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The quantum Monte Carlo (QMC) technique is used to generate accurate energy benchmarks for
methane-water clusters containing a single methane monomer and up to 20 water monomers. The
benchmarks for each type of cluster are computed for a set of geometries drawn from molecular dy-
namics simulations. The accuracy of QMC is expected to be comparable with that of coupled-cluster
calculations, and this is confirmed by comparisons for the CH4-H2O dimer. The benchmarks are used
to assess the accuracy of the second-order Møller-Plesset (MP2) approximation close to the complete
basis-set limit. A recently developed embedded many-body technique is shown to give an efficient
procedure for computing basis-set converged MP2 energies for the large clusters. It is found that
MP2 values for the methane binding energies and the cohesive energies of the water clusters without
methane are in close agreement with the QMC benchmarks, but the agreement is aided by partial
cancelation between 2-body and beyond-2-body errors of MP2. The embedding approach allows MP2
to be applied without loss of accuracy to the methane hydrate crystal, and it is shown that the resulting
methane binding energy and the cohesive energy of the water lattice agree almost exactly with
recently reported QMC values. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4926444]

I. INTRODUCTION

Solid methane hydrate has been intensively studied be-
cause of its importance in the oil industry,1 its potential as a
future energy source,2,3 and its relevance to climate change,4

while methane-water solutions have been studied for related
reasons.5,6 In addition, methane molecules in aqueous solution
are pertinent to the study of the hydrophobic interactions that
are so important throughout biology.7–10 Computer simula-
tions based on empirical force fields have been an important
tool for investigating processes such as the nucleation and
growth of methane hydrate and the dissolution of methane gas
in water,2,5,11–27 and simulations based on density functional
theory (DFT)6,28–32 have also been valuable for the study of
methane-water systems. Energy benchmarks from accurate
quantum-mechanical calculations are essential for testing both
force fields and DFT methods.33 Here, we report a substantial
set of benchmarks from the quantum Monte Carlo (QMC)
technique34–36 for thermally disordered methane-water clus-
ters containing up to 20 water monomers. Using these bench-
marks together with other recent QMC results,37,38 we assess
the accuracy of the second-order Møller-Plesset (MP2) tech-
nique for both methane-water clusters and the methane hydrate
crystal.

a)Author to whom correspondence should be addressed. Electronic mail:
m.gillan@ucl.ac.uk

Quantum chemistry calculations have been an important
source of information for parameterizing intermolecular force
fields since the early work of Clementi and co-workers on
water in the 1970s.39,40 Today the CCSD(T) (coupled cluster
with single and double excitations and perturbative triples)41

technique is often regarded as the “gold standard” of quantum
chemical accuracy for non-covalent binding in such systems,
being capable of an accuracy for dimer binding energies of
typically 0.2 mEh (∼0.13 kcal/mol ≃ 5 meV). For water and
some other molecular systems, the accuracy of the more effi-
cient MP2 technique41 falls not far short of this.42,43 The last
10 years have seen a surge in the use of these methods to create
sophisticated and accurate force fields, particularly for water,
and also for other systems. Work of this kind on methane-
water systems includes Refs. 44 and 45. The use of MP2 and
CCSD(T) benchmarks to test DFT methods has also become
widespread. An early study of the CH4-H2O dimer44 showed
that standard DFT approximations can be very inaccurate, one
reason being their neglect of van der Waals dispersion. Much
subsequent work has confirmed this, and the recent extensive
survey by Liu et al.46 on methane-water clusters showed that
even dispersion-inclusive DFT methods can suffer from large
errors.

The computational demands of MP2 and CCSD(T) in-
crease very rapidly with the number of atoms, so that en-
ergy benchmarks near the complete basis-set (CBS) limit have
generally been limited to rather small clusters. Furthermore,

0021-9606/2015/143(10)/102812/9/$30.00 143, 102812-1 © 2015 AIP Publishing LLC
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the implementation of these methods in periodic boundary
conditions is technically challenging, so that accurate MP2 and
CCSD(T) benchmarks for crystals are seldom reported (but
see, e.g., Refs. 47–52). QMC techniques offer an alternative
approach. There is ample evidence that the accuracy of current
QMC techniques for weak non-covalent interactions is near
that of CCSD(T).53–59 However, the computational demands
of QMC grow much more slowly with system size, so that
basis-set converged calculations on systems containing many
tens of atoms are feasible, and the techniques work equally
well for clusters and for periodic systems. There has already
been a considerable body of QMC work reported on water
(including ice structures and liquid water)55,60–65 and other
molecular systems, which have given new ways of probing the
deficiencies of DFT approximations. The very recent QMC
benchmarks on the methane clathrate cage (a CH4 monomer
surrounded by 20 H2O monomers)37 and the methane hydrate
crystal38 have confirmed previous indications that widely used
DFT approximations suffer from substantial errors, even if
dispersion is explicitly included.

The QMC benchmarks presented here are designed to
complement those reported for the methane clathrate cage37

and the methane hydrate crystal.38 The clusters we treat consist
of a single CH4 surrounded by a number n of H2O monomers
ranging from 1 to 20, with the configurations for each cluster
being drawn from molecular dynamics (MD) simulations, so
that they sample a range of intermolecular separations and
molecular orientations.

To illustrate the usefulness of the QMC benchmarks, we
use them to test the accuracy of MP2 for methane-water ener-
getics. For the clusters studied here, direct MP2 calculations
can be performed close to the CBS limit. However, it is also of
interest to test the accuracy of MP2 when it is implemented us-
ing a recently developed embedded many-body technique,66,67

since this technique is much more efficient and also allows us
to perform MP2 calculations on periodic systems. We shall
show that the embedded many-body implementation of MP2
gives results that are almost identical to those of standard MP2.
Our comparisons of MP2 with the cluster QMC benchmarks
show that its accuracy is considerably better than that of typical
DFT approximations, and suggest that MP2 should also be
quite accurate for the methane hydrate crystal. The recently
published QMC benchmarks on the crystal38 together with the
embedding-MP2 calculations presented here will allow us to
confirm this.

II. TECHNIQUES

The QMC benchmarks reported here were computed by
the diffusion Monte Carlo (DMC) technique34–36 with the -
 code.68 The technical settings follow closely those used in
our previous work on water systems.56,61,64 Dirac-Fock pseu-
dopotentials were used,70,71 non-locality being treated by the
usual locality approximation.69 The trial wavefunctions were
of single-determinant Slater-Jastrow form, the single-electron
orbitals being obtained from DFT-LDA plane-wave calcula-
tions with the  package72 using the plane-wave cutoff
4082 eV. These calculations of the orbitals are performed
in periodic boundary conditions, with the length L of the

cubic repeating cell taken large enough to ensure that residual
interactions between periodic images of the clusters do not
significantly affect the orbitals; we generally take L = 40 a.u.
(21.2 Å). For the purpose of the  calculations, the repre-
sentation of the orbitals was transformed from plane-waves to
a basis of B-splines.73 The time step used in all the calculations
was 0.005 a.u., as in our previous work. Tests with a time step
of 0.002 a.u. on the CH4(H2O)10 clusters showed differences of
between 0.2 and 0.3 mEh in the energies per monomer reported
below.

Benchmarks will be presented for two important energies
characterizing the clusters CH4(H2O)n. The first, denoted by
∆ECH4, is the binding energy of the methane monomer, i.e., the
negative of the energy needed to remove the methane from
the cluster, leaving the positions of all water monomers un-
changed. The second,∆Eempty

bind , is the binding energy per mono-
mer of the resulting “empty” water cluster relative to free water
monomers. These two energies were studied in Ref. 38, where
they were shown to be particularly important for the energetics
of the methane hydrate crystal. We want to obtain benchmarks
for these energies to somewhat better than chemical accuracy
(notionally 1 kcal/mol), and we adopt the target of reducing all
errors, including the statistical error on the DMC calculations
themselves, to less than 1 mEh (0.6 kcal/mol or 27 meV).

Both∆ECH4 and∆Eempty
bind involve computing the difference

of two very large energies (typically a few thousand eV), and
this means paying close attention to cancelation of errors. We
find that this is best achieved by requiring that the energies
to be subtracted refer to systems containing exactly the same
set of atoms in different configurations. For ∆ECH4, we ensure
this by computing the DMC total energy of the CH4-(H2O)n
cluster of interest and subtracting the DMC energy of exactly
the same system but with the CH4 monomer rigidly displaced
to a distance large enough to render the interaction between
the CH4 and (H2O)n fragments negligible. We use a similar
approach to calculate ∆Eempty

bind . In this case, we compute the
DMC total energy of the (H2O)n cluster, and we subtract from
it the DMC energy of the system obtained by rigidly displacing
all the H2O monomers radially outwards from the origin by a
chosen scaling factor, the origin being chosen as the position
of the C atom in the CH4 monomer before it was removed. To
correct for the remaining (mainly electrostatic) interactions be-
tween the H2O monomers, we compute them using MP2. (Note
that the value chosen for the scaling factor used in the outward
displacement is limited by the periodic boundary conditions
employed in calculating the single-electron orbitals.)

For all the systems studied, we compare our QMC bench-
marks with MP2 values of ∆ECH4 and ∆Eempty

bind and we also
examine δCCSD(T) corrections, i.e., the energy changes on
going from MP2 to coupled-cluster CCSD(T). All these quan-
tum chemistry calculations were performed with the 
code.74,75 For both MP2 and δCCSD(T), we employ explicitly
correlated F12 methods,76 which greatly accelerate basis-set
convergence. The calculations all employ correlation consis-
tent aug-cc-pVXZ basis sets,77,78 referred to here as AVXZ,
where X is the cardinality. For all the MP2 calculations,
we employ AVQZ basis sets, unless otherwise noted. These
methods are expected to yield MP2 values of ∆ECH4 and
∆Eempty

bind within ∼0.1 mEh of the CBS limit. The δCCSD(T)
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corrections are straightforward to compute for the CH4-H2O
dimer, where an accuracy of ∼20 µEh is obtained for these
corrections using AVTZ basis sets with the counterpoise
method. However, for CH4-(H2O)5 and the larger clusters,
we do not attempt direct CCSD(T) calculations on the whole
cluster, and instead we content ourselves with the computation
of 2- and 3-body δCCSD(T) corrections. The 2-body correc-
tions are treated with AVTZ and counterpoise, and the 3-body
corrections with AVDZ and full counterpoise (i.e., the basis set
of the entire trimer is used for the computation of the monomer
and dimer energies).

The embedding procedure that we use to compute the MP2
energies of the larger CH4(H2O)n clusters and the methane hy-
drate crystal is based on the embedded many-body expansion
(EMBE) described by Bygrave, Allan, and Manby (BAM),66

and we performed the calculations using a development
version of the  code. We follow here the procedure
used in our recent MP2 calculations on water clusters and ice
structures.67 In this procedure, we separate the total energy
into its Hartree-Fock (HF) and electron-correlation compo-
nents, and EMBE is applied only to the correlation energy,
the HF component being computed by standard methods. By
“standard methods,” we mean that for the clusters, the HF
components of ∆ECH4 and ∆Eempty

bind are computed directly with
 using density fitting79 with AVQZ basis sets, which
ensure basis-set convergence to be within ∼0.1 mEh. The
corresponding quantities for the methane hydrate crystal are
computed with the  code,80 following the methods reported
earlier for ice structures.67

Returning to the correlation components of ∆ECH4 and
∆Eempty

bind , we recall that in the BAM form of EMBE, the embed-
ding fields are the sum of Coulomb fields due to the charge
distributions of the monomers and exchange-repulsion fields
which are also obtained from these distributions via the
Wheatley-Price relation between exchange-overlap interaction
and density overlap.81 The charge distributions from which
the fields are derived are computed self-consistently by HF
calculations on the monomers. In our work on water clusters
and ice structures, we tested the effect of truncating the EMBE
at the 2-body level and we showed that for the clusters, this
yields a very accurate approximation to the MP2 correlation
energy; we show that the same is true in the present work. In
applying the 2-body-truncated EMBE to periodic systems, a
spatial cutoff is applied, so that electron correlation is included
only for pairs of monomers separated by a specified cutoff
radius Rc. Convergence with respect to Rc must, of course,
be tested.

III. QMC AND MP2 BENCHMARKS FOR CLUSTERS

A. The CH4-H2O dimer

We start by confirming the accuracy of QMC for the CH4-
H2O dimer, which is clearly necessary for confidence in its
ability to deliver useful benchmarks. Our criterion is that it
must agree closely with “gold-standard” CCSD(T) calcula-
tions. While checking this, we also take the opportunity to
assess the errors of the MP2 approximation. To avoid any
restriction to special geometries, we make our comparisons for

a set of configurations spanning a wide range of intermolecular
separations and molecular orientations.

Our set of dimer configurations is drawn from a DFT-
based MD simulation of a single methane molecule in liquid
water performed with the BLYP exchange-correlation func-
tional.82–84 The simulation was performed using Langevin dy-
namics at the very high temperature of 1000 K to ensure that
the system sampled configurations having short C-O distances.
The usual periodic boundary conditions were employed, with
31 H2O molecules and a single CH4 molecule in the repeating
cell, the mass density being 0.995 g/cm3. The monomers in
the simulated system undergo internal vibrations, so that the
energy of each dimer configuration relative to free CH4 and
H2O monomers is the sum of (a) the 1-body distortion energies
of the individual monomers and (b) the 2-body interaction
energy. We are interested here only in the interaction energy,
and we therefore modify the configurations drawn from the
simulation by restoring each monomer to its equilibrium gas-
phase geometry.85 With the configurations adjusted in this way,
the 2-body interaction energy of each is simply its total energy
minus the sum of the energies of the isolated equilibrium
monomers.

As indicated in Sec. II, the benchmark CCSD(T) values
of the interaction energies are computed as the sum of the
MP2 values and the δCCSD(T) corrections. With AVQZ basis
sets for MP2 and AVTZ for the δCCSD(T) difference, F12
and counterpoise being used for both, we expect values of
the interaction energies to be within ∼0.1 mEh of the CBS
limit. The DMC energies of the 100 dimer configurations were
computed as explained in Sec. II, each run being continued
until the rms statistical error was reduced to ∼60 µEh.

The differences between DMC and CCSD(T) values of the
dimer interaction energy are plotted against C-O separation of
the monomers in Fig. 1, which also presents the corresponding

FIG. 1. Interaction energy of the CH4-H2O dimer as function of C-O sep-
aration for a thermal sample of 100 configurations (see text). Red and blue
symbols show deviations of DMC and MP2 values of interaction energy from
benchmark CCSD(T) values. Note that deviations in the case of DMC are
mainly due to statistical sampling error. Units of energy and distance: mEh
and Å.
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differences between MP2 and CCSD(T). The DMC differences
arise almost entirely from the statistical sampling error of
DMC itself, as is clear from the fact that the mean value of the
differences shown in Fig. 1 is only 20 µEh (0.5 meV), which
is probably beyond the accuracy of CCSD(T) itself. The rms
fluctuation of the difference between DMC and CCSD(T) is
64 µEh, which is only slightly greater than the DMC sampling
error of 60 µEh. By contrast, the figure shows that MP2 is
systematically underbound, with an error that increases quite
rapidly as the monomers approach each other. At the C-O
separation of 3.8 Å typical of the methane hydrate crystal at
ambient pressure, the MP2 error may be over ∼0.1 mEh. As
we point out later, such an error is not negligible for the overall
energetics of the hydrate.

The present comparisons suggest that any systematic er-
rors of DMC are considerably smaller than those of MP2.

B. The CH4(H2O)5 cluster

As well as yielding accurate benchmarks, our study of
the CH4(H2O)5 clusters serves two other purposes: it allows
us to make further tests of DMC against CCSD(T), and it
provides tests of the embedding approximation for computing
MP2 correlation energy (see Sec. II). As with the dimer, we
created a set of configurations of the cluster by drawing them
from a MD simulation of methane dissolved in water.

The MD simulation used in this case was performed with
a classical force field on a large periodic system of 2944 H2O
molecules and 512 CH4 molecules, both kinds of molecules be-
ing treated as rigid. The force field used to generate the MD was
TIP4P/ICE86 for H2O-H2O interactions, and the Tse-Klein-
McDonald force field87 for CH4-CH4 interactions, with CH4-
H2O interactions constructed by the usual Lorentz-Berthelot
combining rules. The original purpose of this simulation was
to study the nucleation of methane hydrate and for that reason,
it extended over a period of nearly 1 µs. Cluster configurations
were created from the simulation as follows. A set of snap-
shots was first taken from the simulation. In each snapshot, a
methane monomer was then chosen at random, with the condi-
tion that the C-C distance to every other methane monomer is
at least 7.5 Å, so that the first methane is entirely surrounded by
water molecules. Finally, the five nearest water monomers (as
measured by the C-O distance) were taken to form the CH4-
(H2O)5 cluster. This procedure, which we also use to create
the larger CH4-(H2O)n clusters, is designed to produce random
configurations having some relevance to methane hydration in
solution.

We focus here on the energies ∆ECH4 and ∆Eempty
bind for

each cluster configuration (see Sec. II): the binding energy
of the methane monomer and the binding energy per mono-
mer of the empty water cluster resulting from removal of the
methane. The DMC value of ∆ECH4 for each configuration
was computed as the difference of energies in two runs: one
for the given CH4-(H2O)5 configuration and the other for the
configuration obtained by displacing the CH4 monomer (see
Sec. II). The displacement used for this purpose was 10 Å.
Likewise, ∆Eempty

bind was computed from the difference of two
DMC energies: that of the given (H2O)5 configuration and that
of the configuration obtained by moving all H2O monomers

radially outwards by a scaling factor, the value of this factor
being chosen as 1.5. The remaining interactions between the
monomers in the scaled configuration were computed by MP2
and subtracted. The DMC runs were always continued long
enough to reduce the statistical sampling error on ∆ECH4 to
∼0.4 mEh (the sampling errors on ∆Eempty

bind are considerably
smaller). We have used the resulting DMC benchmarks for
∆ECH4 and∆Eempty

bind to test direct MP2 calculations on the given
configurations. The MP2 values of ∆ECH4 and ∆Eempty

bind were
obtained by simple subtraction of the appropriate numbers of
monomer energies from the directly calculated MP2 energies
of the CH4-(H2O)5 and (H2O)5 clusters. With AVQZ basis sets
and the F12 techniques employed, the MP2 values of ∆ECH4
and ∆Eempty

bind are expected to be within ∼0.1 mEh of the CBS
limit.

Parity plots of the MP2 values of∆ECH4 and∆Eempty
bind vs the

DMC values are shown in Fig. 2. It appears that MP2 makes
∆ECH4 somewhat underbound compared with DMC, the mean
difference between the two values being 0.52 mEh and the
rms fluctuation of the difference being 0.31 mEh. (Note that
a considerable part of this rms fluctuation is attributable to
DMC statistical error.) For ∆Eempty

bind , MP2 agrees much more
closely with DMC, the mean difference being 15 µEh and the
rms fluctuation of the difference being 53 µEh.

The underbinding of ∆ECH4 values given by MP2 is ex-
pected from our results for the CH4-H2O dimer, but it is inter-
esting to ask whether the differences between the MP2 and
DMC values of∆ECH4 are attributable entirely to the 2-body er-
rors of MP2. We test this by computing the 2-body δCCSD(T)
correction, i.e., the difference between CCSD(T) and MP2
values of the sum of 2-body contributions to ∆ECH4, which
we then add to the total MP2 value of ∆ECH4. The resulting
2-body-corrected MP2 values are included in the parity plots
of Fig. 2. As expected, the 2-body δCCSD(T) corrections make
∆ECH4 more negative, and the agreement with DMC is thereby
improved. In a similar way, we have also computed the 3-
body δCCSD(T) correction, and the resulting 2- and 3-body-
corrected MP2 values of ∆ECH4 (see figure) reveal that the 3-
body corrections are small but are always positive. The mean
difference between 2- and 3-body corrected MP2 values and
DMC values of ∆ECH4 is less than 10 µEh and the rms fluctua-
tion of this difference is 0.31 mEh. We have also computed the
2- and 3-body δCCSD(T) corrections to MP2 for ∆Eempty

bind , but
they turn out to be extremely small (see lower panel of Fig. 2).

The embedding approach to the calculation of the MP2
correlation energy will be important later in the paper, and it
is convenient to test its accuracy on the CH4-(H2O)5 cluster.
As explained in Sec. II, we compute an approximation to the
true MP2 correlation energy by truncating the embedded MBE
at the 2-body level, while the HF energy is computed directly
without embedding. We show in Fig. 3 the parity plots of the
MP2 values of∆ECH4 and∆Eempty

bind computed by this embedding
approximation and the standard method. It is clear that the
errors of the embedding approximation are rather small. In
fact, the mean and the rms fluctuations of the deviations of
the embedding values from the standard values are −0.13 mEh
and 62 µEh for ∆ECH4 and 20 µEh and 10 µEh for ∆Eempty

bind .
The conclusion is that the embedding approximation can safely
be used to compute the MP2 values of the energies. In the
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FIG. 2. Binding energy ∆ECH4 of the methane monomer (upper panel) and
binding energy per monomer ∆Eempty

bind of the empty water cluster for 25 con-
figurations of the CH4-(H2O)5 cluster. Panels show parity plots of uncorrected
MP2 (red circles), MP2 with 2-body δCCSD(T) corrections (green squares),
and MP2 with 2- and 3-body δCCSD(T) corrections (black triangles) vs DMC
values.

following, if it is necessary to distinguish MP2 energies
computed by embedding from those computed in the standard
way, we refer to the embedding approximation of MP2 as
E-MP2.

C. Clusters from CH4-(H2O)10 to CH4-(H2O)20

Using the procedure described in Sec. III B, we created
configuration sets for the clusters CH4-(H2O)n, for n = 10, 15,
and 20 by drawing them from the same MD simulation of the
bulk water-methane solution. In each case, DMC benchmark
values of ∆ECH4 and ∆Eempty

bind were computed by continuing the
runs long enough to reduce the statistical sampling errors on

FIG. 3. Parity plots of ∆MP2 correlation components of ∆ECH4 and ∆Eempty
bind

computed by the 2-body embedding approximation and by the standard
method.

∆ECH4 to∼0.4 mEh for n = 10 and 15 and∼0.5 mEh for n = 20
(the sampling errors on ∆Eempty

bind are considerably smaller).
We report DMC values of ∆Eempty

bind only for the CH4-(H2O)10
cluster. For clusters of these sizes, direct MP2 calculations
with F12 and AVQZ basis sets are still feasible, but in prac-
tice, it is more convenient to use the 2-body-truncated EMBE
approximation to compute the MP2 correlation energy and
then add this to the directly calculated HF energy to obtain the
embedded-MP2 approximation referred to here is E-MP2.

Parity plots of the E-MP2 values of ∆ECH4 and ∆Eempty
bind

vs the DMC benchmarks for the CH4-(H2O)10 cluster are
presented in Fig. 4, and parity plots of ∆ECH4 for the CH4-
(H2O)15 and CH4-(H2O)20 clusters in Fig. 5. The figures also
report the E-MP2 values with 2- and 3-body δCCSD(T) correc-
tions (the corrected values were obtained for only a subset
of the configurations in some cases, since they are labo-
rious to compute). We see that E-MP2 values of ∆ECH4 al-
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FIG. 4. Binding energy ∆ECH4 of the methane monomer (upper panel) and
binding energy per monomer ∆Eempty

bind of the empty water cluster (lower
panel) for 25 configurations of the CH4-(H2O)10 cluster. Panels show parity
plots of uncorrected MP2 (red circles), MP2 with 2-body δCCSD(T) correc-
tions (green squares), and MP2 with 2- and 3-body δCCSD(T) corrections
(black triangles) vs DMC values.

ways agree fairly closely with the QMC values, the mean
differences for n = 10, 15, and 20 being −0.02, −0.52, and
−0.57 mEh, and the rms fluctuations of these differences being
0.38, 0.48, and 0.40 mEh. However, the corrected values
indicate that this agreement benefits from cancelation of er-
rors. If we make only 2-body δCCSD(T) corrections, then
the mean differences between the 2-body corrected E-MP2
values and the QMC values are −1.1, −1.7, and −1.9 mEh
for the three clusters. On the other hand with both 2- and 3-
body corrections, the mean differences are −0.7, −1.0, and
−1.1 mEh. Just as for the CH4-(H2O)5 cluster, the 2-body
corrections are always negative and the 3-body corrections

FIG. 5. Methane binding energy ∆ECH4 in clusters CH4-(H2O)15 (upper
panel) and CH4-(H2O)20 (lower panel). Parity plots compare values from
MP2 (red circles), 2-body-corrected MP2 (green squares), and 2- and 3-body-
corrected MP2 (black triangles) with values from DMC.

always positive. Since the sum of 2- and 3-body corrections
does not completely restore agreement with DMC, it seems
that even beyond-3-body corrections to MP2 may also be
significant. As in the case of CH4-(H2O)5, the agreement
of MP2 values with DMC for ∆Eempty

bind is very close for the
CH4-(H2O)10 cluster, the mean difference and rms fluctua-
tion being only −0.04 and 0.10 mEh. The introduction of
2-body δCCSD(T) corrections slightly worsens the agree-
ment, the mean difference now becoming −0.14 mEh, and
the rms fluctuation remaining essentially the same. How-
ever, these differences are negligible for most practical
purposes.
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IV. QMC AND MP2 FOR METHANE HYDRATE
CRYSTAL

Having learnt something about the accuracy of MP2 for
methane-water clusters, we now want to see how it performs
for the methane hydrate crystal in the sI structure. The MP2
values of the characteristic energies ∆ECH4 and ∆Eempty

bind are
calculated by the embedding approximation, whose accurate
reproduction of standard MP2 was demonstrated above, and
these will be compared with the recently reported QMC values.
The sI methane hydrate crystal has cubic symmetry, and the
unit cell contains 46 H2O monomers and 8 CH4 monomers
in the unit cell. All the present calculations are performed at
the experimental lattice parameter of 11.77 Å with the atomic
positions of Ref. 38. In order to obtain ∆ECH4 and ∆Eempty

bind , we
performed all calculations on both the “filled” crystal with all
methane monomers in place and the “empty” water network
obtained by removing all methane monomers with the posi-
tions of all water monomers remaining unchanged.

The HF binding energies of the filled and empty crys-
tals relative to isolated monomers were calculated using the
 code,80 as explained in Sec. II. Technical settings such
as plane-wave cutoff, density of k-point sampling, etc., were
systematically improved until the values of HF energy per
monomer were converged to better than 20 µEh per monomer.
The resulting values of ∆ECH4 and ∆Eempty

bind are reported below.
The embedded many-body procedure for computing the

MP2 correlation energy in periodic boundary conditions is
summarized in Sec. II, where we note that embedded 2-body
terms are included only for pairs of monomers whose separa-
tion is less than a specified cutoff distance Rc. We must there-
fore ensure that the correlation energy is adequately converged
with respect to both basis set and Rc. Throughout this work,
we compute MP2 energies using F12 and AVQZ basis sets,
which give convergence to be within ∼100 µEh/monomer.
However, for the small contributions to correlation energy from
well separated monomers, AVTZ basis sets should suffice.
Our strategy is therefore as follows. We first perform all the
embedding calculations with F12 and AVTZ, increasing Rc
until acceptable convergence is achieved. We then repeat the
calculations with F12 and AVQZ, but now the Rc value need
only ensure that the difference between AVQZ and AVTZ
values is acceptably converged. Our final MP2 correlation
energy is then the converged AVTZ value plus the converged
difference AVQZ—AVTZ.

TABLE I. Convergence of MP2 correlation components of ∆ECH4 and
∆E

empty
bind (mEh units) with respect to cutoff radius Rc and basis set. Values

of correlation components are computed using 2-body truncated EMBE with
AVTZ basis sets and F12. Basis-set corrections (changes of values on replac-
ing AVTZ with AVQZ) are given in parentheses. Extrapolated values in final
row are obtained by adding basis-set corrections and assuming that error due
to finite Rc decays as 1/R3

c.

Rc (Å) ∆ECH4 (mEh) ∆E
empty
bind (mEh)

5.0 −12.29 (−0.04) −10.82 (−0.10)
7.5 −12.98 (−0.04) −11.07 (−0.11)
9.0 −13.20 −11.13

Extrap −13.3 −11.3

TABLE II. Binding energy ∆ECH4 of the methane molecule (mEh/CH4

monomer) in the methane hydrate sI crystal and cohesive energy ∆Eempty
bind

of the empty water lattice (mEh/H2O monomer) computed with diffusion
Monte Carlo (DMC) and second-order Møller-Plesset (MP2). The MP2 val-
ues of ∆ECH4 and ∆Eempty

bind are the sum of the Hartree-Fock (HF) and MP2
correlation (∆MP2) contributions. DMC values are from Ref. 38.

HF ∆MP2 MP2 DMC

∆ECH4 4.4 −13.3 −8.9 −8.9
∆E

empty
bind −10.4 −11.3 −21.7 −21.7

The results reported in Table I show that convergence with
respect to basis set and Rc is readily achieved. We extrapolate
the AVTZ values of the correlation parts of ∆ECH4 and ∆Eempty

bind
to their Rc → ∞ limit by assuming that the long-distance inter-
action falls off with the usual dispersion dependence of 1/R6,
which implies that the residual error due to the Rc cutoff falls
off as 1/R3

c.88 The table suggests that the uncertainty in this
extrapolation is no more than ∼0.1 mEh. We take the basis-set
correction to be the change on going from AVTZ to AVQZ, and
the table indicates that this correction is almost independent of
Rc. The table reports the extrapolated values of the correlation
parts of ∆ECH4 and ∆Eempty

bind , which we then add to the HF
parts to obtain the final embedded MP2 values, reported in
Table II, where we also include the DMC values from Ref. 38.
The agreement between the E-MP2 and DMC values of both
∆ECH4 and ∆Eempty

bind is remarkably, and perhaps to some extent
fortuitously, close, as we discuss further in Sec. V.

V. DISCUSSION AND CONCLUSIONS

Methane-water systems are challenging for commonly
used electronic-structure methods. In order to make useful
predictions, these methods need to achieve better than chem-
ical accuracy (∼1 kcal/mol) for the two energies focused on
here: the methane binding energy ∆ECH4 and the cohesive
energy per monomer ∆Eempty

bind of the water subsystem. In the
methane hydrate crystal, each CH4 is surrounded by 20 H2O
neighbours, so that chemical accuracy for ∆ECH4 requires an
accuracy of 0.05 kcal/mol ≃ 0.1 mEh ≃ 2 meV for the inter-
action with each H2O neighbor. The same is true of methane in
aqueous solution, where the hydration number is also ca. 20.10

Our main aims in this work have been to show that QMC can
deliver benchmarks of this accuracy or better for a range of
methane-water clusters and to use the benchmarks to assess
the accuracy of MP2. In the course of doing this, we have also
shown the effectiveness of a recently developed embedding
scheme for MP2 calculations,66,67 which allows us to compare
MP2 and QMC for the hydrate crystal.

Our strategy has been to start with the CH4-H2O dimer
and then to work through a number of CH4-(H2O)n clusters
up to n = 20, in each case taking 25 configurations (100 in the
case of the dimer) from MD simulations to avoid any limitation
to equilibrium configurations. The statistical accuracy of the
QMC benchmarks is always much greater than that demanded
by chemical accuracy for ∆ECH4 and ∆Eempty

bind . For the dimer,
QMC is in essentially perfect accord with CCSD(T) energies,
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and we showed that MP2 is underbound by a small but not
completely negligible amount. Nevertheless, the MP2 values
of ∆ECH4 and ∆Eempty

bind agree with the QMC values to rather
better than 1 kcal/mol for all the clusters, and the agreement
is even closer for the methane hydrate crystal. This is an
important outcome, because it indicates that for this type
of system, MP2 is almost as good as QMC as a source of
benchmarks.

For the CH4-(H2O)n clusters (n ≥ 5), we have not at-
tempted to perform direct CCSD(T) calculations near the
basis-set limit, but we have presented results for the 2- and
3-body δCCSD(T) corrections to MP2. As expected from
other recent work,37 these corrections are significant, and if
only 2-body corrections are made, the agreement with QMC
deteriorates appreciably. However, as also expected, the 3-
body corrections partially cancel the 2-body corrections, so
that the agreement is partially restored. This means that the
good agreement between MP2 and QMC relies significantly
on cancelation of 2- and 3-body errors.

In the course of this work, we have shown that the
embedded many-body scheme of Bygrave et al.66 provides
an efficient way of performing MP2 calculations on large
methane-water clusters and the methane-hydrate crystal, which
appears to give results that are almost indistinguishable from
those of standard MP2. As in our recent embedded-MP2 work
on water clusters and ice structures,67 we use the embedded
many-body expansion truncated at 2-body level to compute
only the correlation energy, with the Hartree-Fock energy
computed by standard methods. We pointed out in our work on
water systems67 that this way of applying MBE is expected to
be accurate for MP2 since by definition, MP2 includes electron
correlation only up to the 2-body level, so that truncation at
this level loses almost nothing. It is worth noting that very
recent developments have made it possible to perform direct
MP2 calculations on periodic systems,50,51 and it appears to
us that such direct calculations on the methane hydrate crystal
should be feasible. Indeed, MP2-based Monte Carlo and even
MD simulations on solid and liquid methane-water systems
could probably be performed now with appropriate computer
resources.

We plan to use the benchmarks reported here to test and
calibrate both force fields and DFT approximations. Up to now,
the force fields used to model methane-water systems have
mostly been constructed by fitting to experimental data for
quantities such as the solubility of methane gas in water.5 It
has sometimes been thought6 that DFT methods must be more
accurate than such empirical force fields, even though these
methods have difficulty in describing dispersion interactions,
which are known to be vital. The dangers of relying too heavily
on presently available DFT methods are highlighted by recent
work on methane hydrate and the isolated clathrate cage,37,38

which reveal errors in ∆ECH4 of over 5 kcal/mol with both
standard and dispersion-inclusive approximations. It has been
suggested that the many-body exchange-overlap effects known
to be important in water systems may be implicated in some
of these errors.89 QMC benchmarks have already proved their
worth for analysing the errors of DFT approximations in water
systems,56,61,64,65 and we expect the present benchmarks to be
equally useful for methane-water systems.
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