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ABSTRACT
The accurate treatment of noncovalent interactions is necessary to model a wide range of applications, from molecular crystals to surface
catalysts to aqueous solutions and many more. Quantum diffusion Monte Carlo (DMC) and coupled cluster theory with single, double,
and perturbative triple excitations [CCSD(T)] are considered two widely trusted methods for treating noncovalent interactions. However,
while they have been well-validated for small molecules, recent work has indicated that these two methods can disagree by more than 7.5
kcal/mol for larger systems. The origin of this discrepancy remains unknown. Moreover, the lack of systematic comparisons, particularly
for medium-sized complexes, has made it difficult to identify which systems may be prone to such disagreements and the potential scale
of these differences. In this work, we leverage the latest developments in DMC to compute interaction energies for the entire S66 dataset,
containing 66 medium-sized complexes with a balanced representation of dispersion and electrostatic interactions. Comparison to previous
CCSD(T) references reveals systematic trends, with DMC predicting stronger binding than CCSD(T) for electrostatic-dominated systems,
while the binding becomes weaker for dispersion-dominated systems. We show that the relative strength of this discrepancy is correlated to
the ratio of electrostatic and dispersion interactions, as obtained from energy decomposition analysis methods. Finally, we have pinpointed
model systems: the hydrogen-bonded acetic acid dimer (ID 20) and dispersion-dominated uracil–cyclopentane dimer (ID 42), where these
discrepancies are particularly prominent. These systems offer cost-effective benchmarks to guide future developments in DMC, CCSD(T), as
well as the wider electronic structure theory community.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0254021

I. INTRODUCTION

Noncovalent interactions play a crucial role in many areas
of science. These interactions govern the structure of molecular
crystals1 (e.g., in pharmaceutical drugs) and biomolecules2 such as
DNA and proteins and are relevant to supramolecular3 science and
nanotechnology.4,5 They also underlie important processes across
chemistry and biology, from protein–ligand binding6 to catalytic
reactions, both on the surface7 and in solution.3 Understanding

and unlocking new processes for these applications will increas-
ingly rely on accurate computational modeling tools that can treat
noncovalent interactions.8

Two methods of choice for modeling noncovalent interac-
tions are quantum diffusion Monte Carlo9 (DMC) and coupled
cluster theory10 with single, double, and perturbative triple excita-
tions [CCSD(T)]. While these methods may not be as affordable
as density functional theory11 (DFT), the reference data they pro-
vide are pivotal for benchmarking and parametrizing the density
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functional approximations (DFAs) necessary for practical routine
simulations. For example, the local density approximation (LDA)
and many extensions build upon a DMC-based parametrization of
the correlation energy,12 while CCSD(T) interaction energy datasets
have helped aid in the development of many modern dispersion
corrections.13–16 In particular, the applicability of these methods
to larger systems has rapidly expanded in recent years, arising
from computer hardware improvements and, more importantly,
algorithmic/methodological developments to both DMC17–26 and
CCSD(T).27–34

DMC and CCSD(T) solve the Schrödinger equation to model
the systems with distinct approaches and corresponding approxi-
mations. Despite these differences, there are many examples where
DMC and CCSD(T) have come into alignment. For example, in
addition to small molecules,35–37 agreement has been obtained
for graphene bilayer binding energies,38 molecular crystal lattice
energies,39–41 molecule–surface interactions,42–47 and vacancy for-
mation energies.48 Recently, this agreement has been shown to
start to falter49–52 for large dispersion-bound molecules, with differ-
ences as large as 7.5 kcal/mol for a buckyball-ring (C60@[6]CPPA)
complex.

The origin of the discrepancy between DMC and CCSD(T) for
large dispersion-bound molecules is a topic of current debate,50,53–55

particularly on the validity of the perturbative triples (T) contri-
bution in CCSD(T). Schäfer et al.50 have suggested that part of
this discrepancy arises from missing contributions in (T) that can
be accounted for by the (cT) approach. In addition, Semidalas
et al.56 have reported non-trivial discrepancies between CCSD(T)
and post-CCSD(T) methods such as CCSDT(Q). Conversely, Lam-
bie et al.54 have found that CCSD(T) does not differ significantly
from CCSDT(Q) using the Pariser–Parr–Pople (PPP) model57–59

for large conjugated systems. Similarly, Fishman et al.53 and Lao55

report only a slight overbinding of CCSD(T) against CCSDT(Q) that
cannot explain the discrepancy with DMC.

Understanding these discrepancies between DMC and
CCSD(T) for large molecules requires cross-validating these
methods across systematic datasets, particularly those involving
medium- to large-sized molecules,51,60,61 which sample a range
of noncovalent interactions. While DMC and CCSD(T) have
both been compared (to great agreement) for the A2462 and
S2263 datasets of small molecular complexes, DMC has not been
frequently applied to study medium-sized datasets. In particular, it
has not been used to study the S66 dataset,64 a compilation of 66
dimers that probes the two major types of noncovalent interactions:
dispersion and hydrogen-bonding together with those of mixed
character. As well as covering a range of interactions, many of
the molecules considered form the building blocks for larger
biomolecules along different binding configurations. Furthermore,
the parallel-displaced benzene dimer65 is included in this set of
complexes, making it an interesting modeling challenge. Such a
dataset has been pivotal toward benchmarking66–74 DFAs in DFT as
well as lower-level approximations to wave-function methods75–81

and even machine-learning models.82,83

In this work, we leverage the latest developments in DMC
to compute interaction energies for the entire S66 dataset. When
compared to CCSD(T) estimates (taken from the literature), we
reveal a consistent weaker binding of dispersion interactions and
consistent stronger binding of electrostatic interactions in DMC.

In particular, we show that their differences are correlated to the
ratio of electrostatic and dispersive interactions within the system.
The discrepancies in dispersion-dominated systems are shown to
be reduced when utilizing an (empirically fitted) CCSD(cT) formu-
lation,50 although notable differences remain. We identify specific
systems with well-defined differences between DMC and CCSD(T)
that can serve as model systems for testing future developments in
both methods, setting the stage toward resolving their discrepancies.

II. METHODS
A. Diffusion Monte Carlo

The DMC interaction energies of the S6664 dataset are com-
puted as

ΔEint. = Edimer − Emon. 1 − Emon. 2, (1)

where Edimer is the total energy of the dimer and Emon. 1, Emon. 2 are
the total energies of the constituent monomers. In the S66 dataset,
these monomers are kept fixed to their geometry in the dimer, which
is in general different from their equilibrium geometry. In this work,
we first computed the energies of the monomers with DMC at a cho-
sen reference geometry. Subsequently, we added the deformation
energy, that is, the energy difference between the geometry of the
monomer in the dimer and against this reference geometry using
CCSD(T). We provide further details on these calculations in Sec.
S2.1 of the supplementary material and show for a subset of the S66
complexes that differences between DMC and CCSD(T) predictions
of the deformation energies are within ∼0.12 kcal/mol.

A detailed description of the DMC method can be found
in Ref. 9. In this work, we compute fixed-node DMC interaction
energies by using the CASINO code.23 We use energy-consistent
correlated electron pseudopotentials84 (eCEPP) with the determi-
nant locality approximation (DLA).22 The trial wavefunctions were
of the Slater–Jastrow type with single Slater determinants, and the
single-particle orbitals obtained from DFT local-density approxi-
mation (LDA) plane-wave calculations performed with PWscf85,86

using an energy cutoff of 600 Ry and re-expanded in terms of B-
splines.87 The Jastrow factor included a two-body electron–electron
(e–e) term, two-body electron–nucleus (e–n) terms, and three-body
electron–electron–nucleus (e–e–n) terms. The variational para-
meters of the Jastrow have been optimized by minimizing the
variance of each system. The final DMC estimates of ΔEint. were
extrapolated toward the zero time-step limit (τ → 0) by making
a cubic fit to a series of time-step estimates from 0.1 au down to
0.003 au. We estimate errors that capture both the stochastic errors
in the fit as well as the errors in the cubic fit due to the changing
behavior near the zero time-step limit. To do this, we make a linear
fit on a subset of time steps below (and including) 0.02 au and cal-
culate the difference of the extrapolated estimates from the linear fit
against the original cubic fit. The final error estimate is taken to be
the larger of the stochastic errors of the cubic fit or the difference
between the linear fit and cubic fit, as discussed in Sec. S2.4 of the
supplementary material.

The parameters chosen within the present work follow from
previous DMC calculations for large molecules in Ref. 49 as well as
molecular crystals in Refs. 40 and 41. Within these studies of non-
covalent interactions, the LDA trial wavefunction was shown to be
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valid, either by comparison to experiments or when using trial wave-
functions with other DFAs. For the case of the AcOH dimer system
(ID 20), we have performed our validation tests on the choice of trial
wavefunction as well as localization approximation in Sec. S7 of the
supplementary material.

B. Coupled cluster theory
Several CCSD(T) estimates64,75,77,79,80,88–92 of the S66 inter-

action energies are available in the literature. Here, we compare
DMC to the average of three recent CCSD(T) calculations:75,89,92

the revised calculations from Řezáč et al.75 the “SILVER” esti-
mates from Kesharwani et al.89 and the “14k-GOLD” estimates from
Nagy et al.92 A brief description of the three different CCSD(T)
calculations is reported in Sec. S3 of the supplementary material.93

Schäfer et al.50 have recently demonstrated that there exists an
empirical relationship for dispersion-dominated complexes between
the (cT) and the (T) correlation contributions to the total energy
using the CCSD and MP2 correlation energies. The resulting (cT)-fit
is of the form,

(T)
( cT) − fit

= a + b ⋅
MP2 corr.
CCSD corr.

, (2)

where a and b were parameters fitted from comparing CCSD(cT)
to CCSD(T) calculations for a set of dispersion-bound complexes.
We have recomputed the CCSD(cT)-fit values from the original
CCSD(T) “SILVER” estimates from Kesharwani et al., adding the
difference between (cT) and (T) to the final (averaged) CCSD(T)
estimates, as given in Sec. S4 of the supplementary material.

III. RESULTS AND DISCUSSION
We report the final DMC estimates for the entire S66 dataset

in Figs. 1–3. This dataset comprises a diverse range of interactions,
and we have separated the systems according to the original S66
categories of hydrogen-bonded, dispersion-bonded, and “mixed”-
character systems in Figs. 1–3, respectively. The corresponding
dimer complexes are visualized in Fig. S1 of the supplementary
material. We report the DMC estimate of the interaction energy
ΔEint. above the label of each S66 complex. In all cases, the errors
on ΔEint. estimates are below 0.12 kcal/mol, with the majority below
0.10 kcal/mol, facilitating reliable comparisons to CCSD(T).

The strength of ΔEint. varies significantly across the systems,
from as large as −20.17 ± 0.07 kcal/mol for complex 20 (acetic
acid dimer) to as weak as −1.11 ± 0.06 kcal/mol for complex 30
(benzene–ethene dimer), being stronger in the H-bonded sys-
tems. With gray crosses, we plot the difference between DMC and
CCSD(T) estimates (as described in the Methods) for the three
classes of interactions. We use DMC as the reference (i.e., zero),
and plot blue vertical bars along the horizontal zero axis repre-
senting the errors in the DMC estimates. There is overall excellent
agreement, with a mean absolute deviation (MAD) of 0.21 kcal/mol
across the entire S66 dataset. We find systematic trends in the dif-
ferences between CCSD(T) and DMC, with CCSD(T) predicting
weaker binding compared to DMC for hydrogen-bonded systems in
Fig. 1, with an MAD of ∼0.24 kcal/mol, while predicting a stronger
binding for dispersion-dominated systems in Fig. 2, with an MAD
of ∼0.24 kcal/mol. For the “mixed” character systems in Fig. 3, the
MAD is lower at 0.14 kcal/mol.

The stronger binding of DMC over CCSD(T) has not been
(systematically) reported before, with the acetic acid dimer (ID 20)

FIG. 1. Comparison between DMC interaction energies ΔEint. calculated in the present work against CCSD(T) for a subset of systems in the S66 dataset with hydrogen
bonds. The CCSD(T) estimate is taken as an average from three previous calculations,75,89,92 with the corresponding standard deviation as an error. The deviation of
CCSD(T) from the DMC is plotted with gray crosses, with the statistical errors (corresponding to one standard deviation σ). The complex ID and label are provided below
the x-axis, while the number above each x-axis tick represents the DMC ΔEint. estimate, with the error on the reported digit given in parentheses. The uracil dimer (ID 17)
is in its base-pair (BP) configuration.
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FIG. 2. Comparison between DMC interaction energies ΔEint. calculated in the present work against CCSD(T) for a subset of systems in the S66 dataset dominated by
dispersion interactions. The first six dimers are π − π stacked. Refer to the caption of Fig. 1 for the plot details. The CCSD(T) estimate is taken as an average from three
previous calculations,75,89,92 with the corresponding standard deviation as an error. Additional CCSD(cT)-fit estimates are reported with golden crosses. These are calculated
by scaling the CCSD(T) estimates based on their MP2 and CCSD contributions using the approach described in Ref. 50.

FIG. 3. Comparison between DMC interaction energies ΔEint. calculated in the present work and CCSD(T) for a subset of systems in the S66 dataset with mixed bonding
character. The systems consist of T-shaped (TS) aromatic ring complexes as well as X–H⋅ ⋅ ⋅π (X = C,O,N) interactions. Refer to the caption of Fig. 1 for the plot details.
The CCSD(T) estimate is taken as an average from three previous calculations,75,89,92 with the corresponding standard deviation as an error.

J. Chem. Phys. 162, 144107 (2025); doi: 10.1063/5.0254021 162, 144107-4

Published under an exclusive license by AIP Publishing

 14 April 2025 14:50:46

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

showing the maximum deviation of 0.8 kcal/mol across all S66
systems. Within Sec. S7 of the supplementary material, we have con-
firmed that the computed ΔEint. estimate (−20.17 ± 0.07 kcal/mol)
does not depend on the chosen pseudopotential (eCEPP), localiza-
tion scheme (DLA), or trial wavefunction (LDA). For example, we
have also performed all-electron calculations, giving an estimate of
−20.32 ± 0.12 kcal/mol. We have also performed tests using PBE and
PBE0 trial wavefunctions, showing that the DMC ΔEint. has a negligi-
ble (< 0.15 kcal/mol) dependence on the nodal surface for the DFAs
considered. Furthermore, we also computed estimates for two other
localization schemes: T-move and determinant localization T-move,
both of which were within the statistical uncertainties of our original
estimate. It should be noted that while the absolute value of the dif-
ference can be significant for some hydrogen-bonded systems, the
relative difference (normalized against the DMC ΔEint.) is signifi-
cantly smaller, with a mean relative difference of 2.45% compared
to 8.21% for the dispersion-dominated systems (see Sec. S6 of the
supplementary material).

The weaker binding of DMC over CCSD(T) for dispersion-
dominated systems is now relatively well-documented,49,50 and
there is evidence that it can be improved by replacing the pertur-
bative triples (T) contribution with the recent (cT)32 contribution.
We plot the difference between an empirically CCSD(cT)-fit
formulation as yellow crosses for the dispersion-dominated systems.
In all cases, CCSD(cT) has weaker binding than CCSD(T), leaning
closer toward DMC, leading to an MAD of 0.09 kcal/mol and a
mean relative difference of 3.44%. However, this does not fully
resolve the discrepancies across all of the dispersion systems, with a
significant discrepancy of ∼ 0.5 kcal/mol remaining for the uracil-
cyclopentane dimer (ID 42). Such a significant discrepancy makes
this a worthwhile system to investigate further and could give clues
on remaining discrepancies between DMC and CCSD(T) observed
in Ref. 50. The analysis reported above highlights an important
outcome of this work: the identification of smaller, simpler systems
that show notable discrepancies between DMC and coupled cluster
methods. Specifically, we found a discrepancy of approximately
∼0.8 kcal/mol for the hydrogen-bonded acetic acid dimer
(ID 20) and ∼0.5 kcal/mol for the dispersion-dominated
uracil–cyclopentane dimer (ID 42), which contain 64 and 98
(total) electrons, respectively. These medium-sized systems repre-
sent an almost tenfold reduction in electron count compared to
the larger C60@[6]CPPA buckyball-ring system (672 electrons)
studied in Ref. 49. Thus, they might offer practical, cost-effective
models for further exploring the discrepancy between DMC and
coupled-cluster.

We now focus on the difference between DMC and CCSD(T)
as a function of the dispersion and electrostatic contributions to
the interaction energy. In particular, we find that the relative dif-
ferences between DMC and CCSD(T) for each system within the
S66 dataset can be correlated to the relative strength of the dis-
persion and electrostatic interactions that make up its ΔEint.. We
used the Symmetry Adapted Perturbation Theory (SAPT) calcula-
tions (at the sSAPT0 level with the jun-cc-pVDZ basis set95) from
Burns et al.,94 which decomposes ΔEint. into contributions from
electrostatics (ELST), exchange, induction, and dispersion (DISP).
Notably, we show in Fig. 4 that there is a strong linear trend
(R2
= 0.78) between the natural logarithm of the ELST and DISP

contributions, log ( ELST
DISP ), and the relative difference (in %) between

FIG. 4. Error decomposition analysis. We report the difference between DMC and
CCSD(T) relative to the DMC magnitude, that is, (EDMC − ECCSD(T))/∣EDMC∣,
as a function of the natural logarithm of the electrostatic (ELST) to dispersion
(DISP) ratio contribution to the binding energy. The ELST to DISP ratio is deter-
mined from the SAPT analysis from Ref. 94. The color code is red for H-bonded
systems (ID from 1 to 23), blue for dispersion-dominated systems (ID from 24 to
46), and green for mixed systems (ID from 47 to 66).

CCSD(T) and DMC. In Sec. S9 of the supplementary material, we
show that this strong linear trend remains at the more sophisticated
SAPT2+(3) (CCD)/aug-cc-pVTZ level.83 This analysis confirms our
prior observations on the trends between DMC and CCSD(T).
For example, the more dominant the DISP contribution to ΔEint.
(i.e., a more negative log ( ELST

DISP )), the more CCSD(T) is found to
underbind with respect to DMC. Similarly, the stronger the ELST
contribution to ΔEint. (i.e., a more positive log ( ELST

DISP )), the more
CCSD(T) is found to overbind with respect to DMC. We expect
that this cheap descriptor can be used in the future to identify more
challenging systems with larger discrepancies between DMC and
CCSD(T).

Finally, we discuss briefly the potential origins of the observed
discrepancies between DMC and CCSD(T) based on the current lit-
erature. For H-bonded systems, CCSDT(Q) estimates are available
for the A24 dataset36,62—a set of ΔEint. for small dimer complexes.
Nakano et al.96 have performed DMC calculations for the entire
A24 dataset, where there is a notable discrepancy of 0.26 ± 0.07 and
0.34 ± 0.07 kcal/mol for the water—ammonia and HCN dimer com-
plexes, in line with our observation of stronger binding in DMC.
The CCSDT(Q) references, albeit at small basis sets, find negligible
(< 0.01 kcal/mol) changes relative to CCSD(T). For dispersion-
bound systems, there exist CCSDT(Q) estimates for the parallel-
displaced (PD) benzene dimer by Semidalas et al.56 and by Kar-
ton and Martin,97 which report differences to CCSD(T) of −0.085
and −0.058 kcal/mol, respectively, using small truncated double-
zeta quality basis sets. The reported difference between DMC and
CCSD(T) is −0.37 ± 0.08 kcal/mol for this system, which indicates
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that the majority of this difference is not covered when going
to CCSDT(Q). For both H-bonded and dispersion-bound systems
(as well as those of mixed character), the observed differences
could arise either from higher-order excitations and larger basis
sets needed from coupled cluster theory or biases in the FN-DMC
evaluations, likely coming from the fixed-node approximation.

IV. CONCLUSIONS
To summarize, we have computed highly accurate estimates

for the S66 dataset—one of the most widely used databases for
noncovalent interactions in biological and organic molecules—with
fixed-node diffusion quantum Monte Carlo. These estimates have
provided new insights into recent discussions on its discrepancies
with another widely trusted method: coupled cluster theory with
single, double, and perturbative triple excitations [CCSD(T)]. Our
data show systematic trends, with DMC predicting stronger binding
in hydrogen-bonded systems than CCSD(T) and weaker binding in
dispersion-dominated systems. We show that there is a correlation
between the relative strength of these discrepancies with the nature
of the interaction, specifically the relative ratio of the electrostatic
and dispersion contributions to the interaction energy as provided
by previous Symmetry Adapted Perturbation Theory (SAPT) calcu-
lations.94 In addition, we show that the discrepancy between DMC
and CCSD(T) on dispersion-dominated systems can be reduced
using a recently proposed CCSD(cT) formulation, albeit with still
significant remaining differences. While this work does not identify
the origin of the disagreement between DMC and CCSD(T), it has
identified the type of interactions where it is particularly prevalent,
and importantly, we have identified model systems within the S66
dataset where these errors are prominent. These results have strong
implications for the electronic structure theory community, address-
ing the knowledge gap on the trends of DMC interaction energies for
noncovalent molecular complexes. Furthermore, the accurate refer-
ence data produced within this work is expected to benefit the wider
materials modeling community, being instrumental for benchmark-
ing applications ranging from the development of machine-learned
interatomic potentials to crystal structure prediction, drug design,
and renewable energy.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the DMC calcu-
lations, comprising the convergence of the calculations with respect
to the time step, the influence of the choice of the monomer
geometry on the dimer interaction energy, as well as tests on the
pseudopotential localization error and the Jastrow optimization.
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