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ABSTRACT
Fixed-node diffusion quantum Monte Carlo (FN-DMC) is a widely trusted many-body method for solving the Schrödinger equation, known
for its reliable predictions of material and molecular properties. Furthermore, its excellent scalability with system complexity and near-perfect
utilization of computational power make FN-DMC ideally positioned to leverage new advances in computing to address increasingly complex
scientific problems. Even though the method is widely used as a computational gold standard, reproducibility across the numerous FN-DMC
code implementations has yet to be demonstrated. This difficulty stems from the diverse array of DMC algorithms and trial wave functions,
compounded by the method’s inherent stochastic nature. This study represents a community-wide effort to assess the reproducibility of the
method, affirming that yes, FN-DMC is reproducible (when handled with care). Using the water–methane dimer as the canonical test case, we
compare results from eleven different FN-DMC codes and show that the approximations to treat the non-locality of pseudopotentials are the
primary source of the discrepancies between them. In particular, we demonstrate that, for the same choice of determinantal component in the
trial wave function, reliable and reproducible predictions can be achieved by employing the T-move, the determinant locality approximation,
or the determinant T-move schemes, while the older locality approximation leads to considerable variability in results. These findings demon-
strate that, with appropriate choices of algorithmic details, fixed-node DMC is reproducible across diverse community codes—highlighting
the maturity and robustness of the method as a tool for open and reliable computational science.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0272974

I. INTRODUCTION

The credibility of a scientific result hinges on its reproducibil-
ity; independent and equivalent experiments should lead to the
same conclusion. Achieving reproducibility is, however, not easy.
There are several historical examples from both social and nat-
ural sciences1–4 that have served to illustrate its challenges, and
substantial ongoing effort is dedicated to addressing this so-called
“reproducibility crisis.”5,6 The problem of reproducibility is partic-
ularly pertinent within computational experiments in the hard sci-
ences, where different computational codes should ideally lead to the
same prediction. Nonetheless, reproducibility can be compromised
by small algorithmic differences, undocumented approximations,
and undetected bugs in the simulation software or its dependen-
cies (numerical libraries, compilers, etc.). Determining the source
of discrepancies can be difficult, e.g., due to restricted source code
availability.7–9

Here, we consider reproducibility in the context of the many-
electron Schrödinger equation,10 fundamental to the quantum
mechanical description of matter, and its countless applications
to physics, chemistry, biology, engineering, and materials science.
In this context, the topic of reproducibility has been recently
addressed11,12 in two seminal papers for density functional theory
(DFT)—the work-horse of materials science. However, despite its
widespread success, DFT often falls short of providing the necessary
quantitative and sometimes qualitative description of key complex
systems. Fortunately, advances in hardware, algorithms, and funda-
mental theories are paving the way for the routine application of
methods beyond the accuracy of DFT. The scope of these meth-
ods has recently broadened significantly beyond simple benchmarks
toward an extensive description of molecules, surfaces, and con-
densed phases13–18 that can include complex dynamics facilitated by
machine learning potentials.19–26

Several quantum many-body approaches have been developed
as alternatives to DFT for electronic structure calculations, par-
ticularly in systems where strong correlation or high accuracy is
essential. Methods such as GW,27,28 dynamical mean-field theory

(DMFT),29,30 coupled cluster theory,31,32 and auxiliary-field quan-
tum Monte Carlo (AFQMC)33–36 have been successfully applied
to both molecular and condensed-phase systems. More recently,
full configuration interaction quantum Monte Carlo (FCIQMC)37,38

and neural network-based quantum Monte Carlo39–41 methods have
also gained attention. However, among the quantum Monte Carlo
methods, real-space fixed-node diffusion Monte Carlo (FN-DMC)
remains the most widely used approach in materials science and
quantum chemistry, offering a compelling balance between accu-
racy, scalability, and methodological maturity. Its use of explicitly
correlated many-body wave functions and its favorable scaling with
system size make it particularly attractive for benchmarking and sys-
tematic studies. For these reasons, this work focuses on FN-DMC
and its reproducibility across a variety of independently developed
community codes.

FN-DMC is an accurate state-of-the-art computational
approach for solving the Schrödinger equation for a variety of
systems, including molecules, solids, and surfaces. This method
obtains the electronic ground-state by performing an imaginary-
time evolution from a starting trial wave function ΨT(R). Within
the Born–Oppenheimer approximation, R consists of the real space
positions of all the electrons. Typically, ΨT(R) is the product of
an antisymmetric function (e.g., a Slater determinant or a sum of
Slater determinants42) and a symmetric, positive function, called
the Jastrow factor.43 The Jastrow factor is explicitly dependent on
electron–electron and electron–nucleus distances and is able to
directly capture a significant fraction of the electronic correlation.

The FN-DMC projection is achieved with an ensemble of elec-
tron configurations, known as walkers, which evolve according to
the imaginary-time Green function,44 yielding a drift-diffusion pro-
cess over discrete imaginary time steps, τ, to stochastically sample
the ground-state wave function; the stochastic uncertainty is then
inversely proportional to the square root of the number of samples.
The main approximation in FN-DMC is that the fixed-node wave
function is constrained to have the same nodal surface as ΨT(R)
in order to avoid the so-called fermion sign problem .45 This intro-
duces a variational error in the computed ground state energy. For
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single-reference systems, this error is typically small even for simple
single determinant trial wave functions built from DFT. FN-DMC
exhibits almost perfect efficiency on modern supercomputers46–48

and a cubic scaling per Monte Carlo step with system size,49 making
it often the only computationally affordable method beyond DFT for
treating large condensed phase systems with more than 100 atoms.
Over time, numerous algorithmic improvements have enhanced the
accuracy, efficiency, and stability of FN-DMC. These advances have
enabled the successful application of FN-DMC to a wide array of
problems across the natural sciences, including the calculation of
the energies of condensed phases and large molecules,14,15,18,50–52

the binding of molecules on surfaces,17,53–58 phase diagrams,20,59–65

reaction barrier heights,66–70 spin-polarized uniform electron gas,71

two-dimensional electron liquid,72 lithium systems,73 electronic and
optical properties of delafossites,74 defect formation energies,75,76

calculation of energy derivatives,77–79 radical stabilization ener-
gies,80 excited states,81–90 training of quantum machine learn-
ing models,91 electron–positron interactions,92 polymorphism,93–95

electronic bandgaps,96 Landau-level mixing in quantum dots,97

localization in quantum dots and quantum wires,98–101 nearly exact
density functional quantities,102,103 and more. Recent progress in the
use of neural networks as trial wave functions for FN-DMC104–106

has served to boost its accuracy and potential future uptake even
further.

There are numerous QMC codes currently used for research,
many of which have been under development for over a decade.
Each makes somewhat different algorithmic and implementation
choices, such as the use of different Jastrow factors and methods
for evaluating single-particle orbitals. In this study, we compare
eleven such codes and provide details of the algorithmic and imple-
mentation choices in Sec. S8 of the supplementary material. This
diversity raises open questions on the reproducibility of FN-DMC.
If FN-DMC is to be widely accepted as a highly accurate reference
method, it is important that consistent results can be obtained from
these different FN-DMC codes. With this goal in mind, the present
work represents a collaborative effort among the users and devel-
opers of eleven distinct FN-DMC codes to rigorously assess the
reproducibility of FN-DMC.

A key obstacle to the reproducibility of FN-DMC comes from
the use of non-local pseudopotentials (NLPPs), which increase
the efficiency of the method for systems with heavy atoms.107–109

While all-electron FN-DMC calculations are possible for light
atoms, the computational cost increases steeply with atomic num-
ber, scaling approximately as O(Zα

) with α between 5.5 and 6.5,
depending on the method details.107,108,110 As a result, pseudopo-
tentials are essential for practical FN-DMC applications involv-
ing heavier elements. NLPPs allow one to solve the Schrödinger
equation solely for the valence electrons by substituting the full
local nuclear potential with a smooth non-local potential near the
nuclei. In general, NLPPs hinder reproducibility in electronic struc-
ture methods, as NLPPs constructed in different ways can lead to
somewhat different predictions. NLPPs are a potential source of
non-reproducibility in FN-DMC even when the same NLPPs are
used, because non-local pseudopotential operators create an addi-
tional sign problem in the projector beyond the one that is always
present for fermionic calculations. To avoid this sign problem,
these operators must be “localized,”111 or at least partially local-
ized,112 on a wave-function. A natural choice is to localize them

on the trial wave-function ΨT(R), introducing a dependence on
both the determinantal and the Jastrow components of the wave
function. Since the Jastrow factor is different in the different codes
and its parameters are stochastically optimized, yielding possible
noise and reproducibility issues, some authors choose to local-
ize only on the determinantal component.108,113–116 This removes
the dependence on the Jastrow factor at the cost of losing the
desirable property that the treatment of the pseudopotential is
exact in the limit of exact ΨT. To summarize, there are currently
four localization schemes: the locality approximation (LA),111,117

the T-move (TM) approximation,112,118,119 the determinant local-
ity approximation (DLA),108,113–116 and the determinant T-move
(DTM) approximation.116 These four schemes (LA, TM, DLA, and
DTM) result in somewhat different projected wave-functions and,
therefore, different total energies of physical systems.

As computational science matures, reproducibility and trans-
parency are increasingly recognized as critical features of robust
methodology. FN-DMC, while a powerful and widely used method,
has historically lacked comprehensive cross-code validation. This
work takes a step toward establishing that foundation by system-
atically comparing the four localization algorithms across eleven
FN-DMC codes (named alphabetically): Amolqc, CASINO,46

CHAMP-EU,120 CHAMP-US,121 CMQMC, PyQMC,122

QMC=Chem,123,124 QMCPACK,48,125 QMeCha,126 QWalk,127

and TurboRVB.47,128 Different forms of the Jastrow factor are
necessarily tested as part of this evaluation.

We specifically consider the cases of the total energies of
a methane molecule, a water molecule, and a methane–water
dimer, and the corresponding interaction energy. We selected
the water–methane dimer as a test case not only for its modest
size—which allows tight statistical convergence—but also because
it spans two different interaction regimes. It involves both weak
intermolecular interactions (with a binding of only 27 meV) and
intramolecular energetics, enabling a sensitive probe of algorithmic
consistency across codes. In addition, it is a prototype of more com-
plex systems, such as methane clathrates, important for gas storage
and transportation. We show that consensus across all eleven codes
can be made when utilizing the TM, DLA, and DTM approxima-
tions, particularly following careful control of the discretized time
step.

II. RESULTS AND DISCUSSION
First, we compute the interaction energy of the methane–water

dimer using the eleven codes for the four different localiza-
tion schemes (where available). The interaction energy of the
methane–water dimer,

Eint = E[methane–water] − E[methane] − E[water], (1)

is defined as the difference between the energy of the complex,
E[methane–water], minus the sum of the energies of the isolated
water E[water] and methane E[methane] monomers (see Sec. III
for details on the geometries and the DMC simulation setup). All
the interaction energies are extrapolated to the zero time step limit
according to the procedure described in the supplementary material
and in Ref. 129.

We note that two results are reported for the TurboRVB code,
namely, TurboRVB (DMC) and TurboRVB (LRDMC). TurboRVB
(DMC) refers to the standard FN-DMC algorithm with time step
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discretization and is available with the T-move scheme. However,
production simulations of FN-projection in TurboRVB are typically
performed with the lattice regularized DMC (LRDMC),118,130 which
is an alternative approach to DMC. In particular, LRDMC is based
on a lattice regularization of the many-electron Hamiltonian over
a spatial mesh, and the ground state is projected out via the Green
function Monte Carlo method.131–133 The zero mesh-size limit of the
LRDMC prediction is equivalent to the zero time step limit of DMC
and is, therefore, also included in this work. We also note that the T-
move approximation itself comes in four different versions, as briefly
discussed in the supplementary material, but when presenting the
TM results, we will not distinguish between them because they differ
only at finite time step, while we report here the extrapolated values
at zero time steps, where they are equivalent.

The computed methane–water interaction energies are shown
in Fig. 1. We plot the FN-DMC interaction energy computed with
each code with a colored circle. In addition, the average among
the interaction energies computed with different codes is reported
with a gray dashed line, and its statistical error with a shaded gray
region. The average value and its statistical error are computed as the
mean value and the standard deviation of the probability distribu-
tion reported in Eq. (2), discussed later on in this paper. We compare
the prediction of FN-DMC to the value computed by coupled cluster
theory with single, double, triple, and perturbative quadruple excita-
tions [CCSDT(Q)], which is expected to be highly accurate for weak
intermolecular interactions134 (details of the calculation are reported
in Sec. S3 of the supplementary material). Despite using only a sin-
gle determinant in the trial wave functions and a DFT nodal surface

FIG. 1. FN-DMC interaction energy of
the methane–water dimer with four dif-
ferent methods. The black dashed hori-
zontal line indicates the reference value
of −27 meV computed with CCSDT(Q).
The gray dashed line is the average
among the interaction energies com-
puted with different codes, and the
shaded area is its statistical error bar.
The energy differences between the var-
ious codes are much larger when the
LA scheme is employed, compared to
the narrower energy range obtained with
TM, DLA, and DTM. The computed aver-
ages always match the CCSDT(Q) value
within the statistical error bar.
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for simplicity, broadly speaking, the FN-DMC is in excellent agree-
ment with CCSDT(Q) (black dashed line). However, a strikingly
large spread of predictions across different codes is obtained when
using the LA. In contrast, the TM, DLA, and DTM methods show a
much narrower spread of the interaction energies.

The data reported in Fig. 1 allow us to estimate a probability
distribution of the interaction energy for each analyzed method. In
particular, we write the DMC energy estimated with the code i and
the method α (α = LA, TM, DLA, DTM) as Eα,i, and its statistical
error bar as σα,i. Following the central limit theorem, we expect each
DMC estimate to be distributed according to a normal distribution,
with mean Ēα,i and standard deviation σ̄α,i. Since we do not know Ēα,i
and σ̄α,i, we use here the current estimates Eα,i and σα,i and define the
probability distribution of the energy E for the method α as follows:

Pα(E) =
1

Nα
∑

i ∈ codes

1
√

2πσ2
α,i

e
−
(E−Eα,i)

2

2σ2
α,i , (2)

where Nα is the number of codes for which the localization method
α is evaluated. The mean, μα, and the variance, σ2

α , of the energy for
the distribution Pα(E) are, respectively,

μα = ∫ EPα(E) dE =
1

Nα
∑

i ∈codes
Eα,i (3)

FIG. 2. Probability distribution Pα(E) [Eq. (2)] of the FN-DMC interaction energy
of the methane–water dimer for four different schemes for treating NLPPs. The
probability distribution for the LA method is spread across a large energy range
of ∼25 meV, showing the disagreement among different codes. The probability
distribution is instead much narrower when the TM, DLA, and DTM algorithms
are employed, implying agreement on the final estimate of the interaction energy
among different codes. The black vertical dashed line indicates the reference value
computed with CCSDT(Q).

and

σ2
α = ∫ (E − μα)

2Pα(E) dE =
1

Nα
∑

i ∈codes
σ2

α,i +
1

Nα
∑

i ∈codes
(Eα,i − μα)

2.

(4)
In particular, the variance takes into account both the statistical error
bar of each FN-DMC evaluation (σα,i) and its deviation from the
mean value (Eα,i − μα).

The probability distributions are plotted in Fig. 2. When the
LA is employed, the probability distribution is spread across a large
energy range of 25 meV, with a standard deviation of 7 meV. The
agreement across different codes significantly improves with the
TM, DLA, and DTM schemes, with the probability distributions
showing a quite localized peak (a standard deviation of ∼2 meV or
less) centered on −27, −29, and −28 meV, respectively. The DTM
scheme gives the narrowest distribution, centered on −28 meV,
with a standard deviation of ∼1 meV, but since only four out of
the eleven codes implemented DTM, this is of limited significance.
Overall, the analysis of the probability distributions showcases that
algorithms more sophisticated than LA need to be employed to
guarantee reproducibility among different FN-DMC codes.

A key factor in DMC is the convergence with respect to
the simulation time step. The projection is only accurate for

FIG. 3. Convergence with respect to the simulation time step of the probability dis-
tribution, as defined in Eq. (2), for the DLA. The probability distribution is spread
over a large energy range of over 20 meV at large time steps (τ > 0.01 a.u.), while
a narrow distribution is achieved only for the smallest time step (τ = 0.0025 a.u..).
The black vertical dashed line indicates the reference value computed
with CCSDT(Q).
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FIG. 4. Probability distribution Pα(E) [Eq. (2)] of the FN-DMC total energy (Hartree) of the methane–water dimer (left), methane (middle), and water (right), for four different
schemes to treat NLPPs. The bars under the distributions indicate the standard deviation.

sufficiently small time steps, requiring calculations at various time
steps τ to be performed and extrapolated to the limit τ → 0. The
required time step depends on both the system being studied and
the accuracy of the trial wave function. For this reason, we also
analyze the dependence of the probability distribution Pα(E) on
the simulation time step and report it in Fig. 3. In particular,
we consider the case of the DLA, for which we have computed
the interaction energy with several codes at multiple time steps
(τ = 0.04, 0.02, 0.01, 0.005, 0.0025 a.u.). We notice that, for a large
time step τ = 0.04 a.u., the DLA energy predictions are spread across
a large energy range of over 60 meV. Decreasing the time step leads
to a significant reduction in the distribution’s variance. At the time
step of τ = 0.0025 a.u., the probability distribution becomes very nar-
row, indicating agreement among different codes. We highlight here
that the converged time step is system-dependent, and the time step
behavior is highly sensitive to different codes and approximations, as
shown in the supplementary material. Therefore, an analysis of the
convergence with respect to the simulation’s time step is important
to achieve a converged and reproducible FN-DMC energy and a fair
comparison across different packages.

Finally, we focus on the FN-DMC total energies of the
methane-water dimer and its constituent monomers, which are the
fundamental quantities entering the computation of the interaction
energy. In Fig. 4, we report the probability distribution Pα(E) of
the total energies extrapolated to zero time step. As in the case of
the interaction energy, we find that the total energies computed in
the TM, DLA, and DTM approximations differ much less among
the codes than when the LA is employed. Their distributions are
significantly narrower, displaying standard deviations in a range

from 2.5 to 10 times smaller than the LA case (e.g., in the
water molecule σLA ∼ 2.5σDLA, and in the methane monomer
σLA ∼ 10σDTM). Moreover, the standard deviations σαs of the TM,
DLA, and DTM total energy distributions are close to the theoreti-
cal minimum allowed by the precision of the performed FN-DMC
simulations, as σαs are mostly determined by the stochastic error
associated with the FN-DMC energy evaluations (between 10−4 and
10−5 hartree; see the supplementary material), so the first term on the
right hand side of Eq. (4). This behavior is expected for the DLA and
DTM schemes that depend only on the determinant part of the wave
functions (identical in all calculations). Remarkably, despite using
different Jastrow factors, all codes yield very similar extrapolated
total energies even with the TM scheme, which has the desirable
property of treating the pseudopotential exactly in the limit of an
exact ΨT.

III. METHODS
The interaction energy of the methane–water dimer is com-

puted by subtracting the isolated molecule energies from the
methane–water complex, as defined in Eq. (1). The geometry of
the dimer (shown in the supplementary material) was obtained
from Ref. 135. The geometries of the monomers are the same
as in the dimer. In this study, in order to try to achieve con-
sistent results, all eleven codes were required to use the same
correlation consistent effective core potentials (ccECPs)136,137 and
the corresponding triple-zeta basis set (ccECP-ccpVTZ), as well
as a Slater–Jastrow wave function with a single Slater deter-
minant, whose orbitals are obtained from DFT calculations
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using the Perdew–Zunger parameterization138 of the local-density
approximation. For the methane–water dimer, this was sufficient to
obtain accurate results. Some of the codes exchanged wave func-
tion data via the TREXIO library.139 This choice ensures that any
observed variation is due to implementation-level or algorithmic
factors rather than differences in the choice of geometry, pseudopo-
tential, basis set, or single-particle orbitals. Every code implements
a slightly different parameterization of the Jastrow factor, but all
codes include in the Jastrow factor an electron–electron (e–e), an
electron–nucleus (e–n), and an electron–electron–nucleus (e–e–n)
term. The variational parameters of the Jastrow factor have been
optimized by minimizing either the variational energy or the vari-
ance, according to the recommended scheme within each code.
The time steps employed in each simulation are in the range of
0.001–0.1 a.u. The final estimates reported in Fig. 1 were extrap-
olated to the τ → 0 limit using the procedure described in the
supplementary material. Further details specific to each code, the
schemes used to deal with the localization error, the time step extrap-
olation, and the tests on the size consistency error are reported in the
supplementary material.

IV. SUMMARY AND CONCLUSIONS
In this work, we investigated the reproducibility of FN-DMC

calculations across 11 popular QMC codes, which differ in the details
of the algorithms used. This study represents a significant collabora-
tive effort, involving more than 300 FN-DMC calculations, spanning
11 codes, multiple DMC time steps, and different pseudopotential
localization schemes. Our results establish FN-DMC as a robust
reference method by demonstrating its reproducibility.

In particular, we conducted a thorough analysis of two key
obstacles to FN-DMC reproducibility, namely, the use of NLPPs and
finite time step bias. We systematically compared four localization
schemes, LA, TM, DLA, and DTM, for the interaction energy of
the methane–water dimer and the total energies of the methane and
water molecules and of the dimer. We found that agreement in the
interaction energy across all eleven codes is achieved in the limit of
zero time step when employing the TM, DLA, and DTM approxi-
mations. Notably, we achieve agreement within a standard deviation
of 3 meV on the interaction energy of the methane–water complex,
approximately two hundred thousand times smaller than the total
energy of the dimer. Larger discrepancies are observed with the LA
scheme. Agreement in total energies across codes is also achieved, at
sub-millihartree precision. In particular, the total energies with the
TM, DLA, and DTM schemes have a standard deviation among the
codes that is smaller than 6 meV. This agreement further reinforces
the reproducibility of FN-DMC.

Looking ahead, extending this cross-code effort to periodic
solids would be a natural next step. However, such systems introduce
additional layers of complexity—including basis set periodization,
Brillouin zone sampling, and finite-size corrections—that go beyond
the scope of this initial benchmark. Moreover, as only a subset of the
participating codes currently support periodic boundary conditions,
we deliberately focused here on molecular systems in open bound-
ary conditions to establish a controlled but challenging comparison
for FN-DMC reproducibility.

SUPPLEMENTARY MATERIAL

See the supplementary material for comprehensive details on
the computational setup used in this study, including the geometry
of the systems, descriptions of the trial wave functions, and spe-
cific parameters for each of the 11 FN-DMC codes. Additional data
are provided on time step convergence studies, localization error
analysis, and interaction and total energy comparisons. The file also
includes technical implementation notes from each code, informa-
tion on Jastrow factor optimization, and complete tables of all raw
FN-DMC energies and statistical uncertainties used to generate the
figures in the main text.
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