supported by scalable infrastructure,
speeds up drug discovery by orders of magnitudes. IMPECCABLE
has screened ∼1011 ligands and has been used to discover a promis-
ing drug candidate. These capabilities have been used by the US
DOE National Virtual Biotechnology Laboratory and the EU Centre
of Excellence in Computational Biomedicine.
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1 INTRODUCTION
Drug discovery is an astonishingly resource intensive process; the
average time to search, design, and effectively bring a clinically
tested drug can range between 10 to 15 years, and can cost over
$1B [24]. Early stages of drug discovery rely on high throughput
screening (HTS) protocols to identify chemical compounds that can
be effective against known protein targets [11]. As more accurate
screening methods are typically also more expensive, traditional
virtual HTS employs a multi-stage pipeline protocol [23], wherein
downstream stages are computationally more expensive, but typi-
cally more accurate in their selection of promising candidates. The
number of candidates screened in downstream stages of a virtual
HTS pipeline is less than upstream stages.

Although HTS approaches are widely available and used, the
sheer combinatorics of drug-like molecules—an estimated 1068 pos-
sible compounds—makes it infeasible to exhaustively examine com-
pound space to find viable molecules [8]. Computational frame-
works that support both high-throughput exploration and accurate
prediction of drug-like properties are needed.

In the context of COVID-19, the SARS-CoV-2 genome consists
of 29 proteins of which 16 non-structural proteins are enzymes that
play critical roles in the virus life cycle [22]. Identifying compounds
that have the potential to inhibit the virus life cycle [22] requires
screening tens of billions of small molecules against multiple targets
on the SARS-CoV-2 proteome. Thus, virtual HTS methods need to
rapidly screen large number of ligands, accurately and against a
large number of possible targets. Exhaustive exploration of such a
vast chemical space against multiple targets is essentially impossi-
ble. Methodological innovations must be accompanied by computa-
tional infrastructure that can access libraries with representative,
yet diverse chemical space (∼1012 compounds).

IMPECCABLE addresses these requirements and the limitations
of traditional virtual HTS [25]. It uses AI/ML methods to improve
the effective sampling of individual stages, to glue information
across different stages (e.g.. docking and MD simulations), and in-
tegrates AI/ML models with physics-based models into a single
unified pipeline. IMPECCABLE uses surrogate models, which are
typically computationally less expensive than the original compu-
tation, though also less accurate. Surrogate models are trained to
identify or generate promising candidates, and thus IMPECCABLE
is not constrained to filter a fixed set of candidates between suc-
cessive stages. The effective space of ligands sampled, and thus the
effective throughput is different from the number of ligands actu-
ally screened by the pipeline. In addition, information generated
from one stage is used by downstream stages (e.g., ML-driven MD
sampling to enhance binding free energy calculations).

Integrated AI/ML campaigns composed of workflows, which
in turn are comprised of AI/ML and traditional HPC simulations,
require sophisticated and scalable computational infrastructure, for
which there are no turnkey or shrink-wrap solutions. IMPECCABLE
employs RADICAL-Cybertools (RCT), a set of software systems,
to manage the execution of heterogeneous workflows and work-
loads on leadership computing facilities [27]. We have previously
described the infrastructure used for individual workflows [17];
here, the focus is on the computational infrastructure developed to
integrate methods with varying computational characteristics into
a cohesive whole to support a sustained computational campaign.

The computational campaign is part of a process—along with
synthesis, experiments (e.g., biochemical or whole-cell assays), and
clinic trials—whose goal is to identify promising compounds that
function as COVID-19 anti-viral drugs. The campaign goal is repre-
sented by a multi-dimensional objective function which is a mix
of computational and scientific objectives: optimize the number
of ligands sampled while ensuring that the quality of the selected
ligands is high, so as to maximize the possibility of success as an
anti-viral drug. Although IMPECCABLE has identified promising
leads targeted at SARS-CoV-2 [15], quantifying the scientific impact
of proposed leads—global assessment or potential relative to other
leads—is non-trivial, and beyond the scope of this study. We do
however, highlight local enhancements—methodological and scien-
tific. The computational objective, when articulated independent of
the scientific impact, is to maximize the number of ligands screened,
as well as the effective number of ligands investigated. Thus, the
performance of select stages in IMPECCABLE pipeline is measured
by both throughput, defined as number of ligands screened per unit
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time, as well as effective throughput, defined as number of ligands
sampled per unit time.

In Sec. 2 we discuss the components of the IMPECCABLE ap-
proach and how their integration delivers more than the sum of
individual components. Sec. 3 outlines the diverse performance
measures of the individual components, and then presents scien-
tific results and computational performance results. Finally, we
discuss the impact of IMPECCABLE and its significance beyond
the specific challenge of COVID-19.

2 THE IMPECCABLE APPROACH
As shown in Fig. 1, the IMPECCABLE campaign consists of an
iterative loop initiated with ML predictions (ML1), followed by
three stages of data processing (S1, S2, S3). IMPECCABLE cen-
ters on the use of AI/ML techniques (ML1 and S2) interfaced with
physics-based computational methods to estimate docking poses
of compounds that are promising leads for a given protein target
(S1) and binding free-energy computations (S3).

High Throughput 
Docking (S1)

Latent Space Representation 
and

Steered Advanced Sampling
(S2)

Offline Ensemble 
Docking

Enhanced Sampling of 
protein target states

Fine-Grained
Binding Affinity

(S3-FG)

Improved Binding
Free-Energy Estimates

ML-predict Docking
Scores (ML1)

Stability 
Measures/Features for 

Protein-Ligand
Interactions

Coarse Grained
Binding Affinity 

(S3-CG)

Coarse Grained
Binding Affinity 

(S3-CG)

Latent Space Representation 
and

Steered Advanced Sampling
(S2)

Fine-Grained
Binding Affinity

(S3-FG)

Figure 1: The IMPECCABLE Solution: represents an entire
virtual drug discovery pipeline, from hit to lead through
to lead optimization. The constituent components are
deep-learning based surrogate model for docking (ML1),
Autodock-GPU [19] (S1), coarse and fine-grained binding
free energies (S3-CG and S3-FG) and S2 (DeepDriveMD).

2.1 Algorithmic & Methodological
ML1: Machine Learning Models for docking score prediction. Scoring
functions are used to score poses in order to determine the most
likely pose of the molecule, the magnitude of which is used to pro-
vide an indication of active versus inactive ligands, and lastly to
rank order sets of libraries. We create a ML surrogate model [13]
to replace the use of docking scores as a means of locating regions
of chemical space likely to include strong binding drug leads. The
only free variable for the surrogate ML ranking function is the
basic molecular information, which typically presents as a simpli-
fied molecular-input line-entry system (SMILES) string; there is
an entire field of deep learning for molecular property prediction
based on this approach [16].

We use a simple featurization method, namely 2D image depic-
tions, as this does not require complicated architectures such as
graph convolution networks, while demonstrating good predictive
power. From the 2D depiction of a molecule, chemists can gener-
ally identify major properties such as H-acceptors, estimate the
molecule’s weight, and even determine if a molecule might bind
to a protein. This featurization method, unlike graph structure, is
able to use off-the-shelf convolutional neural networks. By using
2D images, we are able to initialize our models with pre-trained
weights that are typically scale and rotation invariant for image
classification tasks, which we require in order to infer if a small
molecule will bind well to a given SARS-CoV-2 target. We obtain
these image depictions from the nCoV-Group Data Repository [4],
which contains various descriptors generated via high-performance
computations using ParSL [5] for 4.2B molecules.

We model the enrichment of our surrogate model with a regres-
sion enrichment surface (RES) [14]. The RES measures enrichment
of the surrogate model, i.e., how well a surrogate model can filter
molecules, measured by how many successful downstream detec-
tions are not missed by the surrogate model. The RES also models
how that enrichment varies based on the threshold for filtering
hits of the surrogate model. While this analysis brings forth the
failure of the model to exactly replicate the rank ordering of the
compounds at scale, it provides the operational benefit of these
models—the predictive ML model will indeed be able to filter with
near 100% accuracy two orders of magnitude more ligands from
the data library. Thus, if all else is equal, with only the additional
cost of docking additional compounds, we are able to expand the
set of viable leads detected by two orders of magnitude, without
loss of performance in the top regions of detection.

S1: High-throughput Docking. Protein-ligand docking encompasses
a multistage computation consisting of ligand 3D structure (con-
former) enumeration, exhaustive docking and scoring, and final
pose scoring. The input to the docking protocol requires a pro-
tein structure with a designed binding region, or a crystallized
ligand from which a region can be inferred, as well as a database of
molecules to dock in SMILES format.

The CUDA-accelerated AutoDock 4.2.6 (AutoDockGPU) lever-
ages a highly parallel implementation of the Lamarckian genetic
algorithm (LGA) to process ligand-receptor poses in parallel over
multiple compute units. AutodockGPU [19], developed in collabo-
ration with NVIDIA and others with a target of the Summit system
at the Oak Ridge Leadership Computing Facility (OLCF), applies
the legacy Solis-Wets local search method along with a new local-
search method based on gradients of the scoring function. One of
these methods, ADADELTA [34], has proven to increase docking
quality significantly in terms of RMSDs and scores, with observed
speedups of 56× over the serial AutoDock 4.2 (Solis-Wets) on CPU.
A drug screen takes the best scoring pose from these indepen-
dent outputs. Autodock-GPU uses an OpenMP threading-based
pipeline to hide ligand input and staging, and the receptor-reuse
functionality for docking many ligands to a single receptor. From
the computational performance perspective, we use the number of
docking calculations performed per GPU as a measure of docking
capability.
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S2: Machine Learning Driven Molecular Dynamics. ML tools are
able to quantify statistical insights concerning the time-dependent
structural changes that a biomolecule undergoes in simulations,
identify events that characterize large-scale conformational changes
at multiple timescales, and build low-dimensional representations
of simulation data capturing biophysical / biochemical / biological
information. These low-dimensional representations can be used
to infer kinetically and energetically coherent conformational sub-
states and to obtain quantitative comparisons with experiments.
Deep structured learning approaches automatically learn lower-
level representations (or features) from input data, successively
aggregating them such that they can be used in various supervised,
semi-supervised, and unsupervised ML tasks.

We developed variational autoencoders to automatically reduce
the high dimensionality of MD trajectories and cluster conforma-
tions into a small number of conformational states that share similar
structural, and energetic characteristics [7].

We use S2 to drive adaptive sampling simulations, and use the
acceleration of rare events to investigate protein-ligand interac-
tions [18]. DeepDriveMD [9, 18] was used in S2 to simulate large en-
sembles of protein-ligand complexes (PLCs). DeepDriveMD builds
an adaptive sampling framework to support the exploration of
protein-ligand bound states that are not often accessible to ap-
proaches such as ESMACS (S3).

A key innovation is support for extremely large numbers of
PLCs. This stems from the fact that a ESMACS-CG (S3-CG) simula-
tion may generate on average, six ensembles which are analyzed
by MD-driven AI approaches to identify 5–10 novel states. Hence,
we also implemented a novel approach for analyzing large MD
ensemble simulation datasets using a 3D adversarial autoencoder
(3dAAE) [12, 33], a significant improvement over approaches such
as variational autoencoders in that it is more robust and general-
izable to protein coordinate datasets than contact maps (or other
raw inputs) extracted from MD simulations. Similarly to autoen-
coders, the 3dAAE builds a latent embedding space for MD simu-
lations to characterize conformational changes within PLCs from
ESMACS-CG/FG simulation trajectories. The 3dAAE includes the
PointNet encoder, Chamfer distance-based reconstruction loss, and
aWasserstein adversarial loss with gradient penalty to build a latent
manifold on which all simulations are projected. From this latent
manifold, we use Local Outlier Factor (LOF) [10] detection to iden-
tify ‘interesting’ PLCs that are then selected for S3-FG simulations.
The iterative feedback between the two stages of S3-CG/FG and S2
enables accurate estimates for the binding free-energy, and allows
us to filter compounds based on their affinity to the protein, while
accounting for the intrinsic conformational flexibility of the PLC.

S3: Binding Free Energy Calculations. Hit-to-Lead (H2L), sometimes
also called lead generation, is a step in the drug discovery process
where promising lead compounds are identified from initial hits
generated at preceding stages. It involves evaluation of initial hits
followed by some optimization of potentially good compounds to
achieve nanomolar affinities. The change in free energy between
free and bound states of protein and ligand, also known as bind-
ing affinity, is a promising measure of the binding potency of a
molecule, and hence it is used as a parameter for evaluating and
optimizing hits at H2L stage. We employ the ESMACS (enhanced

sampling of molecular dynamics with approximation of continuum
solvent) protocol [30], for estimating binding affinities of PLCs. We
differentiate between coarse-grained (CG) and fine-grained (FG)
ESMACS variants, which differ in the number of replicas (6 vs. 24),
equilibration duration (1 vs. 2ns), simulation duration (4 vs. 10ns),
etc. The computational cost of ESMACS-CG is about an order of
magnitude less than that of ESMACS-FG.

Binding affinity is a small number (a few tens of kcal/mol) that is
derived from absolute free energies which are large (a few hundreds
to thousands of kcal/mol). Thus, the usual practice of performing
MMPBSA calculations on conformations generated using a single
MD simulation does not give reliable binding affinities. ESMACS,
on the other hand, performs ensemble MD simulation, where each
independent simulation is termed a replica. Parameters such as
the size of ensemble simulation (or the number of replicas) and
the length of individual replica are chosen such that our results
become reliable quantities [31]. Another factor that plays a role in
determination of these parameters is the level of precision desired
and the cost-benefit ratio. The number of replicas performed is
adjusted to a find a sweet spot between computational cost and the
level of precision acceptable at a particular stage of the pipeline.

ESMACS is costlier than the standard approach of performing a
single simulation of similar duration. This increased cost, however,
is more than compensated by the enhanced precision of ESMACS
results which makes the resultant ranking of compounds much
more reliable compared to standard approaches with similar accu-
racy. MMPBSA-based free energies have considerable variability in
results, rendering them non-reproducible. In fact, fewer iterations
are required to achieve the same level of convergence in chemi-
cal space when using ensemble simulation based methods, which
leads to comparable (or even reduced) computational cost overall,
than on using standard single simulation approaches. This appar-
ent increased cost has advantages, such as increased confidence in
predicted ranking of compounds, and thus more reliable training
data for an ML model.

We used ESMACS-CG to perform the initial screening of thou-
sands of hits in order to reduce computational cost while compro-
mising on the level of precision and ranking of compounds, and
used ESMACS-FG for the latter stages when we have better binding
poses, and/or PLC conformations. Selectively using ESMACS-FG
on a refined set of complexes decreases the computational cost
substantially without affecting the quality of results.

Table 1: Normalized computational costs on Summit.

Method Nodes per
ligand

Hours per
ligand

(approx)

Node-hours
per ligand

Docking (S1) 1/6 0.0001 ∼0.0001
BFE-CG (S3-CG) 1 0.5 0.5
Ad. Sampling (S2) 2 2 4
BFE-FG (S3-FG) 4 1.25 5
BFE-TI 64 10 640
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2.2 Integrated Modeling Pipeline
IMPECCABLE integrates multiple virtual screening methods to se-
lect active ligands for progressively more accurate, but also more ex-
pensive, modeling. Specifically, it integrates AI/ML methods, dock-
ing methods, molecular mechanics Poisson-Boltzmann/generalized
Born surface approximation (MMPBSA)-based enhanced sampling
of molecular dynamics with approximation of continuum solvent
(ESMACS) at the hit-to-lead stage, and Thermodynamic Integration
(TI)-based Thermodynamic Integration with Enhanced Sampling
(TIES) at the lead optimization stage.

At any stage, only themost promising candidates are advanced to
the next stage, yielding a N-deep pipeline, where each downstream
stage is computationally more expensive, but also more accurate
than previous stages. The methods chosen vary in computational
cost per ligand by about six orders of magnitude; in the docking
stage of IMPECCABLE each dock costs about 10−4 node-hours per
ligand; fine-grained binding free energy costs about 102 node-hours
per ligand (Tab. 1). Tuning the cost of each method by extending
or contracting the number of iterations of each method allows
for enhanced scientific performance and throughput. Put together,
these provide an important dynamic range of accuracy, and thus
potential for scientific performance enhancement.

Each stage of IMPECCABLE when augmented with relatively
simple AI/ML approaches provides a significant boost to the cover-
age of the compound diversity as well as conformational landscapes
of PLCs. Using training data generated on small [O(106)] compound
libraries, ML1 enables a significant improvement in filtering larger
[O(109)] libraries, increasing coverage by 3 orders of magnitude.

The second step, which uses AutoDock-GPU results to filter the
top 1% of these compounds (a ratio that can be varied by the end-
user), identifies high confidence lead molecules that can bind to a
given SARS-CoV-2 target. The purpose of ML1 is to predict if the
given molecule will dock the protein well, and not to predict the
docking pose. We exploit the intrinsic strengths of most docking
programs in predicting the binding pose for a given PLC, such that
the initial poses selected follow physical principles (i.e., optimizing
electrostatic and hydrophobic complementarity).

The next stage, S3-CG, refines the filtered compounds to obtain
an estimate of the binding-free energy. This step is crucial in the
sense that it seeds the further pipeline with higher confidence leads
that may have favorable interactions with the protein target.

This set of diverse PLCs are input to S2, which leverages the
3dAAE to learn a latent manifold that consists of a description
of which PLCs are most stable. In addition, the latent manifold
also captures intrinsic dimensions of the protein’s conformational
landscape that are perturbed by the ligand’s interactions. Using
outlier detection methods, we then filter further to include a smaller
number of PLCs on which SG-FG are implemented to ultimately
suggest strong confidence intervals for binding free-energy of the
PLCs selected. The final stage of the pipeline provides additional
features that identify key complementary features (e.g., electrostatic
interactions through hydrogen bonds, or hydrophobic interactions).

IMPECCABLE embodies innovation within the individual meth-
ods it employs, as well as in the way it integrates these methods. ML
techniques overcome the limitations of S1 and S3 by predicting the
likelihood of binding between small molecules and a protein target

(ML1), and accelerating the sampling of conformational landscapes
to bound the binding free-energy values for a given PLC (S2).

Artificial intelligence (AI) andmachine learning (ML) have played
a pivotal role in COVID-19 drug discovery [35]. However, most
AI/ML efforts have largely focused on building effective means to
analyze large volumes of data generated through either ligand dock-
ing simulations—to filter favorable vs. unfavorable ligand binding
poses in a given protein—or molecular dynamics (MD) simulations
of selected PLCs. While docking programs are generally good at
pose prediction, they are less effective in predicting binding free-
energy of PLCs. Conversely, while MD simulations are effective
at predicting binding-free energies, their intrinsic limitations in
sampling PLC complex formation processes imply that it may be
infeasible to employ them on large compound libraries.

Interfacing ML approaches with physics-based models (docking
and MD simulations) has the potential to achieve at least several
orders of magnitude improvement in the size of compound libraries
that can be screened with traditional approaches, while simulta-
neously providing access to binding free-energy calculations that
can impose better confidence intervals in the ligands selected for
further (experimental or computational) optimization.

2.3 Computational Infrastructure
The drug candidate discovery required significant infrastructural
development, performance and scale enhancement, execution opti-
mization and unprecedented integration of diverse computational
workloads/stages. The campaign employs parallelism at multiple
levels to deliver these capabilities; it executes two distinct work-
flows sharing the same node but different workloads and task types
to improve overall throughput. Further, novelty arises from a com-
bination of scale, heterogeneous workloads, and integration of
methods to work in production on leadership platforms. The cam-
paign workload is a diverse mix of task types, e.g., MPI, single GPU,
multinode GPU, and regular CPU; this mix of tasks changes over
the course of the campaign. There are multiple stages that couple
and concurrently execute deep learning and traditional simulations.
Coupling and concurrently executing these diverse tasks is chal-
lenging, and is made more difficult by virtue of having different
models and coupling with simulations across multiple stages.

The dynamic variation of workload arises due to many reasons,
for example: (i) each PLC has a different rate of convergence for
structural and energetic properties, and thus the duration varies; (ii)
cost of docking per ligand varies across different drug compound
libraries and the ligands they contain; and (iii) for methods that in-
volve learning, (re-) training times are dependent on specific ligands
and the number of simulations. The integration of diverse meth-
ods with varying computational characteristics, performance and
scalability requirements, into an adaptive computational campaign
requires innovative computational infrastructure.

IMPECCABLE employs the Ensemble Toolkit (EnTK) [6], which
itself uses RADICAL-Pilot (RP) [21] for flexible and scalable exe-
cution of workflows with heterogeneous tasks. Together they con-
form to the middleware building blocks architectural pattern [27]
to decouple the programming system from underlying execution
capabilities. Ref. [17] provides software and infrastructure details.
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2.3.1 Programming System. EnTK is a Python implementation of
a workflow engine, designed to support the programming and ex-
ecution of applications with ensembles of tasks. EnTK executes
tasks concurrently or sequentially, depending on their arbitrary
priority relation. We use the term “task” to indicate a stand-alone
process that has well-defined input, output, termination criteria,
and dedicated resources. For example, a task can indicate an exe-
cutable which performs a simulation or a data processing analysis,
executing on one or more nodes on Summit. Tasks are grouped into
stages and stages into pipelines depending on the priority relation
among tasks. Tasks without a reciprocal priority relation can be
grouped into the same stage, whereas tasks that need to be executed
before other tasks have to be grouped into different stages. Stages
are then grouped into pipelines and, in turn, multiple pipelines can
be executed either concurrently or sequentially. Specifically, EnTK:

• permits asynchronous execution of concurrent pipelines
(each pipeline can progress at its own pace);

• allows arbitrary sizing of stages (variable concurrency);
• supports heterogeneous tasks of arbitrary types, and combi-
nations, as well as their inter-mixing;

• promotes “ensembles” as first-class code abstraction;
• selects parameters at runtime so as to provide near-optimal
selection of cost versus accuracy.

These are necessary capabilities to explore PLCs of varying com-
plexity and cost, without constraining the number of concurrent
investigations, and different methods run in arbitrary order.

2.3.2 Execution Framework for Dynamic Resource Management.
Given the extreme workload heterogeneity and workload varia-
tion between and across stages, dynamic resource management is
critical. Dynamic resource management capability is provided by
RADICAL-Pilot (RP), a Python implementation of the pilot para-
digm and architectural pattern [29]. Pilot systems enable users to
submit pilot jobs to computing infrastructures and then use the
resources acquired by the pilot to execute one or more workloads,
i.e., set of tasks. Tasks are executed concurrently and sequentially,
depending on the available resources. For example, given 10,000
single-node tasks and 1000 nodes, a pilot system will execute 1000
tasks concurrently and each one on the remaining 9000 tasks se-
quentially, whenever a node becomes available. RP enables the
execution of heterogeneous workloads comprised of one or more
scalar, MPI, OpenMP, multi-process, and multi-threaded tasks. RP
directly schedules and executes on the resources of one or more
pilots without having to use the infrastructure’s batch system.

RP offers unique features when compared to other pilot systems
or tools that enable the execution of multi-task workloads on HPC
systems: (1) concurrent execution of heterogeneous tasks on the
same pilot; (2) support of all the major HPC batch systems; (3)
support of more than twelve methods to launch tasks; and (4) a
general purpose architecture. RP can execute single or multi core
tasks within a single compute node, or across multiple nodes. RP
isolates the execution of each task into a dedicated process, enabling
concurrent execution of heterogeneous tasks by design.

Fig. 2 provides an overview of how the IMPECCABLE campaign
is constructed and executed. It comprises four distinct computa-
tional workflows: a ML surrogate (ML1), docking (S1), binding free
energy calculations (S3), and latent space representation and steered

advanced sampling via MD simulations (S2). Each is a distinct work-
flow with well-defined inputs and outputs, multiple executables
with defined dependencies, and termination criteria, able to produce
stand-alone scientifically meaningful end-results. Each workflow
represents the expertise and unique scientific and methodological
contribution from a different team.

AutoDock-GPU

Docking Surrogate

S1

S3-CG

S3-FG

S2

ML1

Figure 2: Programming and execution view: Each stage of
the (S3-CG)-(S2)-(S3-FG) pipeline comprisesmultiple hetero-
geneous tasks; each stage executes for varying durations.

We codify IMPECCABLEworkflows as a five-stage EnTK pipeline
using a general-purpose language (Python) and application-specific
constructs from the PST (Pipeline, Stage, Task) programming model.
These abstractions simplify creating and executing ensemble ap-
plications with complex coordination and communication require-
ments. Pipelines can contain different workloads, e.g., distinct in-
stances of S* for a given PLC, but also possibly multiple instances
of a given S* for many PLC concurrently. Autodock-GPU is exe-
cuted as a single task running on several thousand nodes, as is the
docking surrogate, a relatively short duration task. The remain-
ing three stages are workflows which are expressed as pipelines,
comprised of differing stages and varying duration and number
of tasks concurrently executing. The horizontal length of a box is
proportional to the number of nodes used by a stage / computation,
and the vertical length of boxes represent the temporal duration;
boxes are not drawn to scale.

IMPECCABLE infrastructure is portable along at least three dif-
ferent dimensions: (i) portable to different HPC platforms, e.g., dif-
ferent stages of this pipeline have been run on 4 distinct leadership
platforms on two continents; (ii) portable to different computations
in a stage, e.g., different ML models to drive ensemble MD simula-
tions, or different algorithms/protocols to compute free energies of
binding; (iii) portable to different campaigns beyond drug selection,
e.g., new materials design, catalyst discovery, or any campaign that
requires the coupling of multiple levels-of-theory and accuracy.

3 PERFORMANCE AND RESULTS
Having discussed the IMPECCABLE computational campaign, we
describe the composite workflows and their constituent workloads,
desired performance, and factors determining scalability.
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3.1 Computational Characteristics
3.1.1 ML1: Deep Learning Docking Emulator. This step is a dock-
ing emulator which serves as a pre-selection tool for docking cal-
culations performed in step S1. The goal is to reduce the search
space from about 126M ligands down to a manageable amount
for the docking calculations. The emulator is based on a resnet-50
deep neural network: it transforms image representations of lig-
and molecules into a docking score. To convert the ligand SMILES
strings into images we employed the mol2D drawing submodule
from rdKit.The target scores are binding energies which are mapped
into the interval [0, 1], with higher scores representing lower bind-
ing energies and thus higher docking probabilities. The main com-
putational motifs are dense linear algebra, convolutions and ele-
mentwise operations on 4D tensors. The network is implemented
in PyTorch and pre-trained on 500,000 randomly selected samples
from the OZD ligand dataset across each receptor (for our purposes,
each PDB entry corresponds to a separate receptor, providing ac-
cess to an ensemble of docking simulations). For deployment, we
compiled the model using NVIDIA TensorRT v7.2 with cuDNN
v8.0 employing the torch2trt helper tool. As base precision we
chose half precision (FP16), so that we can use the Tensor Cores on
Summit’s V100 GPUs.

Inference workloads are notoriously I/O bound, and thus we em-
ploy various optimizations to improve throughput. We start with
the ULT911 dataset [3], which is supplied as a collection of 12,648
files with 10,000 ligands, each in Python pickle format. We first used
gzip to compress each file, achieving an average compression factor
of 14.2. We use MPI to distribute the individual files evenly across
a large number of GPUs and bind one rank to each GPU. While
we perform the model scaffolding phase, i.e. creating the computa-
tional graph and loading the weights from the pre-trained model
file, each rank stages its assigned shard of the data from GPFS into
node-local NVMe. During the inference process, each rank utilizes
multiple data loader processes where each is employing 2 prefetch-
ing threads: the first one loads compressed files from NVMe into
DRAM and decompresses them on the fly while the second iterates
through the uncompressed data in memory, extracts the image and
metadata information and feeds them to the neural network. The
whole logic is implemented using the thread-safe Python queue
module. We further use careful exception handling to make the
setup resilient against sporadic I/O errors. After inference is done,
the resulting lists of docking scores and metadata information such
as ligand id and SMILES string are gathered and concatenated on
rank 0 and written into a CSV file which is forwarded to step S1.

3.1.2 S1: Physics-based Ensemble Docking. To support the scaling
requirements of S1, we implemented a Master/Worker overlay on
top of the pilot-job abstraction. Fig. 3 illustrates the RAdical-Pilot
Task OveRlay (RAPTOR) master/worker system as deployed on
Summit. Once RAPTOR has acquired its resources by submitting
a job to Summit’s batch system, it bootstraps its Agent (Fig. 3-1)
and then launches a task scheduler and a task executor (Fig. 3-2).
Scheduler and Executor launch one or more masters on one or more
compute nodes (Fig. 3-3). Once running, a master schedules one or
more workers on RP Scheduler (Fig. 3-4). Those workers are then
launched on one or more compute nodes by RP Executor (Fig. 3-5).
Finally, the master schedules function calls on the available workers

Compute Node 1

CPUs
Master
1 CPU

Summit Launch node

RP Agent Bootstrapper

GPUs

Compute Node n

GPUs

RP Executor

CPUs

PRTE/JSRUN

RP Scheduler

MPI Task                  32 CPU

Worker
36 CPU          6 GPU

Worker
18 CPU                              6 GPU

PRTE/JSRUN

PRTE/JSRUN

Master
Worker

Task
Function

RP component
System Component

1

2 2

3

4

5 5 5

6

6

Figure 3: RAPTOR Execution Framework: One of the two
execution frameworks used to support heterogeneous tasks
and dynamic workloads on Summit.

for execution (Fig. 3-6), load-balancing across workers so to obtain
maximal resource utilization.

The duration of the docking computation varies significantly
between individual receptors. The long tail poses a challenge to
load balancing; the relatively short docking times pose a challenge
to scalability. Load balancing is addressed by iterating through the
list of compounds in a round-robin fashion, and by dynamic load
distribution which depends on the load of the individual workers.
Further, balancing is achieved by: (i) tasks are communicated in
bulks as to limit the communication load and frequency; (ii) mul-
tiple master processes are used to limit the number of workers
served by each master, avoiding respective bottlenecks; (iii) multi-
ple concurrent pilots are used to isolate the docking computation
of individual compounds within each pilot allocation. The combi-
nation of these approaches results in a near linear scaling up to
several thousand nodes, while maintaining high utilization for large
numbers of concurrently used nodes. Further details can be found
in Ref. [17, 21].

3.1.3 S2 and S3: Advanced Sampling and Binding Free Energy. We
implement S2 and S3 as iterative pipelines that comprise heteroge-
neous stages, with each stage supporting the parallel execution of
tasks. In S2, the pipeline starts with MD simulations that are run
concurrently; it completes a single iteration by passing through
deep learning stages for 3dAAE model training and the outlier de-
tection. In a single iteration, tasks are scheduled across single GPU,
multiple GPUs, and CPU-GPU tasks. For instance, the MD stage
uses a single GPU per simulation (OpenMM), the data aggregation
stage uses CPUs only, the ML training stage uses six GPUs per
model, and the outlier detection stage uses a mixture of CPUs and
GPUs. We also employ data parallelism for model training using
PyTorch Distributed Data Parallel module.
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Figure 4: Regression enrichment surface (RES) profile for PL-
Pro docking runs. As explained in the main text, RES pro-
vides a summary estimate of how many top scoring com-
pounds can be covered given some target number (δ ) of
molecules to be ranked.

Similarly, S3 involves two stages of equilibration and one stage
of simulation; each stage runs an ensemble of from six (S3-CG) to
24 (S3-FG) OpenMM tasks. We also employ NAMD-based TIES in
conjunction with ESMACS, placing distinct simulations on GPU
(OpenMM) and CPU (NAMD) concurrently to achieve optimal re-
source utilization on Summit.

The architecture of RAPTOR (Fig. 3) differs from that of the
classic RADICAL-Pilot used for S2 and S3 on Summit [28]. The
need for two task execution frameworks arises primarily from the
temporal range and heterogeneity of workloads.

3.2 Scientific Results
The ZINC compound library provides over 230 million purchasable
compounds [26] in ready-to-dock, 3D formats; MCULE has 100
million purchasable compounds in similar formats [3]. Hence there
is a need to obtain a diverse sample of compounds for both docking
calculations (to generate the training data) and inference runs (ML1
results). We selected a subset of 6.5 million “in-stock" compounds
from the ZINC library along with the Enamine diversity set [1] and
DrugBank compounds to develop our training library (OZD library,
hereafter). We also chose a similar subset of 6.5 million compounds
from the MCULE library (ORD library, hereafter) for the purposes
of testing if ML1 can be used for transferring knowledge learned
from one library to another. These libraries pay attention only
to the diversity of the compounds selected, and are independently
selected, although between the two libraries we observed an overlap
of approximately 1.5 million compounds.

3.2.1 ML1 results. We trained our ML1 models on docking runs
(generated offline) for the four main target SARS-CoV-2 proteins,
namely 3C like protease (3CLPro), papain-like protease (PLPro),
ADP-Ribose-1"-Monophosphatase (ADRP), and non-structural pro-
tein 15 (NSP15). These proteins all represent important drug tar-
gets against SARS-CoV-2 virus. Here we present only a vignette

of results from the PLPro target and specifically from the recep-
tor derived from the Protein DataBank IDentification (PDB ID)
6W9C. The Regression enrichment surface (RES) plot from Fig. 4
indicates the enrichment of the model as a filter where the x-axis
is the cutoff for passing a molecule through the ML-filter, and the
y-axis is the overall detection desired [14]. By overall detection we
mean if one wishes to successfully obtain 100 compounds from a
100,000 compound library, then one wishes to identify the top 10−3
compounds (the overall detection desired). Given a specific budget
of δ molecules to pass along—that is compounds which pass the
ML-filter—we can imagine a vertical line along the x-axis of Fig. 4
at the point δ representing the budget, where any point to the right
of that line represents an unattainable number of compounds. One
can also imagine a constraint through y = x , as points above this
line represent situations where a wider range of the top distribution
may prove too expensive, although reasonable for some tasks. HTS
is in pursuit of ultra high ranking compounds.

Given these two constraints, one can see that as δ increases,
so to does the accuracy of capturing some desired threshold of
the top distribution. If the library size is u, downstream tasks allot
δ = u10−3 compounds, then the plot indicates that we will capture
50% of the top ranking u10−4 compounds, or around 40% of the
top ranking u10−3 compounds. In concrete terms, for this library,
the ML model here correctly identifies 500 of the top 1000 scoring
compounds from the docking study, or about 4000 of the top 10,000
compounds. However, not all top-ranking compounds are correlated
with obtaining high binding affinity to PLPro. The RES plot also
provides a quantitative estimate of the number of compounds that
we have to sample from lower ranking ones so that we do not
inadvertently miss other high affinity compounds. Hence we also
select about 15–20% of compounds from the RES for subsequent
stages.

3.2.2 S3: ESMACS-CG. For each target of the four chosen proteins
mentioned above, multiple crystal structures were used to perform
docking, and a separate list of the top 10,000 compounds based
on docking scores was generated at the ML1 stage. Therefore, de-
pending on the number of crystal structures used for each target,
there were collectively 20,000–40,000 compounds available for per-
forming binding affinity predictions using coarse-grained ESMACS
(ESMACS-CG). For this stage, we chose 10,000 compounds for each
target by picking the structurally most diverse compounds. This
was done for two reasons: (i) based on the docking scores, all avail-
able compounds were stable poses, and (ii) allowing for maximum
possible coverage of the chemical space allowing for better and
quicker identification of its relevant regions.

We performed ESMACS-CG to obtain binding affinities for all
chosen compounds: a total of (four proteins) × (10,000 compounds)
= 40,000 S3-CG calculations. These values (e.g., see Fig. 5A for a
probability distribution of the 10,000 binding affinities computed
for PLPro) typically lie between -60 to +20 kcal/mol. The resultant
trajectories and binding affinity values from this stage were used as
input for S2 to identify potentially useful conformations that were
fed into S3-FG.

3.2.3 Using S2 to seed S3-FG. Measuring DeepDriveMD perfor-
mance for PLCs presents challenges. The input from the S3-CG
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Figure 5: Initial results from IMPECCABLE on PLPro recep-
tor (PDB ID: 6W9C). (A) Summary histogram of the distri-
bution of binding free energies estimated using ESMACS-
CG. (B) Summary of RMSD (Å) determined from ESMACS-
CG PLC ensembles show a rather tight distribution with a
few PLCs that exhibit greater fluctuations. (C) Latent space
representation from the 3dAAE model depicting the out-
liers from RMSD distributions (>1.9 Å) and the rest as gray
dots. The latent space also summarizes the extent of sam-
pling from these simulations. (D) Structure of PLPro bound
to one of the highly specific molecule (L78) in its active site.
(E) A zoomed in version of the same compound (L78) show-
ing close interactions with key residues in PLPro (green
highlight). The panel on the left depicts how upon running
ESMACS-FG we obtain tighter binding through the com-
pound moving further into the binding site, forming strong
hydrophobic interactions and hydrogen bonds.

pipeline stage are relatively short time-scale, whereas PLC associa-
tion processes tend to vary significantly in time scales. Thus, we
chose a pragmatic measure of PLC stability that takes into account
the number of heavy atom contacts between the protein and the
ligand of interest. From the top scoring PLCs that are selected from
S3-CG, we use the 3dAAE and LOF to filter those conformations
that show increased stability profiles in the PLCs. We believe these
PLCs are of the most interest, since the increased stability poten-
tially contributes to favorable interactions between protein and
ligand. We also measure the 3dAAEs performance in terms of its
ability to learn effective latent space representations from S3-CG
stage (through standard measures such as training and validation
loss metrics).

For PLPro, about 5000 compounds were chosen based on the
structural diversity criterion for Protein Data Bank (PDB) ID 6W9C.
The trajectories corresponding to these 5000 ligands generated by
S3-CG were used to build a combined dataset of 100,978 examples.
The point cloud data, representing the coordinates of the 309 back-
bone Cα atoms of the protein, was randomly split into training (80%)
and validation input (20%) and was used to train the 3dAAE model
for 100 epochs using a batch size of 64. The data was projected onto
a latent space of 64 dimensions constrained by a Gaussian prior
distribution with a standard deviation of 0.2. The loss optimization
was performed with the Root Mean Square Propagation (RMSprop)

optimizer, a gradient descent algorithm for mini-batch learning,
using a learning rate of 0.00001.

We also added hyperparameters to scale individual components
of the loss. The reconstruction loss was scaled by 0.5 and the gradi-
ent penalty was scaled by a factor of 10. We trained the model using
several combinations of hyperparameters, mainly varying learning
rate, batch size and latent dimension. The embedding learned from
the 3dAAE model summarizes a latent space that is similar to vari-
ational autoencoders, except that 3dAAEs tend to be more robust
to outliers within the simulation data. The embeddings learned
from the simulations allow us to cluster the conformations (in an
unsupervised manner) based on their similarity in overall structure,
which can be typically measured using quantities such as root-mean
squared deviations (RMSD). The 5,000 ligands were further ana-
lyzed and 5 structures with the lowest free energy (L6967, L2105,
L78, L6939, L4044) were selected for generating embeddings for
1200 examples, using the hyperparameters learned from 3dAAE
performed on the full set of 5,000 ligands. For visualizing and as-
sessing the quality of the model in terms latent space structure,
we computed t-stochastic neighborhood embedding (t-SNE) [20]
on the validation embeddings. The validation data was painted
with grey while the test data was painted with the RMSD of each
structure to the starting conformation (Fig. 5B-C).

3.2.4 S3: ESMACS-FG. The large amount of data generated by S3-
CGwas analyzed at S2, fromwhich, potentially good conformations
were identified for compounds with large negative binding affinities
from ESMACS-FG. This process led us to filter out five outlier
conformations each for the top five compounds based on S3-CG
results. We used these 25 conformations to perform the costlier
fine-grained ESMACS (ESMACS-FG) calculations to investigate if
IMPECCABLE pipeline can identify favorable interactions between
protein and ligands. If so, it would help identify favorable regions in
the chemical space deserving more attention, which in turn trains
our ML model to generate and/or predict better compounds in
subsequent iteration.

Fig. 6 shows that ESMACS-FG predicts much lower binding affini-
ties than those predicted by ESMACS-CG (Fig. 5D-E). The force-field
used in both cases was the same; only the starting structures var-
ied. This implies that the outliers filtered by S2 indeed captured
some favorable interactions and successfully identified good con-
formations out of the large number of conformations generated by
S3-CG. This is indicative of a novel capability of IMPECCABLE to
quickly sample the relevant chemical space and hence accelerate
the process of drug discovery.

3.3 Computational Performance
Fig. 7 shows an example of how independent pipelines can be inte-
grated into a single workflow. Each pipeline is comprised of stages,
each with an arbitrary number of tasks. Tasks have heterogeneous
execution time and computational requirements. Stages can execute
concurrently or sequentially, depending on available resources and
task, stage and pipeline interdependencies. In the depicted integra-
tion, single-GPU tasks execute alongside MPI GPU and few CPU
tasks, in distinct and customized execution environments. Note that
the overheads (light-colored vertical areas of the plots) are invariant
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Figure 6: Comparison of S3-CG and S3-FG results for the five
best binders for PLPro (PDB ID: 6W9C) based on ESMACS-
CG results. S2 selected five outlier conformations for each
binder and performed ESMACS-FG on them. Initial results
indicate improved binding for the selected conformations in
all five compounds, as FG energies are lower than CG.

to scale, i.e., they do not depend on the number of concurrent tasks
executed or on the length of those tasks.

Figure 7: A time-series of node utilization for the integrated
execution of three GPU-intensive workflows (S3-CG)-(S2)-
(S3-FG). S3-CG, S2 and S3-FG are heterogeneous and multi-
stage workflows themselves.

We measure flops (floating point operations, not rates) per work
unit for the most relevant components of each stage. We define
a work unit to be a representative code section such as an MD
time integration step for MD-based or a data sample for DL-based
applications. Thus we can compute the aggregate invested flops by
scaling the measured flop counts to the respective work set sizes
used in the actual runs.

We always normalize the measurements to a single Summit
node for the same reason. As all of our applications are perfectly

Table 2: Peak flop per second (mixed precision, measured
over short but time interval) and Peak throughput (num-
ber of ligands processed per second) for different stages, for
given node (GPU) counts on Summit.

Comp. GPUs Tflop/s Throughput (ligands/s)
ML1 1536 753.9 319674 ligands/s
S1 6000 112.5 14252 ligands/s

S3–CG 6000 277.9 2000 ligand/s
S3–FG 6000 732.4 200 ligand/s

load balanced with respect to a Summit node (mostly even with
respect to individual GPUs within a node), this procedure yields
a representative flop count. We use the methodology of Yang et
al. [32] and the NVIDIA NSight Compute 2020 GPU profiling tool
to measure flops for all precisions and sum them to obtain a mixed
precision flop count.When possible, we use start/stop profiler hooks
to filter out the representative work units. In order to obtain the
flop rate, we divide the aggregated flops for each EnTK task by
the time it takes to complete that respective task, including pre-
and post-processing overhead. Note that we do not account for any
CPU flops invested in this calculation as we expect that number to
be small. We discuss the specifics for each component:
ML1: We count flops as described above for 10 steps at batch size
256. From that, we derive a flop count per batch per GPU.
S1: We count flops for a five-ligand AutoDock-GPU run on one GPU
to derive flops for a single ligand. We chose this ligand complexity
to represent the majority of the ligands processed in the run.
S2: This stage has multiple steps, but we only account for the au-
toencoder training and the MD performed in this stage. For the
former, we measure the flops per batch for a batch size of 32 for
training and validation separately and weight them proportion-
ally by their relative number of batches. After each training epoch,
a validation is performed and the train/validation dataset split is
80%/20%. This can be translated into a overall flop count for the full
autoencoder stage. For the MD part, we profile 20 steps of OpenMM
and compute a complexity per step.
S3-CG/FG: These two stages both have two steps, a minimization
and an MD step. We count the flops for 10 iterations of the min-
imization algorithm and for 20 steps of the MD run to derive a
flop count per minimization and MD step. Since the algorithmic
complexity differs between CG and FG, we profile those separately.

As shown in Fig. 7 and Tab. 2, both the ML and ensemble sim-
ulations (S3-FG) approach 1 Pflop/s sustained [13, 21]; there are
no middleware barriers to utilizing all of Summit (or any other
leadership class machine).

4 DISCUSSION AND CONCLUSIONS
Multi-scale biophysics-based computational lead discovery is an
important strategy for drug development. Until now it has been
slower than experimental screening, and at insufficient scale to
explore libraries of billions of molecules, even on the most powerful
machines. The work reported here addresses these dual issues by
integrating ML components with physics-based components, and
executing them at scale on leadership-class platforms.
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IMPECCABLE implements and leverages multi-level parallelism:
concurrent pipelines composed of multiple stages; each stage com-
posed of multiple tasks. Each IMPECCABLE stage is distinct, and
has different computational workloads: high-throughput functions,
pure ML, hybrid ML-HPC, and ensemble-MD workloads. Different
stages use either all, or large fractions, of the largest leadership class
machines. IMPECCABLE integrates these heterogeneousworkflows
into a unified campaign for computational lead discovery. The scale
and integration across workload heterogeneity is important. Scale
is critical for number of drug candidates screened, accuracy and
confidence of results, and to generate training data fast enough to
use ML-based surrogate models [13]. The integration of methods
supported by scalable infrastructure, speeds-up drug-discovery by
orders of magnitudes.

As an illustrative example, the work reported here has played a
central role in DOE’s National Virtual Biotechnology Laboratory
(NVBL) [2] effort to use computational molecular design approaches
to develop medical therapeutics for COVID-19 [17]. Methods and
infrastructure reported in this paper have been used to screen
over 4.2 billion molecules [4] against over a dozen drug targets in
SARS-CoV-2, leading to the identification and experimental vali-
dation of over 1000 compounds, resulting in over 40 hits that are
progressing to advanced testing [15]. This screening used more
than 5.0M node-hours across diverse HPC platforms. Individual
parts of the campaign have been used on ∼7000 nodes, and used to
sustain 144M/hour docking hits [15]. In doing so, IMPECCABLE
has screened ∼1011 ligands. IMPECCABLE has computed bind-
ing free energies on 104 PLCs concurrently. Individual workflow
components deliver 100× to 1000× improvement over traditional
methods [9]. Methodological advances and scale of execution has
enabled the NVBL to discover a promising anti-viral drug candi-
date [15].

While much work remains to be done, we have demonstrated
some important milestones towards the ultimate goal of efficient
and high-throughput virtual screening. Put together, this work
demonstrates a path towards a 1000× improvement of overall through-
put of computational drug discovery [9, 13, 15]. This makes the
search of giga-scale libraries of compounds across collections of
drug targets feasible and routine. IMPECCABLE has developed the
necessary infrastructure [17] to support the integration of physics-
based modeling with AI methods into a single campaign comprised
of multiple workflows [15] at the largest possible scale.

IMPECCABLE represents the first-step towards framing the
selection of leads as a complex design problem. The multi-stage
pipeline can be formulated as an optimal design of experiments,
with selection percentage, computational cost versus uncertainty
of different computational stages, quality of selection, inter alia as
campaign degrees-of-freedom. Diverse approaches from Bayesian
optimization, multi-arm bandit, and mean objective cost of uncer-
tainty are being used to optimally select, given a certain computa-
tional budget or other constraint, the most promising leads. These
methods will not change the raw throughput, but will impact the
effective throughput.

IMPECCABLE infrastructure can be adapted to a broad range of
near autonomous drug development scenarios by means of addi-
tional modules and models that fill out the drug discovery pipeline.

For example, this campaign will impact multiple target problems, in-
cluding the DOE/NCI JDAS4C Pilot1 effort to advance Cancer drug
development through AI and the related ECP CANDLE project. We
are building Cancer drug response models that predict the response
of tumors to drugs or drug combinations, which will be coupled to
similar campaigns, to add additional feedback on predicted efficacy
of a target molecule.
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