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ABSTRACT
Quantum Monte Carlo (QMC) methods represent a powerful family of computational techniques for tackling complex quantum many-body
problems and performing calculations of stationary state properties. QMC is among the most accurate and powerful approaches to the study
of electronic structure, but its application is often hindered by a steep learning curve; hence it is rarely addressed in undergraduate and post-
graduate classes. This tutorial is a step toward filling this gap. We offer an introduction to the diffusion Monte Carlo (DMC) method, which
aims to solve the imaginary time Schrödinger equation through stochastic sampling of the configuration space. Starting from the theoretical
foundations, the discussion leads naturally to the formulation of a step-by-step algorithm. To illustrate how the method works in simplified
scenarios, examples such as the harmonic oscillator and the hydrogen atom are provided. The discussion extends to the fixed-node approx-
imation, a crucial approach for addressing the fermionic sign problem in multi-electron systems. In particular, we examine the influence of
trial wave function nodal surfaces on the accuracy of DMC energy by evaluating results from a non-interacting two-fermion system. Extend-
ing the method to excited states is feasible in principle, but some additional considerations are needed, supported by practical insights. By
addressing the fundamental concepts from a hands-on perspective, we hope this tutorial will serve as a valuable guide for researchers and
students approaching DMC for the first time.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0232424

I. INTRODUCTION

The development of modern physics, begun during the first
decades of the 20th century with the introduction of quantum
mechanics, provides a theoretical framework to describe the prop-
erties of materials in terms of their elementary constituents.1 What
these άτoμα are depends on the scale of the energy involved.
For most applications relevant to materials modeling, they are the
nuclei and the electrons,2 with the latter being responsible for
most material properties, including their shape and appearance,
strength, electrical and thermal conductivity, response to external
perturbations, chemical reactions, etc.3–5

These properties are described by the Hamiltonian of the sys-
tem, Ĥ = T̂ + V̂ , where T̂ and V̂ are the kinetic and the potential
energy operators, respectively. Of particular importance is the full
set of eigenstates {∣ψn⟩} and eigenvalues {En} of the Hamiltonian,
which in the non-relativistic limit are the solutions of the time
independent Schrödinger equation

Ĥ∣ψn⟩ = En∣ψn⟩. (1)

Among all the eigenstates, the one corresponding to the lowest
eigenvalue, the so-called ground state, often plays a very special role.
This is because although it is the state describing the system at zero
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absolute temperature, it usually remains a good descriptor of the
properties of a material also at moderately high temperature (such
as ambient).6,82–84 However, apart from some special cases (e.g.,
the hydrogen atom), in general, Eq. (1) is impossible to solve ana-
lytically, and this remains so far one of the biggest challenges of
chemistry and materials science.

The purpose of this tutorial is to introduce a practical method,
i.e., the diffusion Monte Carlo (DMC),7–10 that provides a route to
obtain the ground state ∣ψ0⟩, albeit in a stochastic manner. It holds
a prominent position among electronic structure methods due to its
extreme accuracy, as well as an important historical role. Ceperley
and Alder’s pioneering Quantum Monte Carlo (QMC) calculations
of the electron gas11 serve as the foundation for common approxi-
mations to exchange-correlation functionals in Density Functional
Theory (DFT),12–14 thereby playing a crucial role in enabling it.
Applications of the DMC method are many and varied, and it is chal-
lenging to report a chronological and exhaustive list of them here. In
no particular order, it is worth mentioning calculations on diatomic
molecules,15 graphene,16 solid hydrogen17 and Compton scattering
profiles.18 Furthermore, results from QMC simulations are increas-
ingly being used to generate datasets for training machine learning
models of interatomic potentials. Significant examples come from
Kapil et al.19 and Niu et al.,20 where the phase diagrams of mono-
layer nanoconfined water and high-pressure hydrogen, respectively,
were predicted successfully using machine learning potentials with
QMC as the reference method. This approach is particularly valid
for the computation of phase diagrams or similar complex problems,
as little inaccuracies in the evaluation of the interaction energy (say,
less than the “chemical accuracy,” which is 1 kcal/mol) can lead to
dramatically wrong predictions of stable phases.

Despite being very promising, quantum Monte Carlo tech-
niques are still niche methods due to their complexity and the fact
that they cannot be used as black-box tools, making them hardly
accessible to non-experts. Hence, this work is primarily aimed at
students and beginners, but we also hope to provide a fresh new per-
spective on the topic for experienced users. Compared to previous
reviews, we showcase the techniques’ advantages and difficulties via
toy models and simplified systems where the effects of the method’s
technicalities and implementation choices can be easily analyzed.
These are made even clearer by exploring our example codes, avail-
able on GitHub.21 They focused on simplicity (much shorter than
modern production codes) and clarity (making use of a few elemen-
tary functions) at the expense of efficiency. In fact, we preferred the
uniform sampling algorithm to the more efficient importance sam-
pling one,11,15 as the latter requires more in-depth examination of
subtle technical details, which we chose to discuss at a later stage.
In addition, the codes can be easily adjusted by the user to test the
DMC algorithm on any kind of single-particle one-dimensional or
three-dimensional radial potential, making them a versatile teaching
tool.

Systematic errors affecting the DMC, e.g., the time step and the
population control bias,22 are also analyzed in this work, with an
emphasis on practical examples and the different behavior between
ground state and excited state calculations. Above all, the fixed-node
approximation ,23,24 which is essential for dealing with multi-fermion
systems, leads to a trial node error on the energy, whose func-
tional dependence can be straightforwardly explained thanks to the
simplicity of the toy models.

II. THE SCHRÖDINGER EQUATION IN IMAGINARY
TIME

Let us consider the time-dependent Schrödinger equation for a
system with Hamiltonian Ĥ,25

i
∂∣ϕ(t)⟩

∂t
= (Ĥ − ET)∣ϕ(t)⟩, (2)

where ∣ϕ(t)⟩ is the wave function of the system at time t and ET
is an arbitrary energy offset, which obviously does not change the
physical behavior of the system. Throughout this tutorial we will use
atomic units, whereby the mass of the electron me, its charge e, and
the reduced Planck’s constant h are all equal to one. Let us rewrite
Eq. (2) in terms of the imaginary time τ = it,24,26

−
∂∣ϕ(τ)⟩

∂τ
= (Ĥ − ET)∣ϕ(τ)⟩. (3)

If the Hamiltonian does not depend on time, then the imaginary
time evolution of the wave function is

∣ϕ(τ)⟩ = e−τ(Ĥ−ET)∣ϕ(0)⟩. (4)

The meaning of the exponential operator eÂ can be clarified by its
action on the set of the eigenstates of Â, being

eÂ
∣αn⟩ = ean ∣αn⟩, (5)

with ∣αn⟩ the nth eigenvector of Â and αn the corresponding eigen-
value. To represent the wave function, we can express it in terms of a
complete basis set, such as the totality of the eigenstates of any oper-
ator, again, for example, the eigenstates ∣ψn⟩ of the Hamiltonian. We
can, therefore, write

∣ϕ(0)⟩ =∑
n

cn∣ψn⟩, (6)

where the coefficients cn in the expansion are given by the projec-
tions of the wave function ∣ϕ(0)⟩ onto the corresponding eigenstate
∣ψn⟩: cn ≡ ⟨ψn∣ϕ(0)⟩. An equivalent way to express Eq. (6) is to note
that the identity operator (i.e., the operator that leaves any element
of the Hilbert state unchanged by its action on it) can be written
as 𝟙 = ∑n ∣ψn⟩⟨ψn∣, where the sum runs over all eigenstates ∣ψn⟩. If
the operator has a continuous spectrum, such as the position oper-
ator, for example, then the sum is replaced by an integral, and we
would write 𝟙 = ∫dR∣R⟩⟨R∣. These expansions are usually referred
to as resolutions of the identity.

If we now insert Eq. (6) into Eq. (4), we obtain

∣ϕ(τ)⟩ =∑
n

cn∣ψn⟩e−τ(En−ET), (7)

where we have assumed E0 < E1 ≤ E2 ≤ . . .. If we set ET = E0, we see
that, provided ⟨ψ0∣ϕ(0)⟩ = c0 ≠ 0, in the limit of long imaginary time
τ, the wave function approaches the ground state of the Hamiltonian

lim
τ→∞
∣ϕ(τ)⟩ = c0∣ψ0⟩. (8)

This seems useful, but of course E0 is precisely what we are trying
to calculate. Furthermore, how do we realize this imaginary time
evolution?
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Let us consider the resolution of the identity written in terms of
the eigenstates of the position operator, ∫ dR′∣R′⟩⟨R′∣, and intro-
duce it in the r.h.s. of Eq. (4) between the exponential operator
e−τ(Ĥ−ET) and the wave function ∣ϕ(0)⟩. If we also project the
wave function ∣ϕ(0)⟩ onto ⟨R∣, which provides a representation of
the wave function in terms of a specific eigenstate of the position
operator, or its real space representation, we obtain

ϕ(R, τ) = ∫ dR′G(R, R′, τ)ϕ(R′, 0), (9)

where we have written ϕ(R, τ) ≡ ⟨R∣ϕ(τ)⟩. The quantity
G(R, R′, τ) ≡ ⟨R∣e−τ(Ĥ−ET)∣R′⟩ is called the Green function,27,28

and Eq. (9) provides a recipe to evolve the wave function ϕ(R, τ)
with imaginary time. We see that it depends on the value of the
wave function at a previous time everywhere in space—i.e., on the
projection of the wave function onto every eigenstate of the position
operator—and on the value of the Green function. If we cannot
exactly solve the Schrödinger equation, we cannot exactly solve
Eq. (9) either, the reason being that we are in general unable to
obtain an analytic expression of G(R, R′, τ).

There are some special cases, however, where G(R, R′, τ) is
known analytically. One such case is that of the Hamiltonian with-
out the kinetic term. The corresponding real space representation of
the imaginary time Schrödinger equation becomes identical to a rate
equation, for example, with the wave function ϕ(R, τ) representing
the density of a population of bacteria in some aqueous medium at
position R and time τ. The Green function for this process is

G(R, R′, τ) ≡ ⟨R∣e−τ(V̂ −ET)∣R′⟩ = e−τ(V(R
′
)−ET)δ(R − R′), (10)

where we have used ⟨R∣R′⟩ = δ(R − R′) and δ is the delta function.
Applying this to Eq. (9), we obtain

ϕ(R, τ) = ∫ dR′e−τ(V(R
′
)−ET)δ(R − R′)ϕ(R′, 0)

= e−τ(V(R)−ET)ϕ(R, 0), (11)

which shows that the process is local. Equation (11) also shows
that even if ϕ(R, 0) is normalized, ϕ(R, τ) may not be, in gen-
eral. The population of bacteria will grow by replication in regions
where V(R) ≤ ET and decrease where V(R) ≥ ET , and unless ET
is adjusted appropriately, the overall population may not remain
constant. Indeed, this population fluctuation provides a feedback
mechanism to adjust ET if one insists on normalization.

A second case for which the Green function can be obtained
analytically is that for which the Hamiltonian only contains the
kinetic operator, T̂ = − 1

2∇
2, and so the Green function is

G(R, R′, τ) = ⟨R∣eτ
1
2∇

2

∣R′⟩. (12)

The real space representation of the imaginary time Schrödinger
equation in this case is identical to a diffusion equation, for example,
describing the diffusion of bacteria in some aqueous medium, and
again the wave function can be interpreted as the density of these
diffusing bacteria at position R and time τ. To obtain the analytic
expression of the Green function, it is useful to insert a resolution of

the identity in terms of the eigenstates of the momentum operator
p̂ = −i∇ so that we have T̂ = 1

2 p̂ 2 and,

G(R, R′, τ) = ∫ dp⟨R∣eτ
1
2∇

2

∣p⟩⟨p∣R′⟩

= ∫ dp⟨R∣e−τ
1
2 p2

∣p⟩⟨p∣R′⟩. (13)

The real three-dimensional space representation of the eigenstates
of the momentum operator is29

⟨R∣p⟩ =
1

(2π)
3
2

eip⋅R, (14)

and, therefore,

G(R, R′, τ) = ∫ dp
1
(2π)3 eip⋅(R−R′)e−τ

1
2 p2

. (15)

To compute this integral,30 first of all, we recognize that it can be
written as the product of the integrals in each Cartesian direction,
which are all equal. By making the change of variables t = pα

√
τ/2

and ωα = (α − α′)/
√
τ/2, with α = x, y, or z, we have

G(R, R′, τ) = (
2
τ
)

3
2
χ(ωx)χ(ωy)χ(ωz), (16)

where the χ’s are one-dimensional integrals of the type

χ(ω) =
1

2π∫
+∞

−∞

dte−t2

eitω, (17)

which can be written as

χ(ω) =
1

2π∫
+∞

−∞

dte−t2
+2 itω

2 −
ω2

4 +
ω2

4

=
1

2π
e−

ω2

4 ∫

+∞

−∞

dte−(t− iω
2 )

2

. (18)

We now make the change of variable x′ = t − iω
2 , and the integral

becomes

χ(ω) =
1

2π
e−

ω2

4 ∫

+∞−
iω
2

−∞−
iω
2

dx′e−x′2 , (19)

which is a line integral in the complex plane. To evaluate it, let us
introduce the closed loop integral (see Fig. 1),

I =
1

2π
{∫

+c− iω
2

−c− iω
2

+ ∫

+c

+c− iω
2

+ ∫

−c

+c
+ ∫

−c− iω
2

−c
}dx′e−x′2

= 0, (20)

which is equal to zero because there are no poles (divergences) of
e−x′2 inside the loop. This is true for any value of c.

If we now let c→∞, the two vertical segments in the loop give
vanishing contributions to the integral, and we are, therefore, left
with

χ(ω) =
1

2π
e−

ω2

4 ∫

+∞−
iω
2

−∞−
iω
2

dx′e−x′2

=
1

2π
e−

ω2

4 ∫

+∞

−∞

dx′e−x′2
=

1
2
√
π

e−
ω2

4 . (21)
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FIG. 1. The closed loop in the complex plane to evaluate the integral I.

From Eqs. (16) and (21), we get

G(R, R′, τ) = (
1

2πτ
)

3
2
e−

∣R−R′ ∣2
2τ . (22)

Notice that the Green function (22) implies that the displacement
∣R − R′∣ is normally distributed, with a standard deviation σ equal
to the square root of the propagation time τ: σ =

√
τ. Contrary to

the rate case described previously, the diffusion process is not local.
The number of bacteria—which we will more generally call walkers
from now on—at one place depends on how they diffuse from every-
where else. Note that the Green function is normalized, indicating
that no walkers are destroyed or created in the diffusion process. It
is also symmetric; G(R, R′, τ) = G(R′, R, τ), which ensures detailed
balance31 and eventually allows the establishment of an equilibrium
distribution. If this was not the case, the diffusion process would
amplify density inhomogeneities and prevent convergence to the
correct distribution.

We start to see a picture developing. When both the potential
and the kinetic term are present in the Hamiltonian, they will both
make their effect felt. Initially, the density of walkers will depend on
time, depending on their initial distribution. The potential term will
cause an exponential growth of walkers in regions of space where the
potential is low, and the diffusion process will move these walkers
from where the density is large to regions where the density is low.
After some equilibration time, if the energy offset ET is appropriately
chosen so that overall the number of walkers is on average con-
stant, these two processes start to balance each other, and a dynamic
equilibrium is established; the density of walkers becomes time inde-
pendent, and their distribution represents the ground state wave
function of the Hamiltonian.

This seems to have solved the problem; however, there is still
a small obstacle in the way, which has to do with the fact that the
diffusion and the rate processes are not interchangeable. That is, if
we let the walkers diffuse for some time τd first and then we let them
replicate (or die) for some other time τr , we obtain a distribution
ϕ(R, τd + τr) that is in general different from what we would obtain
if we swapped the order of the two processes. In the language of
quantum mechanics, this is expressed by noting that the kinetic and
the potential operator do not commute; it matters which one comes
first.

One may think that the two operators need to be applied
simultaneously, or perhaps that applying them in short succes-
sion may reduce the difference (and so the error) caused by which
one is applied first. Indeed, the latter is the strategy employed in

practice to address this problem. We introduce the Trotter–Suzuki
approximation32,33 to express the exponential of the sum of two
generic operators, Â and B̂, bounded from below:

e−δτ(Â+B̂ )
= e−

1
2 δτB̂ e−δτÂ e−

1
2 δτB̂
+ O(δτ3

), (23)

which shows that in the limit of short δτ it does not matter which
operator is applied first. By taking Â = − 1

2∇
2 and B̂ = V̂ − ET , we

obtain24,31

G(R, R′, δτ) = (
1

2πδτ
)

3
2
e−

δτ
2 (V(R)−ET)e−

∣R−R′ ∣2
2δτ

× e−
δτ
2 (V(R

′
)−ET) + O(δτ3

)

= Gd(R, R′, δτ)Gr(R, R′, δτ) + O(δτ3
), (24)

where the

Gd(R, R′, δτ) = (
1

2πδτ
)

3
2
e−

∣R−R′ ∣2
2δτ (25)

is the Green function describing the diffusion process and

Gr(R, R′, δτ) = e
−δτ( V(R)+V(R′)

2 −ET), (26)

the one describing the rate process.
The evolution of the wave function for a length of time τ, as in

Eq. (9), can then be split into n = τ/δτ steps,

ϕ(R, nδτ) = ∫ dR′G(R, R′, δτ)ϕ(R′, (n − 1)δτ),

ϕ(R, (n − 1)δτ) = ∫ dR′G(R, R′, δτ)ϕ(R′, (n − 2)δτ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ(R, 2δτ) = ∫ dR′G(R, R′, δτ)ϕ(R′, δτ),

ϕ(R, δτ) = ∫ dR′G(R, R′, δτ)ϕ(R′, 0),
(27)

which can be written in a more compact form as

ϕ(R, τ) = ∫ dRn−1 ∫ dRn−2 ⋅ ⋅ ⋅∫ dR1 ∫ dR0 G(R, Rn−1, δτ)

G(Rn−1, Rn−2, δτ) ⋅ ⋅ ⋅G(R2, R1, δτ)G(R1, R0, δτ)ϕ(R0, 0),
(28)

leading to a total error proportional to δτ2.

III. DIFFUSION MONTE CARLO
The steps outlined in Eqs. (27) or (28) are at the basis of the dif-

fusion Monte Carlo (DMC) method. The term diffusion indicates the
diffusion process, described by the Green function Gd, and Monte
Carlo indicates the stochastic approach to evaluate the integrals34 in
Eqs. (27) or (28) that we will now outline.

The wave function ϕ(R, τ) represents the density of walk-
ers at position R and time τ. If there is only one walker and we
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use its position to sample ϕ(R, 0), if the walker is initially at R0,
we have

ϕ(R, 0) = δ(R − R0). (29)

Inserting (29) into (27), we obtain

ϕ(R, δτ) = G(R, R0, δτ) = Gd(R, R0, δτ)Gr(R, R0, δτ). (30)

Since Gd is normalized, if there was no Gr , Eq. (30) would give
us the probability of finding the walker at position R at time δτ,
which means that this diffusion process can be simulated by draw-
ing a random position R extracted from the probability distribution
Gd(R, R0, δτ). This walker will then have a chance to be destroyed or
to be replicated depending on the value of Gr(R, R0, δτ). Note that
Gr depends on our choice of ET (high ET means more replication,
low ET means more destruction), and so we can affect the chances of
the walker dying or being replicated by adjusting ET .

If we repeat this process with N walkers, each of them will
evolve according to the same process, and after a time δτ they will
have diffused to new positions randomly extracted from Gd in each
case, and they will be eliminated or replicated according to Gr . Those
walkers that find themselves in regions of space where the potential
V(R) is low will have high chances of being replicated, and con-
versely, those exploring regions of high V(R) will most likely be
eliminated. After this branching process, the overall number of walk-
ers will decrease if ET is too low, or vice versa, it will increase if ET is
too high, and so the fluctuating number of walkers provides a natural
mechanism to adjust ET so that, on average, their number remains
constant.

After a sufficiently large number of time steps, nequil, the distri-
bution of walkers reaches a dynamic equilibrium: at every position
R in space, the excess replication/elimination of walkers into an
infinitesimal volume dR centered at R is balanced by diffusion out
of/in to the volume dR. When this happens, the distribution of the
walkers resembles the ground state of the Hamiltonian ψ0(R), and
ET becomes an estimate of the ground state energy E0. Of course,
since the distribution is only sampled by the position of the walkers,
there will be a statistical fluctuation associated with it. Similarly, the
estimate of E0 based on ET will also be affected by a statistical error.
This error can be made as small as required either by increasing the
number of walkers or, under the assumption of ergodicity, by con-
tinuing the simulation for a sufficiently large number of time steps n
and estimating E0 as the average ⟨E j

T⟩ over the steps j after the equi-
libration time. This estimator of the ground state energy is called the
growth estimator.22

A. The algorithm
The following is a simple pseudo-code to summarize the

process (see also the diagram in Fig. 2) for a three-dimensional
system:

1. Initialize:

● Choose a number Ntarget of walkers, choose δτ, and
choose the total number of steps n of imaginary time
evolution.

FIG. 2. Flow diagram of the DMC algorithm.

● Distribute the N = Ntarget walkers at positions
(R1, . . . , RN) so that ϕ(R, 0) = ∑N

i=1 δ(R − Ri).
● Give a guess value for ET .

2. Cycle over j = 1, n time steps:

● Cycle over the N j walkers (where N j is the number of
walkers at time step j):

– Move (diffusion) each walker i from posi-
tion Ri to new position R′i with probability

( 1
2πδτ )

3
2 e−

∣Ri−R′i ∣
2

2δτ .

– Evaluate pi = e
−δτ(

V(Ri)+V(R′i )
2 −ET).

– Evaluate the branching term: m ≡ integer(pi
+ η), where η is a random number uniformly
distributed between 0 and 1 and integer(x) is
the function returning the integer part of x.

– If m = 0, eliminate the walker from the simula-
tion; do nothing if m = 1; otherwise, add m − 1
copies.

– If the new total number of walkers N j+1
> (<)Ntarget reduce (increase) ET .

● If j > nequil, accumulate ground state properties, e.g.,
the energy.

The feedback mechanism outlined in the last step has to be
implemented with care, because if it is too aggressive, it can cause
wild fluctuations in the value of ET . What is typically performed is
to make the update using a slow varying function of the value of ET
averaged over a chosen number of previous steps Nblock,

ET = Eblock − C log(
Nj

Ntarget
) Eblock =

1
Nblock

Nblock

∑
k=1

Ek
T , (31)
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where Ek
T is the value of ET evaluated k steps in the past and C is

some appropriate energy constant that can be adjusted to modify
the speed of the readjustment of the number of walkers.

To decide how many walkers are desirable to have in a simu-
lation, it is useful to discuss one point first. The cost of moving all
walkers by one time step is clearly proportional to the number of
walkers N, but statistical sampling efficiency is also proportional to
N; that is, if we halve the number of walkers and double the number
of simulation steps, we still obtain the same number of samples, so
this would suggest that the cost of the simulation is independent of
N. However, only the steps j > nequil are useful to compute ground
state properties, with the first nequil steps usually discarded. The cost
of these initial nequil steps is also proportional to N, and so a small N
would make the simulation more efficient. On the other hand, DMC
simulations are usually run on parallel computers, by distributing
the walkers on different processors and, therefore, the more walkers
are available, the more processors can be used. Load balance35 may
also become an issue if there are not enough walkers on each node,
as the simulation will proceed at the speed of the slowest proces-
sor, which is the one with the largest number of walkers. For this
reason, walkers are redistributed as evenly as possible after every
replication/destruction, but unless they are an exact multiple of the
number of processors, there will be an inevitable imbalance, with
some processors having Nproc walkers and others having Nproc + 1.
For example, in the extreme limiting case of Nproc = 1, the proces-
sors with two walkers will run twice as slow as those who have
one walker. Finally, the population control mechanism of Eq. (31)
may bias the simulation if the number of walkers is small (more
details in Sec. II B). In conclusion, we will usually aim for a large
number of walkers, large enough to avoid population control biases
and load balance issues, but not unnecessarily large, so as to keep
the equilibration time a small as possible fraction of the overall
simulation.

Another estimate of the ground state energy E0 can be obtained
by writing it as the expectation value of the Hamiltonian over the
ground state ∣ψ0⟩:

E0 =
⟨ψ0∣Ĥ∣ψ0⟩

⟨ψ0∣ψ0⟩
= lim
τ→∞

⟨e−τ(Ĥ−E0)ϕ∣Ĥ∣e−τ(Ĥ−E0)ϕ⟩
⟨e−τ(Ĥ−E0)ϕ∣e−τ(Ĥ−E0)ϕ⟩

= lim
τ→∞

⟨e−2τ(Ĥ−E0)ϕ∣Ĥ∣ϕ⟩
⟨e−2τ(Ĥ−E0)ϕ∣ϕ⟩

, (32)

where ϕ can be any function not orthogonal to ψ0 (i.e., ⟨ϕ∣ψ0⟩ ≠ 0).
We choose ϕ to be a constant, and we replace the unknown value
of E0 in the r.h.s. of Eq. (32) with its estimator ET . Of course ϕ
cannot be exactly constant, because it would not be possible to
normalize it. However, we can choose it to be constant in a suffi-
ciently large region of space and make it go to zero smoothly at the
edges, say within a volume Vsmooth. There will be a kinetic energy
contribution from the wave function in Vsmooth, given by ∫Vsmooth

− ϕ(R, 2τ) 1
2∇

2ϕ(R)dR/ ∫ϕ(R, 2τ)dR, but by taking the edges suf-
ficiently far, this contribution can be made as small as wanted, as

both ϕ(R) and ϕ(R, 2τ) must decrease to zero at large distances. A
real space representation of Eq. (32) reads

E0 ≈ lim
τ→∞
∫ϕ(R, 2τ)V(R)dR
∫ϕ(R, 2τ)dR

≈
1

n − nequil

n−nequil

∑
j=1

1
Nj

Nj

∑
i=1

V(Rij)

=
1

n − nequil

n−nequil

∑
j=1

E j
step ≡ ⟨Estep⟩, (33)

with Rij the position of walker i at time step nequil + j, and where we
have replaced the ensemble average over the distribution ϕ(R, 2τ) in
the limit of long τ with the time average over the simulation [which
is performed accordingly to Eq. (28)], in which we have assumed
that after nequil times steps the distribution of walkers given by
ϕ(R, nequilδτ) has become stationary and proportional to the ground
state of the Hamiltonian. The equivalence between the ensemble and
the time averages obviously relies on an ergodic assumption.36 The
resulting estimator will be presented later (Sec. V) in a more gen-
eral form, referred to as the mixed estimator. In Eq. (33) we have
introduced the average of the potential over the instantaneous dis-
tribution of walkers, E j

step =
1

N j
∑

N j
i=1 V(Ri j). Note that the first ≈

sign in Eq. (33) is due to the approximations entering the evalu-
ation of ϕ(R, 2τ) according to Eq. (28), which are the short time
step δτ approximation of Eq. (23) and the replacement of E0 with
ET in the branching term, and the second ≈ sign also includes the
approximation of the evaluation of the integral as an average over
the simulation, so it will be affected by a statistical error,

σ⟨Estep⟩ =

√
nc

n − nequil

√

⟨E2
step⟩ − (⟨Estep⟩)

2, (34)

where nc is the effective number of steps that we typically need
to wait to obtain two statistically independent samples, i.e., the
correlation length, and it can be obtained by standard re-blocking
procedures.37–39 Notice that also the growth estimator ⟨E j

T⟩ has
a stochastic error σ

⟨E j
T⟩

that can be estimated with an equation
analogous to (34).

We will now show two simple applications of the methods
described earlier, the harmonic oscillator and the hydrogen atom.
Codes (written in C) are available on GitHub.21

B. The harmonic oscillator
In this section, we will apply the techniques outlined in Sec. II,

the introduction of Sec. III, and Sec. III A to the one-dimensional
harmonic oscillator, for which the potential energy is

V(x) =
1
2

kx2, (35)

and we will chose k = ω2
= 1, for simplicity. The ground state wave

function of this system is known analytically, and apart from a
normalization constant, it is equal to

ψ0(x)∝ e−
x2

2 , (36)
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FIG. 3. Left panel: The population of
walkers as a function of imaginary time
for the harmonic oscillator simulation
described in the text. The red line is
the target population chosen to be Ntarget

= 105. Right panel: The trial energy ET
(black), the step energy Estep (green),
and the exact ground state energy (red).

and the ground state energy is E0 = 0.5 a.u. As our first illustration,
we perform a DMC simulation with Ntarget = 105 and δτ = 0.005 a.u.
For the energy constant of Eq. (31), we set C = 1/δτ, and we also set
Nblock = 100. To initialize the distribution of walkers, we arbitrarily
choose a flat function for −1 ≤ x ≤ 1 and zero outside this range (see
Fig. 4), and we initially set ET = 0. Both choices are clearly signifi-
cantly different from the exact ground state of the Hamiltonian. In
the left panel of Fig. 3, we show the number of walkers as a function
of imaginary time, and in the right panel the value of ET , together
with the average value of the potential energy, Estep, still as a function
of imaginary time. The variation of the number of walkers and of ET
in the initial part of the simulation depends on the choice for the ini-
tial distribution of walkers; however, we see that after τ ≈ 2 a.u., ET
stabilizes around 0.5 a.u., and also the population of walkers starts to
oscillate around the target value. In Fig. 4, we show the instantaneous
distribution of walkers at τ = 0, 0.5, 1, and 2 a.u. It changes with time,
eventually becoming indistinguishable after τ ≈ 2 a.u. from the exact
distribution, which matches the ground state wave function ψ0, as
stated previously in Sec. II. It is important to emphasize that this is
not the general case for real system calculations, where the widely
employed importance sampling algorithm (Sec. V) does not directly

FIG. 4. The instantaneous distribution of walkers ϕ(x, τ) at different imaginary
times τ for the harmonic oscillator simulation described in the text, compared
to the ground state wave function ψ0(x) = e−x2/2

/

√

2π (here the normalization
constant has been chosen such that ∫ ψ0(x)dx = 1).

sample the ground state wave function, as it is biased by an arbitrary
trial wave function selected by the user.

To obtain an estimate of the ground state energy, we can now
average either ET or Estep over the course of the simulation, after dis-
carding an initial equilibration time. Given that in a diffusion Monte
Carlo simulation the configurations between successive steps often
exhibit substantial correlation, the statistical error on these energy
estimators must be evaluated as in Eq. (34). The aforementioned
re-blocking procedure involves partitioning the data into equal-
sized blocks and generating new independent variables by averaging
the measurements within each block. If the block averages are all
statistically independent of each other, which is only true when
#steps per block > nc, then the estimator of the standard deviation on
the average reaches the appropriate value. Plotting σ⟨ET⟩ as a func-
tion of reblock iterations (each of which doubles the size of blocks at
the previous stage) in Fig. 5 yields the best estimate for the standard
error as the value at the plateau, while the block length at the plateau
onset returns an estimate of nc.

Since the Trotter–Suzuki approximation for the Green func-
tion, Eq. (23), is only exact in the limit δτ → 0, we need to perform a
series of simulations with different values of δτ, which we report in

FIG. 5. σ⟨ET⟩ (computed from block averages) as a function of the reblocking itera-
tion number, made with the Python module pyblock. The black arrow points out the
optimal iteration number. Since the number of blocks decreases with every step,
we expect a higher statistical uncertainty on the last points in the graph. DMC run
performed with δτ = 0.005 a.u., τ = 103 a.u., and Ntarget = 105.
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FIG. 6. Average values ⟨ET⟩ (red) and
⟨Estep⟩ (blue) over the course of the sim-
ulations as a function of time step δτ,
for the harmonic oscillator simulations
described in the text, compared to the
exact value for the ground state energy
of 0.5 a.u. (green line). The total length of
each simulation is 103 a.u. of imaginary
time.

Fig. 6, in all cases for a total imaginary time of 103 a.u. We see that
in the limit δτ → 0, both energy estimators converge to the correct
value 0.5, and we note that for this system the convergence is faster
for the growth estimator ⟨ET⟩. Notice that decreasing the time step
at fixed total imaginary time implies the use of a larger number of
steps and then a higher computational cost, which ideally scale as
1/δτ.

A little residual discrepancy between the growth estimator at
δτ → 0 and the exact value of the energy may sometimes occur as
a consequence of a finite discrete population. Even though each
generation of walkers on average evolves by construction from
the previous one, the feedback of the number of walkers into E j

T
produces a population control bias.22,40,41 This is caused by the cor-
relation of the fluctuations in the average energy of a generation j
of walkers and the corresponding DMC branching factor (contain-
ing E j

T). These fluctuations and, therefore, the error, vanish in the
ideal limit Ntarget →∞. Hence, it is tested by a sequence of simula-
tions varying the parameter Ntarget, keeping the time step fixed. For
this test, we choose δτ = 0.05 a.u. because it returns a valid result
for the energy, statistically equivalent to any lower time step’s one.
In addition, the overall number of samplings must be the same for
all simulations, i.e., the product (Ntarget ⋅ n), where n = τ/δτ is the
number of steps, needs to be a constant, set equal to 109 in the case
reported in Fig. 7. So the simulations with a higher population target
are shorter than the others in order to maintain the same statistical
accuracy on each energy estimate and consequently the same com-
putational cost. It is evident from Fig. 7 that the growth estimator
converges to the exact value for Ntarget ≳ 3000, when the population
control bias becomes lower than the statistical error.

C. The hydrogen atom
It is useful to describe now a more realistic example of a

Coulomb interaction, where the potential has a divergence (i.e.,
it corresponds to an unbounded operator), such as that of the
hydrogen atom,

V(r) = −
1
r

, r =
√

x2
+ y2
+ z2. (37)

This can become a problem when one or more walkers start to
explore a region of space that is close enough to the divergence.42

Here, for any finite value of the time step, the branching term
can exceed unity by a large amount, and when this happens, the
Trotter–Suzuki approximation is not justified anymore. Indeed,
finite time steps can take the walker accidentally very close to the
nucleus, which can cause uncontrolled spikes in the population that
might even be larger than the total population of walkers. These
large imbalances do not typically occur very often, but when they do,
they may throw the simulation off-course and make the algorithm
impractical to use. One possible solution to avoid these popula-
tion “explosions” is to artificially limit the value of the branching
term, m; for example, never allow it to go beyond 2 (a simi-
lar approach has been employed, for example, in Ref. 42). This
modification would bias the weight, but it would do so when the
Trotter–Suzuki approximations cannot be used anyway. In the end,
this bias would disappear in the limit of zero time step, because in
this limit the branching term would always converge to one, i.e.,
the Trotter–Suzuki approximation is restored, and so this approach

FIG. 7. Energy estimator ⟨ET⟩ as a function of the target population number Ntarget
compared to the exact harmonic ground state energy (green line). δτ = 0.05 a.u.,
Ntarget ⋅ n = 109.
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FIG. 8. Value of the branching factor m,
plotted for instances in which it would
exceed the value of 2. The left panel is
for a simulation with δτ = 0.001 25 a.u.
and 1.6 × 106 total time steps, and
the right panel is for a simulation with
δτ = 0.02 a.u. and 0.5 × 106 total time
steps. The red line on the right panel
shows the target population.

can be controlled by studying the simulation results in this limit. To
illustrate this point, we show in Fig. 8 what the value of the branch-
ing term would be if we did not limit it to 2 during the course of two
simulations, one with δτ = 0.001 25 a.u. (left panel), which is run for
1.6 × 106 steps, and one with δτ = 0.02 a.u. (right panel), which is run
for 0.5 × 106 steps. In both cases we are using 106 walkers. The value
of the branching factor is only reported when it would exceed 2. We
see that for the simulation with the short time step, this happens less
than 300 times, with the value of the branching factor only reaching
a maximum value of 19, which would have a negligible effect on the
simulation, and we could also safely avoid the constraint. However,
for the simulation with the larger time step, the value 2 is exceeded
3.6 × 105 times and, more importantly, reaching maximum values of
over 109, which is more than 103 times the target population. These
spikes in the population would effectively be impossible to manage,
and as a result, a simulation with this value of the time step could not
be run. By contrast, imposing the constraint m ≤ 2, we can safely run
simulations also with large values of δτ, which we report in Fig. 9.
Later, we will present an improved algorithm that allows for quicker
convergence in the time step without the need to impose such an
artificial constraint.

Then we performed a new calculation with an initial rect-
angular distribution of walkers in all three Cartesian coordinates
and a sufficiently small time step (δτ = 0.001 a.u.). As a result,
let us finally plot in Fig. 10 the equilibrium radial distribution
Feq(r) ≡ 4πr2ϕ(r, τ →∞), where ϕ(r, τ →∞) is the projected wave
function estimating the exact ground state wave function ψ0(r)
= exp (−r)/

√
π. To plot it, we arrange a large number of spherical

bins around the nucleus position r = 0 and then count how many
walkers there are in each bin. It is clear that with this arbitrary
choice, the starting distribution of walkers is very different from the
ground state of the Hamiltonian, but still the algorithm converges to
a suitable solution.

IV. FERMIONIC SYSTEMS AND SIGN PROBLEM
A. Many particles systems

For a many particles system, the wave function of the ground
state of any Hamiltonian is symmetric under exchange of parti-
cles. This means that the techniques described in Secs. II and III
always result in a bosonic solution, which is characterized by a real
and positive-definite wave function (no-node theorem43,44). If one

FIG. 9. Average values of the trial energy
⟨ET⟩ and of ⟨Estep⟩ over the course of
the simulations as a function of time step
for the hydrogen atom, compared with
the exact energy −0.5 a.u. (green line).
Error bars are smaller than the size of the
symbols. The graph on the right shows a
zoom-in of the data for a smaller range
of time steps.
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FIG. 10. Equilibrium walkers’ radial distribution (green solid line) compared to the
exact radial distribution F0(r) = 4πr2ψ0(r) of the hydrogen atom (red dashed
line). Since we set δτ = 0.001 a.u. and nequilδτ = 20 a.u., the equilibrium profile
has been obtained by averaging over 380 000 configurations. The instantaneous
radial distributions at τ = 1 a.u. and τ = 3 a.u. are also shown as representative
of the equilibration phase (black and blue solid lines, respectively). Ntarget = 104.

is interested in a system of fermions, such as any electronic sys-
tem, then there is no immediate access to the corresponding lowest
energy solution. That poses a significant challenge, known in the
literature as the sign problem.

One possibility could be to build an anti-symmetric (fermionic)
solution as a difference of semi-positive functions, say ϕA and
ϕB, performing two independent DMC simulations with differ-
ent starting conditions, and sampling the difference ϕ = ϕA − ϕB.31

The same arguments developed in Secs. II and III also apply to ϕ,
namely, the fermionic eigenstates of the Hamiltonian with higher
energy would decay exponentially faster than the ground state.
The problem with this approach, however, is that both ϕA and
ϕB converge to the bosonic ground state ψ0, and so the fermionic
signal in their difference, ϕ, becomes smaller and smaller, and
eventually it is overwhelmed by statistical noise. This makes it dif-
ficult, if not impossible, to accumulate statistics for the fermionic
solution.

A common alternative approach is to introduce what is known
as the fixed node approximation (FNA),23 whereby a nodal surface
constraint is imposed, for example, by introducing adsorbing walls.
The nodal surface of the function ϕ is the hypersurface defined by
the points R where ϕ(R) = 0. A trial nodal surface, determined prior
to the simulation, is generally extracted from an appropriate trial
wave function ψ, which accurately approximates the ground state of
the fermionic system. In order to implement such an approxima-
tion for any finite value of δτ, a further step must be added to the
usual algorithm in Sec. II A: a walker moving across a node from R
to R′, such that ψ(R)ψ(R′) < 0, is deleted by setting its branching
term m equal to 0, or alternatively the move is rejected by updating
R′ = R.

Of course, unless the nodal surface is identical to that of ψ0, the
constraint increases the energy of the system because of the varia-
tional principle.15 In other words, the ground state energy estimate,
which is normally a smooth function of the trial nodes’ position,

has a minimum equal to E0 and then a second-order dependence
on the nodal surface error.31,45 Let us stress that the previous con-
siderations hold because a fermionic nodal surface (i.e., the one
associated with an antisymmetric trial wave function) automatically
enforces the orthogonality to every other symmetric state, including
the lowest-energy nodeless ground state of Ĥ. This upper bound can
be improved by improving the nodal surface with a better choice of
ψ. The FNA usually only introduces a small error, as typically ψ is
taken from Hartree–Fock or density functional theory calculations,
which in most cases do provide good quality nodal surfaces, but it is
an approximation that makes DMC non-exact.

For the sake of completeness, let us now introduce some gen-
eral properties related to nodal surfaces.45–49 For a system with d
spatial dimensions and N electrons, the nodal surface is formally a
(dN − 1)-dimensional hypersurface. Due to the Pauli principle, the
wave function must vanish whenever any two electrons coincide.
This defines (dN − d)-dimensional constraints, known as coinci-
dence planes, which determine completely the nodal surface only
in the case d = 1. For higher dimensionality, they represent just
a scaffolding through which the nodes must pass, and usually no
general arguments can provide further information. Certainly, the
nodes should exhibit the symmetries inherent in the ground-state
wave function. For instance, in the case of a translationally invari-
ant Hamiltonian, the nodes must share translational invariance. It is
worth noting that this imposes only a d-dimensional limitation on
the nodes, so the constraints are not overly restrictive.

In addition, for the ground-state nodal surface of Hamiltonian
with a local potential, a tiling property has been proved.24,45 Let us
first define a nodal region or pocket, namely a set of points in the
dN-dimensional space that can be connected without crossing the
nodes. Hence the walkers’ evolution progresses independently in
each region, where the algorithm returns the lowest-energy node-
less wave function vanishing on the boundary. In principle, a pocket
α may yield a lower energy estimate E α

0 (i.e., pocket eigenvalue) than
the others, and the gradual population correction to ET increases
the walker density in the former while emptying the latter. This hap-
pens for some excited state DMC calculations, but not for the ground
state ones. In fact, the aforementioned tiling theorem states that all
the nodal pockets of the ground state of some local Hamiltonian
Ĥ are equivalent by exchange symmetry, i.e., the energy estimate
is the same in every nodal region. The tiling theorem holds even
when the ground state is degenerate, in which case every possible
real linear combination of the degenerate ground states possesses
the tiling property. It can be extended to cases where additional
discrete symmetries are present. For instance, if one aims for the
lowest antisymmetric state exhibiting odd parity under the inver-
sion operator Π̂, then the ground state will have the tiling property
with respect to the combined action of P̂ (particle permutation)
and Π̂.

Two main implications of the tiling theorem emerge in a
fixed-node Monte Carlo calculation. First, the trial wave function
ψ and, therefore, its trial nodal surface, need to satisfy the tiling
property in order to achieve an accurate result. In general, wave
functions derived from the solution to a mean field equation, such
as the local density functional approximation, are satisfactory. Sec-
ond, due to the equivalence between the nodal regions, the DMC
energy estimate is expected to be independent of the initial walkers
distribution.
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FIG. 11. 2D cross section of the trial nodal surfaces in Eq. (44) for a two-fermion
system with harmonic potential. They depend on the real parameter c, and the
exact one is obtained for c = 0 (black solid line). The fermion 2 is fixed at the
position indicated by the open circle (x2 = 1, y2 = 0).

B. A two-fermion system
The toy model we are going to analyze in this section con-

sists of two identical spinless fermions in a two-dimensional
harmonic potential with angular frequencies ωx = ωy = ω. Since it
is a multi-particle system, its antisymmetric ground state exhibits a
(three-dimensional) nodal surface, which needs to be fixed a priori
into the algorithm. It is described by the following non-interacting
Hamiltonian (in atomic units):

Ĥ = Ĥ1 + Ĥ2, (38)

where

Ĥi =
p̂ 2

x,i

2
+

p̂ 2
y,i

2
+

1
2
ω2 x̂ 2

i +
1
2
ω2ŷ 2

i , i = 1, 2, (39)

whose eigenstates can be factorized into the single-particle harmonic
oscillator eigenfunctions,

ψn1 ,m1 ,n2 ,m2(r1, r2) = ψn1(x1)ψm1(y1)ψn2(x2)ψm2(y2), (40)

with eigenvalues En1 ,m1 ,n2 ,m2/ω = n1 +m1 + n2 +m2 + 2, where

ψn(x) =
1

√
2n n!

(
ω
π
)

1/4
e−

ω
2 x2

Hn(
√
ω x), n = 0, 1, 2, . . . ,

and the function Hn is the Hermite polynomial of degree n. Since
the Hamiltonian exhibits a trivial symmetry when exchanging the x
and y coordinates of the same particle, the fermionic ground state is
degenerate,

ψF
0 (r1, r2) = α

ψ1,0,0,0(r1, r2) − ψ1,0,0,0(r2, r1)
√

2

+ β
ψ0,1,0,0(r1, r2) − ψ0,1,0,0(r2, r1)

√
2

, (41)

where the coefficients α and β are arbitrary real numbers such that
∣α∣2 + ∣β∣2 = 1.

We chose ω = 0.4 a.u. and α = β for simplicity. Hence, the
exact nodal surface arises from the implicit equation ψF

0 (r1, r2) = 0,
namely,

x1 − x2 + y1 − y2 = 0, (42)

which is clearly invariant under particle exchange. The coincidence
plane

⎧⎪⎪
⎨
⎪⎪⎩

x1 = x2,

y1 = y2,
(43)

does not provide in this case (d = 2) enough information to iden-
tify the entire nodal surface. In order to test the behavior of the trial
node error, we can then devise an arbitrary trial nodal surface, for
example,

x1 − x2 + y1 − y2 + c
√
ω (y2

1 − y2
2) = 0, (44)

FIG. 12. DMC energy against the node
parameter c for a two-fermion system.
The inset shows the quadratic behavior
of the energy close to the minimum at
c = 0. δτ = 5 × 10−5 a.u., τ = 315 a.u.,
Ntarget = 104.
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still passing through the coincidence plane in Eq. (43) for every value
of the real parameter c (Fig. 11), and perform fixed-node calculations
while varying it. They have been implemented by killing walkers that
cross the nodes in a simple sampling framework, starting with a uni-
form walker distribution. Once the time step has been fixed to a
sufficiently small value such that the energy bias is negligible with
respect to the statistical error, the calculations return the energy pro-
file as in Fig. 12. Although it strictly depends on the particular form
of the trial nodal surfaces, the presence of a minimum at c = 0 and
the quadratic behavior close to it clearly stand out, returning a good
estimate for the ground state energy: ⟨ET⟩/ω = 2.997 ± 0.002 a.u., to
be compared with EF

0/ω = 3 a.u. Let it be noted that the trial nodal
surface presented in Eq. (44) could be rejected a priori because it
fails to satisfy the symmetries of the Hamiltonian (except for c = 0),
making it incompatible with a non-degenerate exact eigenstate cal-
culation. Nevertheless, this does not impact the energy behavior,
and the example still serves the purpose of demonstrating how an
incorrect trial node can influence a fixed-node DMC solution. The
same applies for the trial node tested later in Sec. IV B. Despite
appearing straightforward within our example, this optimization
procedure for the nodal surface is rarely employed in large-scale real
systems because the number of parameters increases rapidly with the
system size and dimensionality, and the calculations become very
expensive.50

V. EXCITED STATES
Excited states, both vibrational and electronic, are pivotal in the

understanding of the physics and chemistry of atoms, molecules, and
condensed matter. As discussed earlier, the fermion ground state is
essentially an excited state; it represents the lowest antisymmetric
state of a system, and its energy is greater than the boson one. This
seems to suggest that the fixed-node approximation could be gener-
alized to the calculation of an excited state ψi by employing a trial
nodal surface from a proper trial wave function ψ̃i. According to the
variational principle,51 for the DMC solution to avoid collapsing into
lower-energy states, ψ̃i should be orthogonal to all the lower eigen-
states ψj, j < i.52,53 Therefore, orthogonality can often be achieved
by imposing symmetry conditions on ψ̃i.54 Indeed, if the selected
trial wave function has a defined symmetry that meets some specific
mathematical conditions55 (for example, the gerade/ungerade states
in centrosymmetric molecules), the variational principle ensures
that the computed energy is either equal to or greater than the eigen-
value of the lowest exact eigenstate with that particular symmetry.56

However, such considerations usually do not completely specify the
exact solution. For excited states that are energetically not the low-
est in their symmetry, neither the variational principle nor the tiling
property is guaranteed, and one may expect a strong dependence of
the result on both the trial nodal surface and the initial distribution
of walkers.53,56–58 In particular, the energy estimator from Eq. (33)
for the eigenstate ψi will be expressed as a linear combination of
energies that include the lower states,

Ẽi = ⟨V⟩
{ψ̃i(R)=0}
ϕ(R,τ→∞) =

∞

∑
j=0

cijEj , (45)

where the average of the potential energy has been computed by
sampling the equilibrium distribution ϕ(R, τ →∞)with nodes fixed

by the implicit equation ψ̃i(R) = 0. The coefficients cij are related to
the overlap integral ⟨ψ̃i∣ψ j⟩. A similar expression applies also to the
growth estimator. The incorrect placement of nodes leads to a mix-
ing of energies and, therefore, to a deviation from the ideal situation
cij = δij.

In case the trial nodal surface does not possess the tiling prop-
erty, the most favorable nodal pocket, namely the one with the lowest
energy of all those initially occupied, becomes the only populated
region in the large τ limit.56 In other words, the DMC energy con-
verges to Ẽi = minα{E α

i }, where the index α runs over all the filled
nodal regions. Everything introduced so far will be clarified with an
example in Sec. V A.

A. First excited state of the harmonic oscillator
Let us investigate again the single-particle system with a 1D

harmonic potential, but now we focus on the first excited state. It
is described by the wave function,

ψ1(x) = (
ω
π
)

1
4√

2ω x exp(−
1
2
ωx2
), (46)

with energy E1/ω = 3/2 a.u. We set again ω = 0.4 a.u. in the follow-
ing calculations. The nodal surface of such a simple system is exactly
known; it is just the point x = 0, which divides the 1D space into
two equivalent nodal regions, and it needs to be enforced with the
usual fixed-node constraint. Check the evolution of the walkers dis-
tribution along the simulation in Fig. 13. The initial position of each
walker is generated from a uniform distribution with a non-zero
component in both nodal regions. The population rapidly con-
verges to the exact distribution profile [except for statistical noise,
Fig. 13(b)], but since the node plays the role of an infinite bar-
rier in x = 0, the system reveals in the long τ limit a spontaneous
symmetry breaking following a random fluctuation in the walkers
distribution, which becomes more and more concentrated in just
one region. Then the τ →∞ distribution outlines the correspond-
ing nodal pocket eigenstate [Fig. 13(d)], which is zero outside and
still proportional inside the same nodal region to ∣ψ1(x)∣ apart from
a normalization factor. Although only one pocket is sampled in the
long time limit, the DMC energy comes to be accurate as long as the
trial node corresponds to the exact one.

Adding a node constraint also has some important effects on
the time step bias. After fixing the target population at a reason-
able value (e.g., Ntarget ∼ 104, in order to have negligible population
bias), a series of simulations have been performed varying δτ, and
the resulting energies are plotted in Fig. 14, along with the analogous
data for the ground state.

A slower convergent behavior is apparent for the excited state;
in particular, an accurate energy estimate is achieved only with
δτ = 10−5–10−4 a.u., whereas for the corresponding nodeless ground
state, the same is attained with a way larger time step, namely
δτ = 10−2–10−1 a.u. Hence, this results in expensive simulations,
which are commonly optimized by employing the importance sam-
pling method (see Sec. V) in every practical application. Such
differences in convergence efficiency can be fully understood in
light of the power law behavior of the time step bias. It can be
proved59,60 that, for nodeless states and adopting the symmetric
form of the Trotter–Suzuki approximation as in Eq. (23), the trial
energy converges quadratically to its exact value as δτ approaches 0,
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FIG. 13. Evolution of the walkers dis-
tribution ∣ϕ1(x)∣ (black line) compared
to the exact first excited state distribu-
tion ∣ψ1(x)∣ (red dashed line). Simula-
tion performed with δτ = 10−4 a.u. and
Ntarget = 104.

i.e., ⟨ET⟩(δτ) − E0 ∼ δτ2. Conversely, the act of killing walkers that
cross nodes in the simple DMC algorithm leads to a δτ1/2 term in
the same formula and, therefore, to a slower convergence, as sup-
ported by qualitative arguments presented in Refs. 15 and 22. This
square root dependence of the growth estimator makes accurate
extrapolation to δτ = 0 difficult since

√
δτ has an infinite slope here.

The fitting procedure returns the best parameters as in Table I.
Both extrapolated energies predict correctly the exact eigenvalues

FIG. 14. The growth estimator ⟨ET⟩ as a function of the time step δτ has been
modeled according to a power law with distinct exponents for the ground state (2)
and the first excited state (1/2). The energy axis has been rescaled such that both
curves have the same asymptotic value at δτ = 0. Simulations performed with
τ = 410 a.u. and Ntarget = 104.

with almost the same accuracy, but let us stress again that the calcu-
lation for E′1 is much more expensive, as it is necessary to compute
many low-time step points.

B. Effects of wrong nodes on excited states
We show the impact of the trial node error on the growth esti-

mator for an excited state. The 1D harmonic oscillator Hamiltonian
is invariant under inversion Π̂, i.e., V(−x) = V(x), so the same must
be true for the nodal surface of every excited state. Clearly, the point
x = 0 is mapped into itself by an inversion transformation, and no
other single point can be. In a more formal way, only a wave func-
tion with a single node in x = 0 fulfills the tiling property with respect
to Π̂. If we fix a node at any point xnode other than 0, for example,
xnode > 0, we expect to split the 1D domain into two non-equivalent
nodal regions and get a DMC energy lower than E1. In particular, we
start the simulation with a uniform distribution of walkers centered
at x = 0 and large enough such that each nodal region is sampled
during the initial phase. As proved for the 2s excited state of the
hydrogen atom by Foulkes et al.56 using a variational argument, the
favorable pocket is the one enclosing the exact nodal point, i.e., the

TABLE I. Fitting parameters (in units of ω) for the time step bias calculation.

Ground state First excited state
E(δτ) = A0 δτ2

+ E′0 E(δτ) = A1 δτ1/2
+ E′1

Ai −0.0037 ± 0.0004 −0.440 ± 0.015
E′i 0.5000 ± 0.0002 1.5008 ± 0.0005
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FIG. 15. Fixing the node at xnode > 0
and (a) populating both nodal regions
as initial conditions lead to (b) a final
(averaged) distribution of walkers
entirely enclosed into the most favor-
able pocket {x < xnode}. xnode ⋅

√

ω
= 0.2

√

0.4 ≈ 0.13 a.u., δτ = 0.001
a.u., Ntarget = 104.

region x < xnode in Fig. 15. Indeed, it is the only populated one in
the high τ limit. This leads to a linear dependence of the energy on
small node displacement61 and, due to the inversion symmetry of
the system, to a slope discontinuity at xnode = 0 (Fig. 16). For large
node displacement, instead, we observe how the growth estimator
stabilizes around a minimum value equal to E0 = 0.5 a.u. (Fig. 17).
Although the variational principle does not hold for the first excited
state, i.e., ⟨ET⟩(xnode) ≤ E1, it is still valid for the ground state. Then
a large value of xnode implies a large overlap between the walkers dis-
tribution and the nodeless ground state ψ0 and an energy estimate
close to (but never below) E0, according to Eq. (45).

In addition, the absence of the tiling property leads to a strong
dependence on the initial condition. If we generate all the walkers
inside the unfavorable pocket, the dynamics is constrained there due
to the fixed node, and eventually the distribution cannot sample the
lowest of the pocket eigenvalues. Accordingly, the populated region
in Fig. 18(b) is where x > xnode and the energy estimate is higher
than E1. Its behavior is still linear for small node displacement, but
now with a positive slope for xnode > 0 equal to b>0 = 1.10 ± 0.02, as
derived from data fitting in Fig. 19. Not surprisingly, the (negative)

FIG. 16. Error in the DMC energy of an excited state is first order in the
node displacement. Due to inversion symmetry, the data obtained with xnode > 0
are consistent within the error bars with the xnode < 0 ones. Simulations were
performed with δτ = 1.6 × 10−5 a.u., τ = 410 a.u., and Ntarget = 104.

slope from Fig. 16 is equal to b<0 = −1.08 ± 0.01, sharing the same
absolute value but different sign with b>0 within the error.

For the excited state of a multi-particle system in two (or more)
dimensions, the above-mentioned analysis is not so simple. Even if
its nodal surface is exactly known, which is not usually the case, it is
difficult to parameterize in a systematic fashion, and no intuitive rep-
resentation is available. In any case, we expect the same features: the
possible lack of variationality and a linear dependence of the DMC
energy on the fixed-node error.

VI. DIFFUSION MONTE CARLO WITH IMPORTANCE
SAMPLING

Throughout this tutorial, we have used, for the sake of clarity,
the simplest DMC algorithm, which is easier to implement, yet lim-
ited in capability, and which nevertheless allows the main aspects
of DMC to be grasped. However, production codes for the study of
the electronic structure of molecules, solids, and surfaces employ a

FIG. 17. Fixed-node DMC energy is linear in the zero limit (inset window) and
gradually converges to the ground state energy E0 (red line) as a larger xnode is
enforced. The discrepancy with E1 (green line) at xnode = 0 is due to the time step
bias, which does not affect the overall qualitative behavior. Error bars are smaller
than the size of the symbols. Simulations were performed with δτ = 0.001 a.u.,
τ = 25 610 a.u., and Ntarget = 104.
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FIG. 18. Fixing the node at xnode > 0 and
(a) populating just the unfavorable nodal
pocket as an initial condition leads to (b)
a final (averaged) distribution of walkers
entirely enclosed into the {x > xnode}

region and a DMC energy larger than
E1. xnode ⋅

√

ω = 0.2
√

0.4 ≈ 0.13 a.u.,
δτ = 0.001 a.u., and Ntarget = 104.

more efficient but also more elaborate version of it, which ultimately
becomes the best approach in all practical cases. The procedure
explained in Secs. I–V is completely general and does not require
any prior knowledge of the ground state wave function of the Hamil-
tonian; however, if some knowledge exists, then this can be used to
make the algorithm more efficient, increasing the sampling where
the wave function is expected to be large.11,15,62–65 If knowledge of
the ground state of the system is coded into a trial wave function
ψ, this differential sampling is achieved by modifying the original
algorithm as follows.

Recall the Schrödinger equation in imaginary time, Eq. (3),
which we rewrite as

∂ϕ
∂τ
=

1
2
∇

2ϕ + (ET − V)ϕ. (47)

We rearrange it now in terms of the product f(τ) = ψϕ(τ). To do
that, we need expressions for ∂f /∂τ and the Laplacian of ϕ in terms
of the gradient and the Laplacian of f . Since ψ does not depend on
time, we immediately have

∂ f
∂τ
= ψ

∂ϕ
∂τ

. (48)

FIG. 19. If the population samples only the unfavorable nodal pocket, the error in
the fixed-node DMC energy is still first order in the node displacement, but now
⟨ET⟩(xnode) ≥ E1. δτ = 1.6 × 10−5 a.u., τ = 410 a.u., Ntarget = 104.

We then have

∇ϕ =
∇ f
ψ
− f
∇ψ
ψ2 =

1
ψ
[∇ f − f

∇ψ
ψ
],

∇
2ϕ = −

∇ψ
ψ2 ⋅ [∇ f − f

∇ψ
ψ
] +

1
ψ
∇[∇ f − f

∇ψ
ψ
],

ψ∇2ϕ = −
∇ψ
ψ
⋅ ∇ f + f (

∇ψ
ψ
)

2

+∇
2 f

−∇ f ⋅
∇ψ
ψ
− f
∇

2ψ
ψ
+ f (

∇ψ
ψ
)

2

= ∇
2 f − f

∇
2ψ
ψ
+ 2 f (

∇ψ
ψ
)

2

− 2
∇ψ
ψ
⋅ ∇ f .

(49)

Combinining Eqs. (47)–(49), we obtain

∂ f
∂τ
=

1
2
∇

2 f −
1
2

f
∇

2ψ
ψ
+ f (

∇ψ
ψ
)

2

−
∇ψ
ψ
⋅ ∇ f + (ET − V) f .

(50)
It is useful to write − 1

2 f ∇
2ψ
ψ =

1
2 f ∇

2ψ
ψ − f ∇

2ψ
ψ and define the local

energy EL(R) ≡ Ĥψ(R)/ψ(R) so that Eq. (50) becomes

∂ f
∂τ
=

1
2
∇

2 f − f
∇

2ψ
ψ
+ f (

∇ψ
ψ
)

2

−
∇ψ
ψ
⋅ ∇ f + (ET − EL) f . (51)

Finally, we define the drift velocity v(R) ≡ ∇ψ(R)/ψ(R) (or local
gradient), and noting

∇(v f ) = ∇ f ⋅
∇ψ
ψ
+ f
∇

2ψ
ψ
− f (

∇ψ
ψ
)

2

, (52)

Equation (51) becomes

∂ f
∂τ
=

1
2
∇

2 f −∇(v f ) + (ET − EL) f . (53)

Equation (53) is similar to Eq. (47), but with two important dif-
ferences. The first is that the potential energy V is replaced by the
local energy EL, which for a good trial wave function ψ can be much
smoother. For instance, it could satisfy the cusp condition66,67 on the
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divergence of the Coulomb potential and not diverge there. In fact,
a cusp in the exact wave function, i.e., a discontinuity in its first
derivative, is required to cancel out the singularity of the potential
with a corresponding term in the local kinetic energy. Therefore, in
the limit of ψ being an eigenstate ψn of the Hamiltonian with eigen-
value En, EL(R) would be equal to En for every value of R. Since
EL(R) is replacing V(R) in the branching factor of the Green func-

tion, Gr(R, R′, δτ) = e
−δτ( EL(R)+EL(R′)

2 −ET), this results in much weaker
fluctuations and a more stable population of walkers.

The second difference comes from the extra∇(v f) term, which
is not present in Eq. (47). To understand the effect of this term,
it is useful to introduce an approximation and assume that for
short enough time steps, v is constant over an evolution of time
δτ, and so ∇(v f) ≈ v ⋅ ∇ f . This allows us to write 1

2∇
2 f − v ⋅ ∇ f

= (−p̂ 2
/2 − iv ⋅ p̂) f , and so the diffusion part of the Green function

can be written as

Gd(R, R′, δτ) = ⟨R∣e−δτ
p̂ 2

2 −iδτv⋅p̂
∣R′⟩. (54)

By inserting a resolution of the identity and working in a similar way
as in Sec. I, we arrive at the following expression for a drift-diffusion
Green function:

Gd(R, R′, τ) = (
1

2πτ
)

3
2
e−

∣R−R′−δτv∣2
2τ . (55)

We see that in addition to the diffusion process there is a drift caused
by the term v = ∇ψ/ψ. This quantity is large where ψ is small and
decreasing/increasing, for example, near the nodal surface of the
wave function. The δτv term then pushes the walker away from the
nodes, and it is proportional to 1/R� close to them, where R� is the
distance in the direction normal to the nodal surface. In other words,
the drift term, which diverges on the nodal surface, helps to keep the
density of walkers low where ψ is small. Hence, the importance sam-
pling technique provides a natural way to implement the fixed-node
approximation, because in the limit of zero time step, the multipli-
cation by ψ ensures that the steady state distribution has the same
nodal surface of ψ.

The growth estimator ⟨ET⟩ works also in the importance sam-
pling formulation, whereas the one in Eq. (32) needs to be adapted
by replacing the arbitrary function ϕ with the trial wave function ψ
and considering that ∣ψ0⟩ = lim

τ→∞
∣e−τ(Ĥ−E0)ψ⟩,

E0 =
⟨ψ0∣Ĥ∣ψ0⟩

⟨ψ0∣ψ0⟩
= lim
τ→∞

⟨e−2τ(Ĥ−E0)ψ∣Ĥ∣ψ⟩
⟨e−2τ(Ĥ−E0)ψ∣ψ⟩

=
⟨ψ0∣Ĥ∣ψ⟩
⟨ψ0∣ψ⟩

. (56)

Applying the local energy definition EL(R) = Ĥψ(R)/ψ(R) and
recalling the walkers distribution f(R, τ) = ψ(R)ϕ(R, τ), then

E0 ≈ lim
τ→∞
∫ f (R, 2τ)EL(R) dR
∫ f (R, 2τ) dR

= ⟨EL⟩

≈
1

n − nequil

n−nequil

∑
j=1

1
Nj

Nj

∑
i=1

EL(Rij), (57)

where the average is computed over a simulation with n steps, each
of them evolving N j walkers at a time, and the associated stochastic
error is

σ⟨EL⟩ =

√
nc

n − nequil

√

⟨E2
L⟩ − ⟨EL⟩

2. (58)

In the literature, this is known as the mixed estimator.68 Let us
stress that the walkers population no longer samples the ground
state wave function, but rather the mixed distribution f(R, τ →∞)
= ψ(R)ψ0(R). As a result, the mixed estimator is inherently biased
by the chosen trial wave function ψ. From Eq. (56) it is straightfor-
ward to verify that the mixed estimator can compute exact values
in the same way for every operator that commutes with the Hamil-
tonian, e.g., every function of the Hamiltonian operator, such as
atomization energy, ionization potential, and electron affinity, sim-
ply obtained as a difference of energies. However, for every other
operator Â (for example, the electric dipole operator), the mixed
estimator does not yield the correct expectation value A0, i.e.,

A0 ≡
⟨ψ0∣Â∣ψ0⟩

⟨ψ0∣ψ0⟩
≠
⟨ψ0∣Â∣ψ⟩
⟨ψ0∣ψ⟩

. (59)

Therefore, both exact and approximated methods to sample from
the “pure” ψ2

0 distribution have been developed. In that way the
expectation value A0 becomes accessible from QMC calculations.
For example, it can be proved that, while both the mixed estimator
Am and the variational estimator,

Av ≡
⟨ψ∣Â∣ψ⟩
⟨ψ∣ψ⟩

, (60)

poorly approximate A0, they can be combined to provide a better
approximation, namely,

2Am − Av = A0 +O(Δ2
), (61)

where Δ ≡ ψ0 − ψ.31,69

The challenges in implementing this enhanced algorithm from
scratch consist mainly of constructing and optimizing a trial wave
function specific to each quantum system. In general, a good trial
wave function is required to strike a balance between accuracy and
ease of evaluation. A compact and widespread representation typi-
cally employs Slater–Jastrow (SJ) functions. A SJ trial wave function
consists of a single Slater determinant multiplied by a symmetric
non-negative function of the electronic coordinates, which is dubbed
the Jastrow factor. The Jastrow factor accounts for the electronic
correlation and satisfies the aforementioned electron–electron and
electron–nuclei cusp conditions. The orbitals within the Slater deter-
minant can be derived from precise DFT or Hartree–Fock (HF)
calculations or even from more sophisticated approaches depend-
ing on the required level of accuracy.70 The Jastrow factor can have
several functional forms and crucially depends on the optimization
of its parameters. For an N particles system, a SJ wave function can
be written as

ψSJ(X) = eJ(X)D(X), (62)
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where D(X) is the Slater determinant, X = (x1, x2, . . . , xN) and
xi = {ri, σi}, i.e., spatial and spin coordinates. Usually the Jastrow
factor has the following form:

J(X) =
N

∑
i=1

χ(xi) −
1
2

N

∑
i≠j

u(xi, xj). (63)

Here, the χ terms describe the electron–nuclei correlation, while the
u terms describe the electron–electron correlation. Depending on
the investigated system, those functions can be defined in several
ways, and even three-body correlation terms could be included. One
of the most diffused forms for the u function in the Jastrow factor is
the following:

u(xi, xj) =
Aσi ,σj

rij
(1 − e−rij/Bσi ,σj ), (64)

which was used in some of the earliest work on the homogeneous
electron gas.11 Here, rij = ∣rij∣ = ∣ri − rj∣, and the parameters Aσi ,σ j

and Bσi ,σ j are fixed by imposing both the cusp conditions and the
proper long-range behavior.

VII. FURTHER READING
In this section, we aim to supply the reader with a comprehen-

sive list of sources to delve into the more advanced features of the
QMC methods and eventually approach the recent literature.

A general overview, with a focus on the theoretical aspects of
the diffusion Monte Carlo, is provided by Foulkes et al.’s review,24

which we have referred to extensively during the production of this
tutorial. The books by Hammond et al.31 and Becca and Sorella61

also introduce the fundamentals of statistics and Monte Carlo sam-
pling (e.g., Markov chain theory and the Metropolis algorithm) as
essential tools for the reader. Great attention is paid to the differ-
ent types of quantum Monte Carlo methods other than the diffusion
one, such as the variational method or the exact Green’s function
method.

The practical implementation of QMC, as well as all aspects
related to the efficiency, reliability, and limitations of the algorithm,
are usually presented in the papers or guides supporting recent ver-
sions of QMC production codes. Among the most popular ones,
it is worth mentioning CASINO,71,72 TurboRVB,73 QMCPACK,74

and CHAMP.75 As already stated, they all employ the importance
sampling together with the enhanced version of the algorithm from
Umrigar et al.22 in order to achieve faster and more accurate cal-
culations. Since trial wave functions and their nodal surfaces play a
significant role in simulations of fermionic systems, they still repre-
sent an active research topic at present, with a main focus on their
optimization. We recommend the review by Austin, Zubarev, and
Lester35 as it offers an insightful overview of this field.

Coming to the applications, QMC has made significant
progress in several areas of electronic structure theory thanks to its
favorable properties, especially in those where electron correlation
is a key or dominant factor. QMC accuracy is suitable particularly
for systems with weak intermolecular interactions, where a subtle
balance in bonding arises from long-range dynamical correlations,
i.e., dispersion effects. A comprehensive review on non-covalent
interactions addressed by quantum Monte Carlo methods is that
of Dubecký et al.76 Furthermore, QMC is increasingly employed in

conjunction with quantum chemistry methods to provide system-
atic benchmark quality results for molecules. A nice discussion on
this topic can be found in Al-Hamdani and Tkatchenko,77 where the
DMC is regarded as a worthy competitor to the coupled cluster with
single, double, and perturbative triple [CCSD(T)] excitations, often
considered the “gold standard” for many chemistry applications.

VIII. CONCLUSIONS
In this tutorial, we have provided an essential explanation of

the diffusion Monte Carlo method, designed to simultaneously cal-
culate the ground state energy and wave function of any quantum
system. We developed a straightforward numerical algorithm and
implemented a computer program to determine the ground state of
a few simple systems of educational interest. The codes, inputs, and
outputs of the examples illustrated here are available on GitHub.21

In this tutorial we both describe the simple and importance sam-
pling version of the DMC algorithm. For the sake of simplicity, in
the illustrated examples we employed the simple algorithm, which is
less efficient than the importance sampling algorithm but way easier
to implement.

The typical systematic errors affecting a DMC calculation, i.e.,
the time step bias and the finite population bias, have been stud-
ied, and the extrapolation to δτ → 0, Ntarget →∞ returned accurate
energy results (e.g., the statistical error on energies in Table I is below
a thousandth of ω and could be further improved with longer runs).
The hydrogen atom turned out to be computationally demanding
due to its three-dimensionality and the presence of a singularity
in the Coulomb potential, which has been taken under control
by imposing a threshold on the walker replication. The problem
of instability in DMC simulations is mitigated by the importance
sampling algorithm but not completely removed, so a control of
instability by limiting the population size is a general feature of
all DMC implementations.22,78 In order to apply the DMC method
to systems of interacting fermions, one has to treat, as mentioned
earlier, the “sign problem” due to the antisymmetry property of
the many-fermion wave function. Here, we have implemented the
fixed-node approximation by the killing procedure, that is, walkers
crossing the nodal surface are deleted. It has been shown that the
time step error follows a power law, and that this is quadratic for
the nodeless ground state, but only proportional to δτ1/2 within our
algorithm for any higher-energy state (including fermionic ones).

We also artificially imposed trial node errors and showed the
implications. By slightly moving the trial nodal surface away from
its exact position, we have shown that the energy increases quadrati-
cally in ground state calculations, while it may decrease linearly and
exhibit a slope discontinuity when dealing with excited states. This
last situation arises from the violation of the variational principle
and the tiling property, which may occur depending on the chosen
trial nodal surface. Indeed, for the first excited state of the harmonic
oscillator, the exact node will be fixed completely by the inversion
symmetry of the Hamiltonian. In more complex problems, symme-
try arguments do not define the exact topology of the nodal surface
but can constrain our guess and even restore the variational principle
when imposing orthogonality to every lower-energy state.

In summary, DMC is a versatile and accurate method for sim-
ulations of quantum systems, ranging from atoms,79 molecules, and
clusters80 to condensed matter.81 Despite not directly addressing real
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systems in this work, we take a step toward democratizing DMC and
lowering the learning barrier by providing a beginner-friendly dis-
cussion of both the physics and the algorithmic complexities behind
this powerful method.
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