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Abstract

A new simple algorithm to extrapolate the electronic charge density in ab initio molecular dynamics runs is proposed.
The self-consistent charge density is decomposed in two parts, the first part is the sum of the atomic charge densities, and
the second is its difference with the latter. The charge at time t + dt is constructed using the sum of the atomic charges
and a second order extrapolation on the charge difference. The scheme is tested on a 64 atom liquid iron simulation under
Earth’s core conditions. A comparison with a simple second order extrapolation of the whole charge density shows that the
new algorithm is significantly faster. c© 1999 Elsevier Science B.V. All rights reserved.
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Ab initio molecular dynamics (AIMD) is a pow-
erful tool to explore the properties of matter at the
microscopic level. The interaction between ions and
electrons is treated fully quantum mechanically, and
the ions are moved using the classical Newton equa-
tion of motion.

The first pioneering work in AIMD is the one of
Car and Parrinello (CP) [1], who proposed an uni-
fied scheme to calculate ab initio forces on the ions
and keep the electrons close to the Born1Oppenheimer
surface while the atoms move. They introduced a La-
grangian containing the ionic and electronic degrees of
freedom. A fictitious mass, much smaller that the ionic
masses, is assigned to the electrons, and the equation
of motion is integrated for electrons and ions together.
Due to the difference in the masses, the electrons fol-
low adiabatically the motion of the ions. For more de-
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tails refer to the original paper and also, for example,
to Refs. [2,3].

An alternative approach to AIMD is performed by
explicitly minimizing the electronic free energy func-
tional at each time step. This minimization is more ex-
pensive than a single CP step, however, one is not lim-
ited in the length of the time step by the electronic mass
and therefore the cost of the step is compensated by the
possibility of making longer time steps. Moreover, the
electronic minimizations become less expensive than
on the first step if one is able to provide a good guess
for the charge density and/or the wave functions. This
can be done using multi-linear extrapolation. Although
this is straightforward to apply to the charge, some
care is needed for the wave functions, since they may
be multiplied by an arbitrary phase factor or ordered in
different ways in two contiguous steps. The solution to
this problem as been proposed by by Arias, Payne and
Joannopoulos [4] and by Mead [5]. Essentially, be-
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fore the extrapolation is performed, the two subspaces
{Ψn,k(t)} and {Ψn,k(t − dt)} are “aligned” so that∑

n,k ||Ψn,k(t)−Ψn,k(t−dt)|| is minimum. Then, the
wave functions at time step t+ dt may be written as

Ψn,k(t+ dt)=Ψn,k(t) + α[Ψn,k(t)− Ψn,k(t− dt)]

+β[Ψn,k(t− dt)− Ψn,k(t− 2dt)]
(1)

and, analogously, the charge

ρ(t+ dt) = ρ(t) + α[ρ(t)− ρ(t− dt)]

+β[ρ(t− dt)− ρ(t− 2dt)] . (2)

α and β are calculated as proposed in Ref. [4], i.e.
so that

∑
i ||r′i − ri(t+ dt)||2 is minimum, where

r′i = ri(t) + α[ri(t)− ri(t− dt)]

+β[ri(t− dt)− ri(t− 2dt)] , (3)

and the sum runs over all the atoms in the unit cell.
In other words, Ψn,k(t + dt) and ρ(t + dt) are the
best quadratic extrapolations for the set of positions
r′i , which are therefore made as close as possible to
ri(t+ dt). It is straightforward to see that

α =
b1a22 − b2a12

detA
, β =

b2a11 − b2a21

detA
, (4)

where

a11 =
∑
i

|ri(t)− ri(t− dt)|2 ,

a12 =
∑
i

[ri(t)− ri(t− dt)]

· [ri(t− dt)− ri(t− 2dt)] ,

a22 =
∑
i

|ri(t− dt)− ri(t− 2dt)|2 ,

a21 = a12 ,

b1 = −
∑
i

[ri(t)− ri(t+ dt)]

· [ri(t)− ri(t− dt)] ,

b2 = −
∑
i

[ri(t)− ri(t+ dt)]

· [ri(t− dt)− ri(t− 2dt)] ,

and the sums run over all the atoms in the unit cell.
The algorithm to extrapolate the charge density pro-

posed in this report is based on the fact that for many

systems the charge density is mostly determined by the
superposition of the atomic charge densities. There-
fore, writing

ρ(t) = ρat(t) + δρ(t) , (5)

where ρ(t) is the self-consistent charge density at time
t, and ρat(t) is the sum of the atomic charge densi-
ties 2 ; the charge at time t+ dt is simply extrapolated
in the following way:

ρ(t+ dt) = ρat(t+ dt) + δρ(t+ dt) , (6)

where

δρ(t+ dt) = δρ(t) + α[δρ(t)− δρ(t− dt)]

+β[δρ(t− dt)− δρ(t− 2dt)] . (7)

The atomic charge density can be calculated exactly
and cheaply, and the scheme proposed here above is
straightforward to implement. It has to be noted that
the key point of the algorithm is not the use of the
atomic charge alone, although this is the main con-
tribution to the total electronic charge. An extrapola-
tion based only on the atomic charge, i.e. ρ(t+dt) =
ρ(t)−ρat(t)+ρat(t+dt) is quite unsatisfactory, being
more or less of the same quality (if not worse) than
that obtained using Eq. (2). The crucial improvement
is the combination of the atomic charge and the extrap-
olation of the difference δρ, as described by Eqs. (5),
(6) and (7).

A comparison between the scheme of Eq. (2) and
that of Eq. (5) for a simulation of liquid iron at 5000
K and density ρion = 13.3 g/cm3 will be shown.
These are probably the thermodynamic conditions of
the Earth’s core [6]. The number of iron atoms used
is 64. For this calculations the parallel version of the
VASP code, running on 64 processors of the Edin-
burgh Cray/T3D parallel machine, has been used. The
calculations are performed using a plane-wave basis
set. The electron1ion interaction is described by ultra-
soft pseudo-potentials [7,8] and the minimization of
the electronic free energy is performed using an effi-
cient iterative matrix-diagonalization scheme [9]. The
integration of the equation of motion is performed
using the Verlet algorithm [10], using a time step

2 The sum of the atomic charge densities, ρat(t), is calculated
imposing the appropriate boundary conditions. In the present case
these are the periodic boundary conditions of the simulation cell.
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of 1 fs. The temperature is controlled using a Nosè
thermostat [11]. The total electronic free energy per
atom is required to be self-consistent within 1.5 ×
10−7 eV/atom, in order to keep the drift of the con-
stant of motion less than 100 K/ps. At each time
step the wave functions are quadratically extrapolated
after a “subspace alignment” [4] and the electronic
charge density is extrapolated as proposed in Eq. (6)
or according to Eq. (2). In Fig. 1 the CPU time per
time step for the two possible extrapolation schemes
is displayed. The first part of the simulation has been
done using the extrapolation scheme of Eq. (2), then
the scheme of Eq. (6) has been introduced. The total
length of the simulation is 1 ps, and it is only the final
part of a longer simulation of ≈ 7 ps. Since each run
is limited in length by imposed maximum CPU time
limit, the total simulation is a concatenation of many
short runs. The sharp peaks in the figure correspond to
the first step of each run. The higher ones (≈ 300 s)
correspond to those runs where random starting wave
functions have been used, the lower (≈ 200 s) cor-
respond to runs where the starting wave functions are
read from a file written by the previous run, and for
this reason the convergence is faster. It is easy to rec-
ognize the point of the simulation where the extrapo-
lation of Eq. (2) has been substituted by the one of
Eq. (6), this is at about 0.55 ps from the beginning.
The average simulation time per step has gone from
≈ 170 to ≈ 100 s. Moreover, the charge extrapolation
scheme only affects the self-consistent cycle, and not
the force and stress tensor calculations, that took≈ 10
and ≈ 20 s, respectively. The data shown in Fig. 1 are
inclusive of force and stress tensor calculation too.

To summarize, a new simple algorithm to extrapo-
late the charge density in ab initio molecular dynamics
runs has been presented. The charge at the next step
is the sum of the atomic charge density and the ex-
trapolation of the difference between the atomic and
the self-consistent charge density. This extrapolation
scheme has been tested on a 64 atom liquid iron simu-
lation under Earth’s core conditions, the CPU time has
been compared to that of simulation done with a sim-
ple quadratic extrapolation of the whole charge den-
sity. The new scheme results in a significant reduction
of computer time.

Fig. 1. CPU time per iteration as a function of the time step. The
first 550 steps are performed using the extrapolation algorithm of
Eq. (2), then the scheme proposed in Eq. (6) is introduced. The
sharp peaks correspond the first iteration of each run (see text).
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