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Abstract
COVID-19 has claimed more than 2.7×106 lives and resulted in over
124 × 106 infections. There is an urgent need to identify drugs that
can inhibit SARS-CoV-2. We discuss innovations in computational
infrastructure and methods that are accelerating and advancing drug
design. Specifically, we describe several methods that integrate artifi-
cial intelligence and simulation-based approaches, and the design of
computational infrastructure to support these methods at scale. We
discuss their implementation, characterize their performance, and
highlight science advances that these capabilities have enabled.
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1 Introduction
Considering that there are about 1068 possible compounds to traverse
for discovering effective drugs, efficient and effective frameworks
for early-stage drug discovery [1] are required. In spite of the impact
and potential of existing in silico methods, there is a need for a
computationally efficient and better selection of candidates [2] that
can proceed to later stages of the drug discovery protocol.

A fundamental challenge is a scale-accuracy trade-off. The search
for novel drug candidates requires screening diverse and vast regions
of the chemical space, orders of magnitude beyond those typically
explored [3]. Yet, the exploration must be specific enough to select
interesting candidates while keeping computational costs tractable.
No single method is likely to achieve the necessary accuracy at the
required scale. Thus, we need multiple methodological innovations
that accelerate lead compound selections, utilizing advanced and
scalable computational infrastructures.

The primary objective of this paper is to describe the computa-
tional infrastructure developed to support a novel computational
campaign for in silico drug discovery. The campaign is comprised of
multiple innovative methods realized as four workflows; the infras-
tructure enables those methods to run concurrently and as integrated
workflows, while being scalable across diverse and heterogeneous
high-performance computing (HPC) platforms. We examine the
computational characteristics of those workflows and their imple-
mentations using the RADICAL-Cybertools middleware building
blocks [4]. We discuss the computational capabilities required, the
sustained and high-watermark performance, and the scale at which
we execute those workflows.

This work is significant as it provides a scalable infrastructure
for diverse workflows that are heterogeneous in distinct ways. The
infrastructure is developed using a common set of middleware build-
ing blocks, delivers high-performance independent of the workflow
and heterogeneity types, and does not optimize the performance
of the workflow at the expense of others. It supports the flexible
composition of workflows — each of which is a realization of a
sophisticated and innovative method — into an integrated campaign
with high end-to-end throughput. The infrastructure has supported a
campaign that has delivered high-quality drug candidates utilizing
2.5×106 node-hours on diverse HPC platforms for: (i) docking ∼1011

ligands with a peak docking rate of ∼36×106 docks/hr — similar to
the highest reported values [5]; (ii) AI-driven enhanced sampling
simulations, which demonstrate 10× scientific improvement over
traditional methods; and (iii) computing binding free energies on
∼105 ligand-protein complexes, including 104 concurrently.

Our methods and infrastructure provide the computational fab-
ric of the US-DOE National Virtual Biotechnology Laboratory in
combination with resources from the EU Centre of Excellence in
Computational Biomedicine. These methods and infrastructure have
enabled the screening of more than 4.2 billion molecules against over
a dozen drug targets in SARS-CoV-2. So far, over 1000 compounds
have been identified and experimentally validated, resulting in ad-
vanced testing for dozens of hits. The campaign used diverse HPC
platforms, including TACC Frontera, LLNL Lassen, ANL Theta,
LRZ SuperMUC-NG and ORNL Summit.

This paper is organized as follows: In §2 we outline the scientific
methods, their computational properties, and the computational cam-
paign to coordinate them. In §3 we discuss the middleware building
blocks used to develop infrastructure. We describe how our design
and implementation support the execution of the diverse workflows
of our campaign on heterogeneous HPC platforms and at scale. §4
characterizes the performance of our workflow executions, high-
lighting how we overcome challenges of scale and system-software
fragility. §5 presents diverse measures of scientific impact towards
therapeutic advances, discussing representative science results ema-
nating from using these methods that required the coupling of multi-
ple computational stages. §6 discusses related work, and §7 closes
with a discussion of the impact, implications, and future trends.

2 Computational Campaign
The goal of our campaign is to discover new ‘hits’ — drug-like small
molecules — and optimize those hits to viable ‘lead’ molecules that
show potential to inhibit the viral activity. The campaign consists
of two iterative loops (Fig. 1): the Hit to Lead Loop and the Lead
Optimization Loop. In the first loop, ensemble docking programs
(§2.1) ‘dock’ small molecules against ensembles of conformational
states determined from a particular COVID-19 protein target. The
results are used to train a docking surrogate model, followed by a
coarse-grained (CG), enhanced sampling of molecular-dynamics
with approximation of continuum solvent (ESMACS-CG) [6] free-
energy estimation to determine whether the docked molecule and
the protein target of interest can indeed interact (§2.4). Outputs
from ESMACS–CG are input into ML-driven enhanced sampling
methods (§2.3), which are taken through a further fine-grained (FG)
refinement of the binding free-energy (ESMACS-FG; §2.4). Simul-
taneously, a secondary iterative loop is developed for a subset of
compounds that show promising results from ESMACS–CG , where
certain functional groups of promising molecules are optimized for
protein-target interactions, using thermodynamic integration with en-
hanced sampling (TIES) [7] — a method of lead optimization (§ 2.5).
We now describe these methods before discussing their implementa-
tion into workflows (WF1-4) in §4 and the software infrastructure to
execute them §3.

Ensemble 
Docking

ESMACS 
CG

ESMACS
FG

ML-driven 
Enhanced 
Sampling

ML Docking 
Surrogate

Hit to Lead 
Loop

TIES ML Docking 
Surrogate

Ensemble 
Docking

Lead Optimization
 Loop

Leads Selected

Figure 1: The computational campaign to advance COVID-
19 therapeutics has two coupled loops: drug candidates go
through four stages in the Hit-to-Lead loop; a small set of
drugs are selected for the Lead Optimization loop. The follow-
ing methods and protocols are implemented as distinct work-
flows (WF): Ensemble Docking (WF1), ML-driven Enhanced
Sampling (WF2), both coarse-grained (CG) and fine-grained
(FG) ESMACS (WF3), and TIES (WF4).
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2.1 Ensemble Docking
Protein-ligand docking is a computational pipeline of ligand 3D
structure (conformer) enumeration, exhaustive docking and scor-
ing, and pose scoring. The input requires a protein structure with
a designed binding region or a crystallized ligand from which a
region can be inferred, as well as a database of molecules to dock in
SMILES format — a compact representation of a 2D molecule.

Taking the 2D structures to 3D structures ready for structural
docking, proteinization, and conformer generation is performed
using Omega–Tautomers and, if stereochemistry is not specified,
enantiomers are enumerated prior to conformer generation [8]. Typi-
cally, tautomers and enantiomers are enumerated for the incoming
proposed analog or perturbation to the previous ligand. Conformer
generation is performed on the ensemble of structures, generating
200-800 3D conformers for every enantiomer and reasonable tau-
tomer generated. Once the set of 3D structures are enumerated from
the 2D smiles, each one is docked against the pocket and scored.
The best scoring pose is returned along with its ChemGauss4 score
from exhaustive rigid docking [9].

2.2 ML Docking Surrogate Models
Scoring functions are used to score poses in order to determine the
most likely pose of the molecule, the magnitude of which is used
to provide an indication of active versus inactive ligands, and to
rank order sets of libraries. We create an ML surrogate model to
replace the use of docking as a means of locating regions of chemical
space likely to include strong binding drug leads. The only free
variable for the surrogate ML ranking function is the basic molecular
information, which typically presents as a SMILES string. We use a
simple featurization method, namely 2D image depictions, as they
do not require complicated architectures such as graph convolution
networks while demonstrating good prediction. We obtain these
image depictions from the nCov-Group Data Repository [10], which
contains various descriptors for 4.2B molecules.

2.3 ML-Driven Enhanced Sampling
Machine learning tools: (i) quantify statistical insights into the time-
dependent structural changes a biomolecule undergoes in simula-
tions [11]; (ii) identify events that characterize large-scale conforma-
tional changes at multiple timescales; (iii) build low-dimensional rep-
resentations of simulation data capturing biophysical or biochemical
information; (iv) use these low-dimensional representations to infer
kinetically and energetically coherent conformational sub-states; and
(v) obtain quantitative comparisons with experiments.

Recently, we developed convolutional variational autoencoders
(CVAE) that automatically reduce the high dimensionality of MD
trajectories and cluster conformations into a small number of con-
formational states that share similar structural and energetic char-
acteristics [12]. We apply these approaches to ESMACS and TIES
simulations. We also used CVAE to drive adaptive simulations for
protein folding, and demonstrated that adaptive sampling techniques
could provide at least an order of magnitude speedup [13]. These
approaches provide previously unavailable acceleration of “rare”
events — important to study protein-ligand interactions while lever-
aging supercomputing platforms [13].

2.4 ESMACS (Hit-to-Lead Loop)
Hit-to-Lead (H2L) is a step in the drug discovery process where
promising lead compounds are identified from initial hits generated
at preceding stages. It involves evaluation of initial hits followed
by some optimization of potentially good compounds to achieve
nanomolar affinities. The change in free energy between free and
bound states of protein and ligand, also known as binding affinity,
is a promising measure of the binding potency of a molecule and is
used as a parameter for evaluating and optimizing hits at the H2L
stage.

The ESMACS [6] protocol for estimating binding affinities of
protein-ligand complexes is employed. It involves performing an
ensemble of molecular dynamics (MD) simulations followed by
free energy estimation on the conformations using a semi-empirical
method called molecular mechanics Poisson-Boltzmann Surface
Area (MMPBSA). The free energies for the ensemble of conforma-
tions are analyzed in a statistically robust manner yielding precise
free energy predictions for any given complex. This is particularly
important given that the usual practice of performing MMPBSA cal-
culations on conformations generated using a single MD simulation
does not give reliable binding affinities. Consequently, ESMACS
predictions can be used to rank a large number of hits based on
their binding affinities. ESMACS is able to handle large variations
in ligand structures and hence is very suitable for the H2L stage
where hits have been picked out after covering a substantial region
of chemical space. The information and data generated with ES-
MACS can also be used to train an ML algorithm to improve its
predictive capability.

2.5 TIES (Lead Optimization Loop)
Lead Optimization (LO) is the final step of the pre-clinical drug
discovery process. It involves altering the structures of selected lead
compounds in order to improve their properties, such as selectivity,
potency, and pharmacokinetic parameters. Binding affinity is a use-
ful parameter to make in silico predictions about the effects of any
chemical alteration in a lead molecule. However, LO requires theo-
retically more accurate (without much/any approximations) methods
for predictions with high confidence. In addition, the relative bind-
ing affinity of pairs of compounds that are structurally similar is of
interest, rendering ESMACS unsuitable for LO. We employ thermo-
dynamic integration with enhanced sampling (TIES) [7], which is
based on an alchemical free energy method called thermodynamic
integration (TI) [14], which fulfills conditions for LO. Alchemi-
cal methods involve calculating free energy along a non-physical
thermodynamic pathway to get relative free energy between the
two end-points. Usually, the alchemical pathway corresponds to the
transformation of one chemical species into another defined with
a coupling parameter (λ), ranging between 0 and 1. TIES involves
performing an ensemble simulation at each λ value to generate the
ensemble of conformations to be used for calculating relative free
energy. It also involves performing a robust error analysis to yield
relative binding affinities with statistically meaningful error bars.
The parameters such as the size of the ensemble and the length of
simulations are determined, keeping in mind the desired level of
precision in the results [7].
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3 Software Infrastructure
The computational campaign comprised of methods described in §2
are realized as diverse workflows of heterogeneous tasks. They re-
quire scalable software infrastructure that supports the concurrent
execution of distinct workflows. The infrastructure must deliver
needed performance that is invariant of workflow properties and
type of heterogeneity. Currently, there are no “turnkey solutions” to
support such campaigns across multiple heterogeneous HPC plat-
forms, with the necessary performance and scale to ensure the re-
quired throughput. We leveraged RADICAL-Cybertools (RCT) [4]
to develop middleware capable of supporting the campaign of four
workflows that embody the methods and protocols illustrated in §2.

We briefly introduce RCT, outlining their novel capabilities. Note
that we use the term “task” to indicate a stand-alone process that
has well-defined input, output, termination criteria, and dedicated
resources. For example, a task can indicate an executable that per-
forms a simulation or a data processing analysis, executing on one or
more compute nodes of an HPC platform. A workflow is comprised
of tasks with dependencies, whereas a workload represents a set
of tasks without dependencies or whose dependencies have been
resolved. Thus, the tasks of a workload could, resources permitting,
be executed concurrently.

3.1 RADICAL-Cybertools Overview
RCT are software systems developed to support the execution of het-
erogeneous workflows and workloads on HPC platforms. RCT have
three main components: RADICAL-SAGA (RS) [15], RADICAL-
Pilot (RP) [16, 17] and RADICAL-Ensemble Toolkit (EnTK) [18].

RS is a Python implementation of the Open Grid Forum SAGA
standard GFD.90, a high-level interface to distributed infrastructure
components like job schedulers, file transfer, and resource provi-
sioning services. RS enables interoperability across heterogeneous
distributed infrastructures.

RP is a Python implementation of the pilot paradigm and archi-
tectural pattern [19]. Pilot systems enable users to submit pilot jobs
to computing infrastructures and then use the resources acquired
by the pilot to execute one or more workloads. Tasks are executed
concurrently and sequentially, depending on the available resources.
RP can execute single or multi-core tasks within a single compute
node or across multiple nodes. RP isolates the execution of each task
into a dedicated process, enabling concurrent execution of hetero-
geneous tasks. RP’s ability to concurrently execute heterogeneous
tasks is unique compared to other pilots, and the distinctive feature
motivating its use.

EnTK is a Python implementation of a workflow engine designed
to support the programming of applications comprised of ensembles
of tasks. EnTK executes tasks concurrently or sequentially, depend-
ing on their priority relation. Tasks are grouped into stages and stages
into pipelines, depending on the priority relation among tasks. Tasks
without reciprocal priority relations can be grouped into the same
stage; tasks that need to be executed before other tasks have to be
grouped into different stages. Stages are grouped into pipelines, and,
in turn, multiple pipelines can be executed either concurrently or
sequentially. EnTK uses RP, allowing the execution of workflows
with heterogeneous tasks.

3.2 Supporting Multiple Task Execution Modes
Workflows 1–4 (based on methods outlined in §2) have different task
types and performance requirements that, in turn, require different
execution approaches. We discuss three pilot-based task execution
frameworks developed to support the execution of workflows 1–4.
We provide a brief comparison of the three approaches.
3.2.1 Execution Mode I: RAPTOR RP executes a special type
of task, called “worker”, that interprets and executes Python func-
tions. We used this feature to implement an RP-based master/worker
framework called RAPTOR (RAdical-Pilot Task OveRlay) to dis-
tribute multiple Python functions across multiple workers. RAPTOR
enables parallel execution of those functions while RP implements
capabilities to code both master and worker tasks and schedule their
execution on the HPC resources acquired by submitting a job.

Fig. 2a illustrates the implementation of RAPTOR on Summit.
Once RP has acquired its resources by submitting a job to Summit’s
batch system, RP bootstraps its Agent (Fig. 2a-1) and launches a
task scheduler and a task executor (Fig. 2a-2). RP Scheduler and RP
Executor schedule and launch one or more masters on one of the com-
pute nodes (Fig. 2a-3) via either JSRUN [20] or PRRTE [21]. Once
running, each master schedules one or more workers on RP Sched-
uler (Fig. 2a-4). Those workers are then launched on more compute
nodes by RP Executor (Fig. 2a-5). Finally, each master schedules
function calls on the available workers for execution (Fig. 2a-6),
load-balancing across workers to obtain maximal resource utiliza-
tion. The only change needed to use RAPTOR on diverse HPC
platforms is a switch of the launch method for the master and worker
tasks, e.g., on Frontera, from JSRUN to srun.
3.2.2 Execution Mode II: Using multi-DVM RP supports di-
verse task launch methods, depending on the availability of specific
software systems on the target resources. On ORNL Summit, TACC
Frontera, and LLNL Lassen, RP supports the use of the Process
Management Interface for Exascale (PMIx) and the PMIx Refer-
ence RunTime Environment (PRRTE) [21]. PMIx is an open-source
standard that provides methods to interact with system-level re-
source managers and process launch mechanisms. PRRTE provides
a portable runtime layer that users can leverage to launch a PMIx
server. PRRTE includes a persistent mode called Distributed Virtual
Machine (DVM), which uses system-native launch mechanisms to
bootstrap an overlay runtime environment, which can be used to
launch tasks via the PMIx interface.

Using PRRTE/PMIx to place and launch stand-alone tasks on
thousands of compute nodes allows for multiple concurrent DVMs.
This enables partitioning of the task execution over multiple, inde-
pendent sub-systems, reducing the communication and coordination
pressure on each sub-system. This improves performance and re-
silience to PRRTE/PMIx implementation fragility.

Fig. 2b shows the integration between RP and PRRTE/PMIx on
Summit. RP bootstraps its Agent (Fig. 2b-1) and, different from the
RAPTOR implementation described in Fig. 2a, the Agent launches
a set of DVMs, each spanning multiple compute nodes (Fig. 2b-2).
The Agent also uses ssh to execute one or more RP Executor on one
or more compute nodes (Fig. 2b-3). Once the DVMs and executors
become available, RP schedules tasks on each executor (Fig. 2b-4).
Each executor then uses one or more DVMs to place and then launch
those tasks (Fig. 2b-5).
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Figure 2: Pilot-based task execution frameworks implemented using RADIAL-Pilot. Numbers indicate the task execution processes.
Blue box = RAPTOR master; red box = RAPTOR worker; green box = tasks; purple box = RP component; gray box = third-party
software component. (a) RAPTOR’s masters/workers executed via the standard RP capabilities. (b) RP executes heterogeneous tasks
on one or more PRRTE/PMIx distributed virtual machines, each spanning multiple compute nodes. (c) Seamless integration of RP
and Flux: RP schedules heterogeneous tasks that are placed and launched by Flux.

3.2.3 Execution Mode III: Flux PRRTE/PMIx introduce a va-
riety of overheads [22]) and their current implementations are still
fragile, especially when scheduling more than 20,000 tasks on more
than 32 DVMs. Overheads and fragility lead to low resource utiliza-
tion and unrecoverable failures. For these reasons, RP also supports
the use of Flux [23] as an alternative system to place and launch
tasks implemented as stand-alone processes. Fig. 2c illustrates the
integration between RP and Flux. RP first bootstraps on one of
the compute nodes of the HPC platform (Fig. 2c-1, Ref. [16]), and
then launches Flux (Fig. 2c-2), scheduling tasks on it for execution
(Fig. 2c-3). Flux places and launches tasks on Summit compute
nodes via its daemons (Fig. 2c-4). RP Executor keeps track of task
completion (Fig. 2c-5), and communicates this information to RP
Scheduler, based upon which RP Scheduler passes more tasks to
Flux for execution.

3.3 Enabling Heterogeneous Task Placement
Depending on the task launch method, RP places tasks on specific
compute nodes, cores and GPU (Figs. 2a and 2b). This placement
allows for efficient scheduling of tasks on heterogeneous resources.
When scheduling tasks that require different amounts of cores and/or
GPUs, RP keeps tracks of the available slots on each compute node
of its pilot. Depending on availability, RP schedules MPI tasks within
and across compute nodes.

Currently, RP supports four scheduling algorithms: continuous,
torus, noop and flux. Continuous is a general purpose algorithm
that enables task ordering, task colocation on the same or on dif-
ferent nodes, based on arrival order or explicit task tagging. Torus
is a special-purpose algorithm written to support the BlueGene ar-
chitectures; noop allows to pass single or bulk tasks keeping track
only of their execution state; and flux delegates task placement and
launching to the Flux framework.

RP opens a large optimization space for specific scheduling algo-
rithms. For example, our continuous scheduler prioritizes tasks that
require comparatively large amount of cores/GPUs so to maximize
resource utilization. This could be further extended with explicit
clustering or by including information about the execution time of
each task.

We use RP capabilities to concurrently execute ESMACS and
TIES methods (§2.4 and §2.5), reducing time-to-solution and im-
proving resource utilization at scale. Both involve multiple stages
of equilibration and MD simulations of protein-ligand complexes.
Specifically, ESMACS protocol uses the OpenMM MD engine on
GPUs, while the TIES protocol uses NAMD on CPUs. Leveraging
RP’s capabilities, we merge these two “workflows” into an integrated
hybrid workflow with heterogeneous tasks which utilize CPU and
GPU concurrently.

Fig.3 is a schematic where OpenMM simulations are tasks placed
on GPUs, while NAMD simulations are MPI multi-core tasks placed
on CPUs. Given that one compute node on Summit has 6 GPUs
and 42 CPUs [24], we are able to run 6 OpenMM tasks in parallel
which need 1 GPU and 1 CPU each. For optimal resource utilization,
we assign the remaining 36 CPUs on one node to 1 NAMD task
with 36 MPI ranks. NAMD tasks run concurrently on CPUs with
the OpenMM tasks running on GPUs for heterogeneous parallelism.
In order to achieve the optimal processor utilization, CPU and GPU
computations must overlap as much as possible. We experimentally
evaluate heterogeneous parallelism in §4.4.Heterogeneous Task Placement in RADICAL Cybertools
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CPU CPU CPU CPU CPU CPU
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Figure 3: Using RP’s heterogeneous task placement for hy-
brid workflow execution: RP concurrently executes OpenMM
– which run on GPUs, and NAMD – which runs on CPUs, on
the same Summit node(s) [24]. This increases node utilization
significantly.
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3.4 Coupling ML and HPC
To support ML-driven enhanced sampling (§2.3), we developed
DeepDriveMD [13], to employ deep learning techniques, pre-trained
models and tuned hyperparameters in conjunction with MD simu-
lations for adaptive sampling. Specifically, DeepDriveMD couples
a deep learning (DL) network — called convolutional variational
autoencoder (CVAE)) — to multiple MD simulations, to cluster
MD trajectories into a small number of conformational states. In-
sights gained from clustering is used to steer the ensemble of MD
simulations. This may include either starting new simulations (i.e.,
expanding the pool of initial MD simulations), or killing unproduc-
tive MD simulations (i.e., simulations stuck in metastable states).

DeepDriveMD supports the following computational approach:
(1) use an ensemble of MD simulations to generate initial MD data;
(2) a ‘training’ run consisting of a ML algorithm; (3) an ‘inference’
step where novel starting points for MD are identified; and (4) spawn
new MD simulations. DeepDriveMD is built upon EnTK, uses RP for
advanced resource management, and is extensible to other learning
methods and models, as well as other MD coupling schemes. The
current implementation of DeepDriveMD utilizes Tensorflow/Keras
(with Horovod for distributed data parallel training) and PyTorch.
Typically, a run of DeepDriveMD requires 20 nodes on Summit.

4 Performance Characterization
We describe and analyze the performance of four workflows that
represent the methods and protocols of § 2. We discuss the many
application- and platform-level issues that need to be addressed to
execute our pipeline at scale. We also quantify performance bottle-
necks and their determinant factors, a necessary indication on how to
further improve the pipeline for its deployment in sustained produc-
tion. Overall, our performance analysis is an indicator of challenges
and solution for pipelines that go beyond the specific requirements
of our COVID-19 campaign.

4.1 WF1: Ensemble Consensus Docking
Compared to physics-based simulation methods, docking is a rela-
tively inexpensive computational process. To increase the reliability
of docking results, we prefer multiple docking protocols for the same
ligand set and protease over individual docking scores. WF1 uses
OpenEye and Autodock-GPU to leverage resource heterogeneity:
the former executes on x86 architectures (e.g., Frontera); the latter
on GPUs (e.g., Summit).

For each of the identified protein target1 sites, WF1 iterates
through a list of ligands and computes a docking score for that
ligand-protein target pair. The score is written to disk and is used
as filter to identify ligands with favorable docking results (score
and pose). The docking call is executed as a Python function in
OpenEye, and as a self-contained task process in AutoDock-GPU.
In both cases, the RAPTOR framework (§3.2.1, Fig.2a) is used for
orchestration.

The duration of the docking computation depends on the type of
CPU (OpenEye) or GPU (AutoDock-GPU) used, and the computa-
tional requirements of each individual protein target. We measure
the docking time (seconds) and docking rate (docks/hr) of three use

1We define a protein target as a specific PDB file with a well defined binding site
(according to how the specific molecular docking code requires) against which we dock
the small molecule libraries.

cases: (1) production runs for NVBL-Medical Therapeutics cam-
paigns; and runs for largest achievable size on (2) Frontera and (3)
Summit. Table 1 summarizes the parameterization and results of the
experiments we performed for each use case.

WF1 assigns one pilot for each protein target to which a set of
ligands will be docked. Within each pilot, one master task is exe-
cuted for every ≈100 nodes. Each master iterates at different offsets
through the ligands database, using pre-computed data offsets for
faster access, and generating the docking requests to be distributed to
the worker tasks. Each worker runs on one node, executing docking
requests across the CPU cores/GPUs of that node.
4.1.1 Use Case 1 We assigned each of the 31 targets to a single
pilot, i.e., to an independent job submitted to the HPC machine’s
batch-queue. Due to the different batch-queue waiting times, at
most 13 concurrent pilots executed concurrently. With 13-way pilot
concurrency, the peak throughput was ≈ 17.4 × 106 docks/hr. To
keep an acceptable load on Frontera’s shared filesystem, only 34 of
the 56 cores available were used.

(a) (b)

Figure 4: WF1, Use Case 1: Distribution of docking runtimes
with the (a) shortest and (b) longest average docking time out of
the 31 protein targets analyzed. The distributions of the docking
runtimes all 31 protein targets have a long tail.

Figs. 4a and 4b show the distribution of docking times for protein
targets with the shortest and longest average docking time, using
the Orderable-zinc-db-enaHLL ligand database. All protein
targets are characterized by long-tailed docking time distributions.
Across the 31 protein targets, the min/max/mean docking times are
0.1/3582.6/28.8 seconds (Tab. 1), posing a challenge to scalability
due to the communication and coordination overheads. The long tail
distributions necessitate load balancing across available workers to
maximize resource utilization and minimize overall execution time.

We addressed load balancing by: (i) communicating tasks in bulk
so as to limit the communication frequency and therefore overhead;
(ii) using multiple master processes to limit the number of workers
served by each master, avoiding bottlenecks; (iii) using multiple
concurrent pilots to partition the docking computations of the set of
ligands.

Figs. 5a and 5b show the docking rates for the pilots depicted
in Figs. 4a and 4b, respectively. As with dock time distributions,
the docking rate behavior is similar across protein targets. It seems
likely that rate fluctuations depend on the interplay of machine
performance, pilot size, and specific properties of the ligands being
docked, and the target protein target. We measure a min/max docking
rate of 0.2/17.4 × 106 docks/hr with a mean of 5 × 106 docks/hr
(Tab. 1).
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Table 1: WF1 use cases. For each use case, RAPTOR uses one pilot for each protein target, computing the docking score of a variable
number of ligands to that protein target. OpenEye and AutoDock-GPU implement different docking algorithms and docking scores,
resulting in different docking times and rates. Resource utilization is often impeded by the long tail docking time distributions which
cause an expensive cooldown period. However, the steady state resource utilization is >=90% for all use cases.

Use Platform Application Nodes Pilots Ligands Utilization Docking Time [sec] Docking Rate [×106/hr]
Case [×106] avg/steady min max mean min max mean

1 Frontera OpenEye 128 31 205 90% / 93% 0.1 3582.6 28.8 0.2 17.4 5.0
2 Frontera OpenEye 7650 1 126 79% / 95% 0.1 14958.8 61.5 20.1 35.8 25.2
3 Summit AutoDock-GPU 1000 1 57 95% / 95% 0.1 263.9 36.2 10.9 11.3 11.1

(a) (b)

Figure 6: WF1, Use Case 2: (a) Distribution of docking time and
(b) docking rate for a single protein target and 126×106 ligands.
Executed with 158 masters, each using ≈50 compute nodes/2800
cores on Frontera.

(a) (b)

Figure 5: WF1, Use Case 1: Docking rates for the protein target
with (a) shortest and (b) longest average docking time.

4.1.2 Use Case 2 Fig. 6a shows the distribution of docking times
of approximately 126 × 106 ligands from the mcule-ultimate-
200204-VJL library to a single protein target using OpenEye on
Frontera. Note that the distribution is highly dependent on the protein
target being used: for the specific protein target used in this run, we
measure a min/max of 0.1/14985.8 seconds and a mean of 61.5
seconds (Tab. 1). The set of protein targets available to us varied in
mean docking time from ≈3 to ≈70 seconds.

Fig. 6b shows the docking rate for a single pilot with 7650 com-
pute (428,400 cores at 56 cores/node). Compared to Use Case 1,
the rate does not fluctuate over time. After peaking at ≈ 35.8 × 106
docks/hr, the rate stabilizes at ≈ 25 × 106 docks/hr until the end of
the execution (Tab. 1). Note that the long tail distribution of runtimes
results in a long tail of docking calls and thus on a long “cooldown”
phase. That phase ultimately lowers utilization from 92.3% in the
steady-state (before cooldown starts) to a total average of 79.3%.

As discussed, the docking times depend on the protein targets
used, and thus the docking rate inversely depends on that protein
target choice. The range of rates is very wide: for the protein targets

(a) (b)

Figure 7: WF1, Use Case 3: (a) Distribution of docking time and
(b) docking rate for a single protein target and 57 × 106 ligands.
A pilot is concurrently executed on Summit with 6000 GPUs.

available to us, we observed a mean docking rate between ≈ 14×106
and ≈ 300 × 106.
4.1.3 Use Case 3 Figure 7a shows the distribution of the dock-
ing times of ≈ 57×106 ligands from the mcule-ultimate-200-
204-VJL database to a single protein target using AutoDock-GPU
on Summit. The distribution has a min/max/mean of 0.1/263.9/36.2
seconds (Tab. 1). Compared to Use Case 1, Fig. 4, max docking time
is shorter, but the mean is longer. Compared to Use Case 2, Fig. 6a,
both max and mean are shorter. As observed, those differences are
due to specific properties of the docked ligands and the target protein
target.

Fig. 7b shows the docking rate for a single pilot with 1000 com-
pute nodes, i.e., 6000 GPUs. Different from Use Case 1 and 2, the
rate peaks very rapidly at ≈ 11 × 106 docks/hr and maintains that
steady rate until the end of the execution. The cooldown phase is
also very rapid. We do not have enough data to explain the observed
sustained dock rate. As with Use Case 2, we assume an interplay
between the scoring function and its implementation in AutoDock-
GPU and specific features of the 57 × 106 docked ligands.

Different from OpenEye on Frontera, AutoDock-GPU bundles 16
ligands into one GPU computation in order to efficiently use the GPU
memory, reaching an average docking rate of 11.1 × 106 docks/hr
(Tab. 1). Currently, our profiling capabilities allow us to measure
GPU utilization with 5% relative error. Based on our profiling, we
utilized between 93 and 98% of the available GPU resources.

4.2 WF2: ML-Driven Enhanced Sampling
WF2 is an iterative pipeline composed of 4 stages. After the first
iteration of the 4 stages is completed, if outliers were found, the
next iteration starts simulating those outliers; otherwise, the simula-
tion continues from where it stopped in the previous iteration. The
pipeline stops after a predefined number of iterations.
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We measured RCT overhead and resource utilization of WF2 to
identify performance bottlenecks. We define RCT overhead as the
time spent not executing at least one task. For example, the overhead
includes the time spent bootstrapping environments before tasks
execution, communicating between EnTK and RabbitMQ (RMQ),
or between EnTK and RP while workloads wait to execute. Resource
utilization is the percentage of time when resources (CPUs and
GPUs) are busy running tasks.

The blue bars in Fig. 8 show RCT overheads for the first version
of WF2 and how RCT overheads grew with iterations. WF2 may
require a variable number of iterations. Thus, our goal was to reduce
RCT overhead, and importantly, make it invariant of the number of
iterations.

Initial analysis suggested multiple optimizations of WF2: some
of these involved improving the deep learning model, the outlier
detection, and RCT. For the latter, we improved the communication
protocol between EnTK and RMQ, and we reduced the commu-
nication latency between EnTK and RMQ. We avoided sharing
connections to RMQ among EnTK threads, reducing multiple con-
current connections, and reused communication channels whenever
possible.

Fig. 8 (orange) shows the combined effects of improving Deep-
DriveMD and EnTK communication protocol which reduced the
overheads by 57% compared to Fig. 8 (blue). However, they were
still growing with the number of iterations. We moved our RMQ
server to Slate, a container orchestration service offered by OLCF,
which reduced the communication latency between EnTK and RMQ,
as shown in Fig. 8 (green). The optimization allowed RCT overheads
to be invariant up to 8 WF2 iterations.
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Figure 8: RCT overhead reduction with improved WF2, EnTK
and RabbitMQ.

Fig. 9 depicts resource utilization for different (internal) RCT
states as a time series. The region with “yellow, light blue, or green”
colors represents unused resources; “dark” represents resource usage.
Fig. 9 shows resource utilization of WF2, when executing four
pipeline iterations on Summit with 20, 40, and 80 compute nodes.
Note that most of the unused resources are CPU cores that are
not needed by WF2. Overall, we measured 91%, 91%, 89% GPU
utilization respectively. Across scales, Fig. 9 shows differences in
the execution time of some of the pipeline stages but no relevant
increase of the time spent without executing at least one task.

4.3 Hybrid WF3 & 4 Workflow
WF3 and WF4 are computationally intensive methods that cost sev-
eral orders of magnitude more node-hours per ligand than WF1 [25].
As discussed in §3.3, WF3 and WF4 both compute binding free
energies but have workloads comprised of distinct tasks: GPU-based
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Figure 9: Timeline of RCT resource usage for WF2 when inves-
tigating weak scaling properties (from 20 to 80 nodes).

OpenMM and CPU-based NAMD tasks, respectively. Merging WF3
and WF4 into a single hybrid workflow allowed us to improve re-
source utilization by employing RP’s unique capability to execute
distinct tasks concurrently on CPU cores and GPUs. We evaluated
that capability by measuring: (i) RCT overhead (as defined previ-
ously) as a function of scale; (ii) scalability as a function of problem
and resource size; and (iii) resource utilization.

Fig. 10 compares RCT overhead to workflow time to completion
(TTX) on 32 nodes for different task counts, representing different
production workflow configurations. TTX in Fig. 10(c) illustrates
concurrent execution of GPU and CPU tasks. The modest increase in
TTX compared to Fig. 10(b) is likely due to interference from sharing
resources across tasks (Fig. 3), and some scheduler inefficiency. A
careful evaluation and optimization will form the basis of further
investigation. Fig. 10(d) plots the TTX for the Hybrid-LB scenario
when the number of WF3 and WF4 tasks are selected to ensure
optimal resource utilization. The number of WF3 tasks completed in
Fig. 10(d) is twice the number of WF3 tasks completed in Fig. 10(c),
with no discernible increase in TTX.
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Figure 10: RCT Overhead in Hybrid Workflows.

Fig. 11 depicts RCT resource utilization for the configurations of
Fig. 10(c) and Fig. 10(d). As with Fig. 9, “green space” represents
unused resources; “dark space” represents resource usage. WF3 and
WF4 have 4 and 3 stages, respectively, which can be discerned from
black bars. Fig. 11(b) shows greater dark space and thus resource
utilization than Fig. 11(a), representing the greater overlap of tasks
on GPUs and CPUs due to workload sizing. Both have higher re-
source utilization than configurations in Fig. 10(a) and (b) due to
concurrent CPU and GPU usage.
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Figure 11: Timeline of RCT resource usage for Hybrid Work-
flows.

Fig. 12 shows the scalability of hybrid workflows with load bal-
ance enabled and up to 22640 tasks on 128 compute nodes on Sum-
mit. The left two panels show the comparison between 5660 GPU
tasks and 5660 heterogeneous tasks (5400 GPU tasks + 260 CPU
tasks). Note that RCT overhead is invariant between homogeneous
and heterogeneous task placements and with proportionately increas-
ing workloads and node counts (i.e., weak scaling).
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Figure 12: RCT Overhead in Hybrid Workflows at Scale.

In Figs. 10 and 12, RCT overhead varies from 3.8% to 11.5%
of TTX but it should be noted that task runtimes for these experi-
ments are significantly shorter than those of production runs. RCT
overhead arises from state transitions and data movements and is
essentially invariant of task runtimes, which are reproduced with
fidelity in our experiments. Thus, in production runs, RCT overhead
is a significantly less proportion of TTX.

4.4 WF3–4: Enhancing Scale and Reliability
Driven by science results (§ 5), and that WF3 & 4 are the “slowest”
per ligand [25], we need to increase the number of nodes and improve
reliability across multiple platforms. We preview results for WF3;
experience with WF4 and hybrid WF3–4 execution will be reported
subsequently.

We performed initial test runs using the multi-DVM execution
mode described in §3.2.2, Fig. 2b and observed that executions
were stable with each DVM running on < 50 nodes and executing
< 200 tasks. Beyond that, we observed interruptions or connectivity
losses between executors and DVMs. Further investigation will es-
tablish the causes of those limits and possible solutions for higher
scalability.

We run WF3 on 1000 compute nodes (+1 node for RCT), ex-
ecuting 6000 1-GPU tasks on 32 concurrent DVMs. Each DVM

spawned ≈32 nodes and executed up to 192 tasks. Fig. 13 shows the
utilization of the available resources across different stages of the
execution. The pilot startup time (blue) is longer than when using a
single DVM [22], mainly due to the 336 seconds spent on launching
DVMs which, currently, is a sequential process. Each task requires
time to prepare the execution (purple), which mainly includes sched-
uling the task on a DVM, constructing the execution command, and
process placement and launching by the DVM. The scheduling pro-
cess takes longer than with a single DVM as it requires determining
which DVM should be used. Further, constructing the execution
command includes a 0.1s delay to let DVM finalize the previous task
launching. As each operation is done sequentially per RP executor
component, the 0.1s delay accounts for 600s alone.
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Figure 13: Timeline of RCT resource usage for WF3 using
multi-DVM.

As with the other WF3–4 experiments, we reduced task runtimes
to limit resource utilization while faithfully reproducing RCT over-
head. In Fig. 13, Exec Cmd (task runtime) would be ten times longer
for a production run. Thus, the overheads introduced by using mul-
tiple DVMs would have a lesser impact on the overall resource
utilization.

We also run WF3 on 2000 compute nodes (+1 node for RCT),
doubling the task and DVM number compared to the run with 1000
nodes. At that scale, we observed three main issues: (i) DVM startup
failure; (ii) an internal failure of PRRTE; and (iii) lost DVM con-
nectivity. The majority of tasks were successfully completed (11802
out of 12000), but those issues prevented RCT from handling their
termination gracefully.

Given the current fragility of PRRTE/PMIx, we are investigat-
ing [17] executing WF3 with the RP/Flux integration described in
§3.2.3, Fig. 2c. Tab. 2 summarizes the results of our initial test.
Performance is comparable to RCT using a single-dvm, reducing
the overheads measured with the multi-dvm implementation. We
experienced no failures and are now working on deeper integration
to scale our tests further. If the current results hold at higher scales,
we plan to use the RP/Flux integration to run the WF3–4 pipeline in
production on both Summit and Lassen.

5 Scientific Results
The previous section characterized the performance of the scalable
infrastructure developed to support campaigns to advance COVID-
19 therapeutics. Constituent workflows embody a diverse range of
computational characteristics. Tab. 3 summarizes the heterogeneous
platforms utilized and maps them to specific workflows supported.
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Table 2: WF3 use case. Test runs with RP/Flux integration (§ 3.2.3, Fig. 2c).

Use Case Platform # Nodes # Tasks # Failed Tasks Flux Resource Utilization Task Scheduling Rate Execution Time

WF3 Lassen 128 512 0 88% 14.21 t/s 6m

Table 3: HPC platforms used for the computational campaign. To manage the complexity arising from heterogeneity within and
across platforms, requires middleware abstractions and design.

HPC Platform Facility Batch Node Architecture Workflows Max # nodes
System CPU GPU utilized

Summit OLCF LSF 2 × POWER9 (22 cores) 6 × Tesla V100 WF1-4 2000
Lassen LLNL LSF 2 × POWER9 (22 cores) 4 × Tesla V100 WF2,3 128
Frontera TACC Slurm 2 × x86_64 (28 cores) — WF1 7650
Theta ALCF Cobalt 1 × x86_64 (64 cores) — WF1 256
SuperMUC-NG LRZ Slurm 2 × x86_64 (24 cores) — WF3-4 6000 (with failures)

Put together, the campaign has utilized 2.5×106 node-hours on these
platforms to support: (i) docking ∼1011 ligands with a peak docking
rate of up to 36×106 docks/hr; (ii) thousands of AI-driven enhanced
sampling simulations; (iii) binding free energies on ∼105 ligand-
protein complexes, including 104 concurrently.

In addition to unprecedented scale and performance, the infras-
tructure provides unique qualitative insight which arises from the
ability to integrate different methods. ML models are used to predict
docking scores, i.e., the ranking of small molecules that potentially
bind to and interact stably with the protein target of interest. ML
models accurately rank-order a library of ligands in terms of pre-
dicted ranked score, using the regression enrichment surface (RES)
technique to examine how well the ML models act as a surrogate for
the scoring function [26]. The RES plot (Fig. 14 inset) shows the
surrogate model efficiency for detecting true top-ranking molecules
given a fixed allocation of predicted hits. For instance, if the comput-
ing budget allows n number of downstream simulations for inferred
molecules of interest, the vertical line representing n on the x-axis
of the plot shows the fraction of the real top-scoring compound dis-
tribution captured. Thus, the RES informs the number of top-scoring
compounds needed to cover the chemical space of Mac1-specific
molecules adequately.

Training this surrogate model required 100,000 randomly sam-
pled docking scores from the data. Utilizing the remaining data for
validation, we run the model to obtain predicted docking scores. For
use in production workflows, it is important to know how many of
the top predictions must we use to make sure a potentially exciting
compound is not missed. A simple approach may guess if the model
is decently accurate, then the top 50% or 10% might be needed.
Since we have a validation set of data, we can calculate using the
RES method this cutoff exactly [26]. We found model’s predictive
power allows two orders of magnitude efficiency over standard dock-
ing without surrogate model prefiltering of candidates. To calculate
this, we ask what the minimal set of docking calculations must be
performed to capture >99% of the top-scoring compounds. By pre-
screening with the surrogate model, the model’s top 1% predictions
capture nearly all of the highest-scoring 0.1% of docked compounds,
thereby reducing the need to dock 99% of the original compounds.
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Figure 14: Root mean square fluctuation of Mac1 protein and
5 bound ligands. Different ligands induce different conforma-
tional changes in Mac1. The inset highlights the RES based on
the ML-based surrogate model, showing a clear trend in im-
proving the number of downstream calculations needed for find-
ing n compounds in subsequent rounds of the iterative work-
flow.

While we could have filtered the top 0.1% of the predictions, re-
ducing the docking load to a mere 0.1% of the dataset would only
capture 50% of the highest scoring compounds, thus introducing
some error. The infrastructure provided both the ability for large-
scale ensemble docking, while using the surrogate to reduce the
overall computational cost of the campaign.

We characterize the stability of compounds predicted to bind to
the SARS-CoV-2 macrodomain (Mac1), which is part of the non-
structural protein (nsp) 3. This enzyme is critical for the viral life-
cycle by removing and recognizing host-derived ADP-ribosylation, a
post-translational modification of host and pathogen proteins. Thus,
Mac1 is an essential protein that can be targeted by small molecules
such that its function can be inhibited and ‘turn’ the virus to be
essentially non-pathogenic. We used DeepDriveMD (WF2) to study
compounds that potentially interact with the primary binding site
of Mac12. To characterize the stability, we chose to examine the
root mean square fluctuation (RMSF) analysis of the backbone Cα

2Although we studied over 200 compounds, we present results from the top five com-
pounds that interact with Mac1 stably during O(100 ns) simulations
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Figure 15: Correspondence between docking score (Chem-
Gauss4/OpenEye) versus binding free energy using ESMACS-
FG for Mac1. Although the correlation is low, ESMACS-FG
acts as an effective filter for compounds with high affinity to
Mac1 (e.g., compounds labeled 1625, 183, and 1235.)

atoms for the apo/ligand-free form of the Mac1 protein, which
shows decreased fluctuations in the location of its backbone atoms
compared to its holo/ligand-bound counterpart (Fig. 14). The ligand-
bound protein undergoes higher RMSF fluctuations due to ligand-
induced conformational changes, with notable displacements of a
few residues such as Asp18-Val20, Asn54-Thr67, and His82. While
these residues are not in direct contact with the ligand, the binding
pocket structural changes causes a ripple effect on downstream
residues in the protein.

We then used ESMACS (WF3) to predict which candidates bind
tightly (Fig. 15). For instance, compound 1625 has a high affinity
to Mac1 from both ESMACS as well as docking (indicated by the
ChemGauss4 docking score and the ESMACS–FG binding free
energy values) indicating favorable interactions. TIES (WF4) is
used to refine such interactions between the protein and ligand: we
performed TIES on 19 compound transformations, which entails
mutating the original compound to new ligands with the goal of
improving binding affinity. We used this method to study the effect
of structural changes in a compound on their binding potency.

The relative binding affinities (∆∆G) predicted by TIES for these
transformations fall between -0.55 to 4.62 kcal/mol. A positive
value indicates a diminished relative binding potency for the “new”
compound, whereas a negative value means that the transformation
studied is favorable. Twelve out of the 19 transformations studied
have ∆∆G > +1, which suggests that they all correspond to unfavor-
able structural changes. The ∆∆G for the remaining 7 is statistically
zero, which indicates that the corresponding structural modifications
do not affect the binding. Both the favorable and unfavorable inter-
actions provide insight into finding compounds with high affinity.

6 Related Work
In silico drug design presents intellectual challenges and is driven by
clear imperatives of societal good and economic incentives. Recent
methodological and infrastructural advances range from improved
docking protocols [27, 28] to sophisticated multi-stage pipelines [29],
and scalable infrastructure [30] for drug discovery pipelines.

Ref. [31] presents new methods and infrastructure focused on
virtual screening. Brute-force traditional docking is unlikely to be
fast or sophisticated enough for in silico drug design. Enhancing
the ability of traditional docking protocols to sample larger chemi-
cal space is critical. The recent studies that combine docking with

machine learning methods [27, 28] report up to 6000x increase in
chemical space sampled [28] — without notable loss of favorably
docked entities. To overcome the limitation that single docking pro-
tocols are not universally reliable, Ref. [29] introduces VirtualFlow
—an open-source platform that supports several powerful docking
programs on scalable infrastructure.

ML is used to improve computer-aided drug discovery. Ref. [32]
integrates ML with binding free energy calculations. ML is also used
to extend quantitative structure-activity relationships approaches. For
example, AMPL [33] provides extensible pipelines that support the
building and sharing of ML models, along with automating model
training to improve key pharma-relevant parameters predictions.
AMPL highlights the trend towards sophisticated and open-source
software platforms that can be deployed on diverse suitable scalable
infrastructure as per requirements.

While clusters and clouds are pervasive and scalable platforms for
pharma industry, HPC and leadership platforms continue to provide
important and powerful platforms [34] for academia and govern-
ment. Ref. [35] have recently developed drug discovery pipelines
on supercomputers that integrate multiple molecular modeling tech-
niques — temperature replica-exchange advanced sampling tech-
niques with docking protocols. Similarly, Ref. [36] used ensemble-
docking approaches to overcome limitations for single docking pro-
tocols. Ref. [30] impressively used all ≈27500 GPUs on the Sum-
mit supercomputer for a sustained (average) molecular docking of
≈19000 compounds per second [5] using Autodock-GPU [37]. Over
one billion compounds were docked [5] to two SARS-CoV-2 protein
structures with full optimization of ligand position and 20 poses per
docking, each in under 24 hours.

Spurred by, but not limited to COVID-19, the aforementioned
recent publications reiterate the importance of both methodological
and infrastructural enhancements. Consequently, our infrastructure
is significant, as it: (i) provides scalable infrastructure for diverse
workflows that are heterogeneous in distinct ways; (ii) delivers high-
performance independent of the workflow and heterogeneity types,
and similar to the highest values previously reported [5]; and (iii) is
developed using a common set of middleware building blocks which
supports the flexible composition of diverse methods – ensemble
docking, ML surrogates for docking, ML-enhanced advanced sam-
pling and binding free energies of differing granularity – into an
integrated campaign with high end-to-end throughput.

7 Discussion
Multi-scale biophysics-based computational lead discovery is an
important strategy for accelerated drug development. However, in
its current formulation and practice, exploring drug compound li-
braries at the scale of billions of molecules is too inefficient, even
on the largest supercomputers. This work shows a path towards im-
provement by: (i) ML components paired with, and trained from
physics-based components; and (ii) building the HPC and AI in-
frastructure necessary to enable methodological advances [25]. In
doing so, this work provides an enhanced drug discovery pipeline
for COVID-19 — a societal and intellectual grand challenge.

The effectiveness and impact of the infrastructure are evidenced
by its use to sustain a campaign on multiple heterogeneous platforms
over months to generate valuable scientific insight (§5). This work is
a harbinger of the evolving role of supercomputers, viz., increasingly



PASC ’21, July 5–9, 2021, Geneva, Switzerland Lee, H, et al.

important generators of data for powerful ML models (e.g., WF1). In
general, supercomputers will have to support campaigns with diverse
components, viz., physics-based simulations, data generation and
analysis, and ML/AI tasks. These individual workflows have differ-
ent computational characteristics and performance challenges. They
encompass high-throughput function calls, ensembles of MPI-based
simulations, and AI-driven HPC simulations. There are no “turnkey
solutions” to support such campaigns across multiple heterogeneous
platforms, with the necessary performance and scale to ensure the
required throughput. This has necessitated the design, development,
and iterative improvement of infrastructure to advance therapeutics
for COVID-19 and beyond.
Acknowledgements: Research was supported by the DOE Office of Science
through the National Virtual Biotechnology Laboratory; as part of the CAN-
DLE project by the ECP (17-SC-20-SC); UK MRC Medical Bioinformatics
project (grant no. MR/L016311/1), UKCOMES (grant no. EP/L00030X/1);
EU H2020 CompBioMed2 Centre of Excellence (grant no. 823712), and
support from the UCL Provost. Access to SuperMUC-NG (LRZ) was made
possible by a special COVID-19 allocation award from the Gauss Centre for
Supercomputing in Germany. Anda Trifan acknowledges support from the
United States Department of Energy through the Computational Sciences
Graduate Fellowship (DOE CSGF) under grant number: DE-SC0019323.
We acknowledge support and allocation from TACC and OLCF.

References
[1] Regine S Bohacek, Colin McMartin, and Wayne C Guida.

“The art and practice of structure-based drug design: A molec-
ular modeling perspective”. In: Medicinal research reviews
16.1 (1996), pp. 3–50.

[2] Jiankun Lyu et al. “Ultra-large library docking for discovering
new chemotypes”. In: Nature 566.7743 (2019), pp. 224–229.

[3] Xiwen Jia et al. “Anthropogenic biases in chemical reac-
tion data hinder exploratory inorganic synthesis”. In: Nature
573.7773 (2019), pp. 251–255.

[4] Matteo Turilli et al. “Middleware building blocks for work-
flow systems”. In: Computing in Science & Engineering 21.4
(2019), pp. 62–75.

[5] Jens Glaser, Josh V. Vermaas, David M. Rogers, et al. “High-
Throughput Virtual Laboratory for Drug Discovery Using
Massive Datasets”. In: International Journal of High-Perfor-
mance Computing Applications (to appear) (2020).

[6] Shunzhou Wan et al. “Rapid and Reliable Binding Affin-
ity Prediction of Bromodomain Inhibitors: A Computational
Study”. In: Journal of Chemical Theory and Computation
13.2 (2017), pp. 784–795.

[7] Agastya P. Bhati et al. “Rapid, Accurate, Precise, and Reliable
Relative Free Energy Prediction Using Ensemble Based Ther-
modynamic Integration”. In: Journal of Chemical Theory and
Computation 13.1 (2017). PMID: 27997169, pp. 210–222.
DOI: 10.1021/acs.jctc.6b00979. eprint: https://doi.org/10.
1021/acs.jctc.6b00979. URL: https://doi.org/10.1021/acs.jctc.
6b00979.

[8] “OpenEye Toolkits 2019.Oct.2”. Version 2019.Oct.2. In: Open
Eye Scientific (2019). URL: http://www.eyesopen.com/.

[9] Mark R Mcgann et al. “Gaussian docking functions”. In:
Biopolymers: Original Research on Biomolecules 68.1 (2003),
pp. 76–90.

[10] Yadu Babuji et al. “Targeting SARS-CoV-2 with AI-and HPC-
enabled lead generation: A First Data release”. In: arXiv
preprint arXiv:2006.02431 (2020).

[11] Gia G. Maisuradze, Adam Liwo, and Harold A. Scheraga.
“Principal Component Analysis for Protein Folding Dynam-
ics”. In: Journal of Molecular Biology 385.1 (2009), pp. 312
–329. ISSN: 0022-2836. DOI: https://doi.org/10.1016/j.jmb.
2008.10.018. URL: http://www.sciencedirect.com/science/
article/pii/S0022283608012886.

[12] Debsindhu Bhowmik et al. “Deep clustering of protein fold-
ing simulations”. In: BMC Bioinformatics 19.18 (2018), p. 484.
DOI: 10.1186/s12859-018-2507-5. URL: https://doi.org/10.
1186/s12859-018-2507-5.

[13] Hyungro Lee et al. “DeepDriveMD: Deep-Learning Driven
Adaptive Molecular Simulations for Protein Folding”. In:
2019 IEEE/ACM Third Workshop on Deep Learning on Su-
percomputers (DLS). IEEE. 2019, pp. 12–19. DOI: 10.1109/
DLS49591.2019.00007. eprint: 1909.07817.

[14] T. P. Straatsma, H. J. C. Berendsen, and J. P. M. Postma.
“Free energy of hydrophobic hydration: A molecular dynam-
ics study of noble gases in water”. In: The Journal of Chem-
ical Physics 85.11 (1986), pp. 6720–6727. DOI: 10.1063/
1.451846. eprint: https://doi.org/10.1063/1.451846. URL:
https://doi.org/10.1063/1.451846.

[15] Andre Merzky, Ole Weidner, and Shantenu Jha. “SAGA: A
standardized access layer to heterogeneous distributed com-
puting infrastructure”. In: SoftwareX 1 (2015), pp. 3–8.

[16] Andre Merzky et al. “Using pilot systems to execute many
task workloads on supercomputers”. In: Workshop on Job
Scheduling Strategies for Parallel Processing. Springer. 2018,
pp. 61–82.

[17] Andre Merzky et al. “Design and Performance Characteriza-
tion of RADICAL-Pilot on Leadership-class Platforms”. In:
arXiv preprint arXiv:2103.00091 (2021).

[18] Vivek Balasubramanian et al. “Harnessing the power of many:
Extensible toolkit for scalable ensemble applications”. In:
2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE. 2018, pp. 536–545.

[19] Matteo Turilli, Mark Santcroos, and Shantenu Jha. “A com-
prehensive perspective on pilot-job systems”. In: ACM Com-
puting Surveys (CSUR) 51.2 (2018), pp. 1–32.

[20] Dino Quintero et al. IBM High-Performance Computing In-
sights with IBM Power System AC922 Clustered Solution.
IBM Redbooks, 2019.

[21] Ralph H. Castain et al. “PMIx: Process management for exas-
cale environments”. In: Parallel Computing 79 (2018), pp. 9
–29. ISSN: 0167-8191. DOI: https://doi.org/10.1016/j.parco.
2018.08.002. URL: http://www.sciencedirect.com/science/
article/pii/S0167819118302424.

[22] Matteo Turilli et al. “Characterizing the Performance of Exe-
cuting Many-tasks on Summit”. In: IPDRM Workshop, SC19
(2019). https://arxiv.org/abs/1909.03057.

[23] Dong H Ahn et al. “Flux: a next-generation resource man-
agement framework for large HPC centers”. In: 2014 43rd
International Conference on Parallel Processing Workshops.
IEEE. 2014, pp. 9–17.

https://doi.org/10.1021/acs.jctc.6b00979
https://doi.org/10.1021/acs.jctc.6b00979
https://doi.org/10.1021/acs.jctc.6b00979
https://doi.org/10.1021/acs.jctc.6b00979
https://doi.org/10.1021/acs.jctc.6b00979
http://www.eyesopen.com/
https://doi.org/https://doi.org/10.1016/j.jmb.2008.10.018
https://doi.org/https://doi.org/10.1016/j.jmb.2008.10.018
http://www.sciencedirect.com/science/article/pii/S0022283608012886
http://www.sciencedirect.com/science/article/pii/S0022283608012886
https://doi.org/10.1186/s12859-018-2507-5
https://doi.org/10.1186/s12859-018-2507-5
https://doi.org/10.1186/s12859-018-2507-5
https://doi.org/10.1109/DLS49591.2019.00007
https://doi.org/10.1109/DLS49591.2019.00007
1909.07817
https://doi.org/10.1063/1.451846
https://doi.org/10.1063/1.451846
https://doi.org/10.1063/1.451846
https://doi.org/10.1063/1.451846
https://doi.org/https://doi.org/10.1016/j.parco.2018.08.002
https://doi.org/https://doi.org/10.1016/j.parco.2018.08.002
http://www.sciencedirect.com/science/article/pii/S0167819118302424
http://www.sciencedirect.com/science/article/pii/S0167819118302424


Scalable HPC & AI Infrastructure for COVID-19 Therapeutics PASC ’21, July 5–9, 2021, Geneva, Switzerland

[24] Oak Ridge Leadership Computing Facility. Summit User
Guide. URL: https://docs.olcf.ornl.gov/systems/summit_user_
guide.html.

[25] Aymen Al Saadi et al. “IMPECCABLE: Integrated Modeling
PipelinE for COVID Cure by Assessing Better LEads”. In:
arXiv preprint arXiv:2010.06574 (2020). https://arxiv.org/
abs/2010.06574.

[26] Austin Clyde, Xiaotian Duan, and Rick Stevens. “Regression
enrichment surfaces: a simple analysis technique for virtual
drug screening models”. In: arXiv preprint arXiv:2006.01171
(2020).

[27] Zhirui Liao et al. “DeepDock: Enhancing Ligand-protein
Interaction Prediction by a Combination of Ligand and Struc-
ture Information”. In: 2019 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM). IEEE. 2019,
pp. 311–317.

[28] Francesco Gentile et al. “Deep Docking: A Deep Learning
Platform for Augmentation of Structure Based Drug Discov-
ery”. In: ACS Central Science (2020). DOI: https://doi.org/10.
1021/acscentsci.0c00229.

[29] Christoph Gorgulla et al. “An open-source drug discovery
platform enables ultra-large virtual screens”. In: Nature 580.7805
(2020), pp. 663–668.

[30] Josh Vincent Vermaas et al. “Supercomputing Pipelines Search
for Therapeutics Against COVID-19”. In: Computing in Sci-
ence & Engineering (2020). DOI: 10 .1109 /MCSE.2020 .
3036540.

[31] W Patrick Walters and Renxiao Wang. New Trends in Virtual
Screening. 2020. DOI: https: / /doi .org/10.1021/acs. jcim.
0c01009.

[32] Derek Jones et al. Improved Protein-ligand Binding Affinity
Prediction with Structure-Based Deep Fusion Inference. 2020.
arXiv: 2005.07704 [q-bio.BM].

[33] Amanda J Minnich et al. “AMPL: A Data-Driven Model-
ing Pipeline for Drug Discovery”. In: Journal of Chemical
Information and Modeling 60.4 (2020), pp. 1955–1968.

[34] Richard E Trager et al. “Docking optimization, variance and
promiscuity for large-scale drug-like chemical space using
high performance computing architectures”. In: Drug discov-
ery today 21.10 (2016), pp. 1672–1680.

[35] Micholas Smith and Jeremy C Smith. “Repurposing ther-
apeutics for COVID-19: supercomputer-based docking to
the SARS-CoV-2 viral spike protein and viral spike protein-
human ACE2 interface”. In: (2020). DOI: https://doi.org/10.
26434/chemrxiv.11871402.v4.

[36] Atanu Acharya et al. “Supercomputer-based ensemble dock-
ing drug discovery pipeline with application to Covid-19”. In:
ChemRxiv (2020). DOI: 10.26434/chemrxiv.12725465.

[37] Scott LeGrand et al. “GPU-Accelerated Drug Discovery with
Docking on the Summit Supercomputer: Porting, Optimiza-
tion, and Application to COVID-19 Research”. In: Proceed-
ings of the 11th ACM International Conference on Bioinfor-
matics, Computational Biology and Health Informatics. 2020,
pp. 1–10.

https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://docs.olcf.ornl.gov/systems/summit_user_guide.html
https://arxiv.org/abs/2010.06574
https://arxiv.org/abs/2010.06574
https://doi.org/https://doi.org/10.1021/acscentsci.0c00229
https://doi.org/https://doi.org/10.1021/acscentsci.0c00229
https://doi.org/10.1109/MCSE.2020.3036540
https://doi.org/10.1109/MCSE.2020.3036540
https://doi.org/https://doi.org/10.1021/acs.jcim.0c01009
https://doi.org/https://doi.org/10.1021/acs.jcim.0c01009
https://arxiv.org/abs/2005.07704
https://doi.org/https://doi.org/10.26434/chemrxiv.11871402.v4
https://doi.org/https://doi.org/10.26434/chemrxiv.11871402.v4
https://doi.org/10.26434/chemrxiv.12725465

	Abstract
	1 Introduction
	2 Computational Campaign
	2.1 Ensemble Docking
	2.2 ML Docking Surrogate Models
	2.3 ML-Driven Enhanced Sampling
	2.4 ESMACS (Hit-to-Lead Loop)
	2.5 TIES (Lead Optimization Loop)

	3 Software Infrastructure
	3.1 RADICAL-Cybertools Overview
	3.2 Supporting Multiple Task Execution Modes
	3.3 Enabling Heterogeneous Task Placement
	3.4 Coupling ML and HPC

	4 Performance Characterization
	4.1 WF1: Ensemble Consensus Docking
	4.2 WF2: ML-Driven Enhanced Sampling
	4.3 Hybrid WF3 & 4 Workflow
	4.4 WF3–4: Enhancing Scale and Reliability

	5 Scientific Results
	6 Related Work
	7 Discussion

