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We report an extensive study of the errors of density functional theory (DFT) approximations for
compressed water systems. The approximations studied are based on the widely used PBE and BLYP
exchange-correlation functionals, and we characterize their errors before and after correction for 1-
and 2-body errors, the corrections being performed using the methods of Gaussian approximation po-
tentials. The errors of the uncorrected and corrected approximations are investigated for two related
types of water system: first, the compressed liquid at temperature 420 K and density 1.245 g/cm3

where the experimental pressure is 15 kilobars; second, thermal samples of compressed water clus-
ters from the trimer to the 27-mer. For the liquid, we report four first-principles molecular dynamics
simulations, two generated with the uncorrected PBE and BLYP approximations and a further two
with their 1- and 2-body corrected counterparts. The errors of the simulations are characterized by
comparing with experimental data for the pressure, with neutron-diffraction data for the three radial
distribution functions, and with quantum Monte Carlo (QMC) benchmarks for the energies of sets
of configurations of the liquid in periodic boundary conditions. The DFT errors of the configuration
samples of compressed water clusters are computed using QMC benchmarks. We find that the 2-body
and beyond-2-body errors in the liquid are closely related to similar errors exhibited by the clusters.
For both the liquid and the clusters, beyond-2-body errors of DFT make a substantial contribution
to the overall errors, so that correction for 1- and 2-body errors does not suffice to give a satisfac-
tory description. For BLYP, a recent representation of 3-body energies due to Medders, Babin, and
Paesani [J. Chem. Theory Comput. 9, 1103 (2013)] gives a reasonably good way of correcting for
beyond-2-body errors, after which the remaining errors are typically 0.5 mEh � 15 meV/monomer
for the liquid and the clusters. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4885440]

I. INTRODUCTION

The first-principles description of water systems based
on density functional theory (DFT) remains unsatisfactory,
despite efforts going back more than 20 years.1, 2 The prob-
lems of standard DFT approximations include erroneous en-
ergetics of water clusters,3–9 incorrect relative energies and
volumes of ice structures,10–17 and poor predictions of the
thermodynamic, structural, and dynamical properties of the
liquid.9, 18–35 Water systems are made difficult by the sub-
tle balance between low- and high-density structures seen in
the cluster, ice, and liquid states.17 The present work on the
compressed liquid and clusters is motivated by the desire to
deepen our understanding of this balance. We report simula-
tions of the compressed liquid performed with both standard
and corrected versions of DFT, comparing calculated ther-
modynamic and structural properties with experimental data,
and using energy benchmarks from quantum Monte Carlo
(QMC)36–38 to help analyze the errors. We also use QMC
and quantum-chemistry benchmarks on water clusters from
the trimer to the 27-mer to investigate how DFT errors in the

a)Author to whom correspondence should be addressed. Electronic mail:
m.gillan@ucl.ac.uk

compressed liquid are related to those found in small finite
systems.

Diffraction experiments show that liquid water under-
goes major structural changes on compression.39–44 The O–O
radial distribution function (rdf) at ambient conditions indi-
cates a structure related to that of ambient ice Ih,45 with each
monomer surrounded by ∼4 nearest neighbors at the typical
hydrogen-bonding distance of ∼2.8 Å, second neighbors be-
ing at the much larger distance of ∼4.5 Å. On compression,
the coordination number increases to values of at least 8 at ∼1
GPa (10 kilobars), and to 12 or more at ∼4 GPa. The experi-
ments indicate that the changes result from close approach of
monomer pairs that are not H-bonded to each other. These
changes mirror the structural changes in compressed ice,45

with the ambient-pressure forms ice Ih and ice XI being 4-fold
coordinated and the compressed forms ice VII and VIII stable
at pressures of between 1.5 and 60 GPa being 8-fold coordi-
nated. Standard DFT approximations exaggerate the energy
and pressure increases with increasing coordination number
in ice,13 and similar problems are expected in the compressed
liquid. Here, we investigate how selected DFT approxima-
tions reproduce the experimentally known structure and ther-
modynamic properties of the liquid near the melting curve at
the density for which the experimental pressure is 1.5 GPa.

0021-9606/2014/141(1)/014104/13/$30.00 © 2014 AIP Publishing LLC141, 014104-1
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Widely used DFT approximations such as PBE46 and
BLYP,47 over-stabilize low-coordinated water structures rel-
ative to high-coordinated structures. This tendency is seen in
the excessive differences between low- and high-density ice
structures,13 and also in the underestimated densities of the
equilibrium liquid,28, 29, 33–35 and the erroneous relative ener-
gies of isomers of the water hexamer.4, 8 Part of the problem
lies in the incorrect description of dispersion interactions, and
calculations on solid, liquid, and cluster forms of water have
been reported using many varieties of dispersion-inclusive
DFT.4, 6, 13, 16, 27, 29, 30, 33, 35 However, these have met with only
partial success, and the role of errors in other parts of the DFT
energy, for example, polarization and exchange-repulsion
interactions, is not yet clear.

We will make use of the exact many-body expansion (see,
e.g., Refs. 7, 48, and 49), according to which the total energy
Etot(1, 2, . . . N) of a system of N monomers is expressed as

Etot(1, 2, . . . N) =
∑

i

E(1)(i) +
∑

i<j

E(2)(i, j )

+E(>2)(1, 2, . . . N) . (1)

Here E(1)(i) is the one-body (1B) energy of monomer i,
E(2)(i, j) is the 2-body (2B) interaction energy of monomers
i and j, and the beyond-2-body (B2B) energy E(>2) is every-
thing not included in 1B and 2B energy. We and others have
shown recently how this expansion can be used to analyze
the errors of DFT not only for water clusters,7, 9, 17, 34 but also
for ice structures17, 34 and for periodic configurations drawn
from first-principles simulations of the liquid.9 Analyses of
this kind allow a separation of DFT errors into their 1B, 2B,
and B2B components, thus giving further insight into the na-
ture of these errors.

Our first-principles molecular dynamics (FPMD) sim-
ulations on the compressed liquid employ the BLYP and
PBE approximations of DFT, and corrected versions denoted
by BLYP-2 and PBE-2, which are constructed by elimina-
tion of 1B and 2B errors.34 We choose to work with BLYP
and PBE because these two approximations have been ex-
tensively used in previous first-principles work on water
systems. The two approximations provide an instructive con-
trast, since their 2B errors differ greatly,8 and their B2B er-
rors are also very different.9, 17 Our techniques for eliminating
the 1B and 2B errors of the BLYP and PBE approximations
are based on the methods of Gaussian Approximation Poten-
tials (GAP).9, 17, 34, 50 GAP is a rather general set of machine-
learning methods, but here it provides a scheme for construct-
ing accurate and systematically improvable representations of
the differences between DFT and benchmark energies, the lat-
ter being obtained from wavefunction-based quantum chem-
istry. GAP correction for 1B and 2B errors implicitly includes
correction for 2-body dispersion errors, as well as other types
of 2-body error.

The present work makes extensive use of energy bench-
marks from QMC.36–38 The high accuracy of QMC for wa-
ter systems is shown by recent work on ice structures and
clusters,8, 13, 51, 52 which indicates that it is nearly as accurate
as the “gold standard” CCSD(T) (coupled cluster with singles
and doubles and perturbative triples) at the complete basis-set

limit (see, e.g., Ref. 53). As we have shown,9 the availabil-
ity of QMC benchmarks for the total energy, in combination
with GAP representations of the 1- and 2-body errors of DFT,
permits calculation of the B2B errors of DFT for periodic
“snapshots” of the liquid as well as thermally sampled con-
figurations of large clusters. The strategy used here was used
recently to analyze the B2B errors of BLYP in the ambient
liquid.9

The large structural changes in liquid water induced by
pressures of a few GPa were suggested by early simulations
based on force-field models54–56 and were confirmed by the
neutron-diffraction work of Wu et al.39 The dependence of
liquid structure on pressure and temperature has since been
studied in detail with x-ray diffraction42–44, 57 and neutron
diffraction.40, 41, 58 An important question has been whether
the increase of coordination number from ∼4 to ∼12 over the
pressure range 0–6 GPa implies disruption of the H-bonding
network. Evidence that H-bonding remains largely intact has
been inferred from the O–O, O–H, and H–H partial rdfs ex-
tracted from neutron diffraction measurements.41 The earliest
FPMD simulations of compressed liquid water59 were per-
formed beyond the pressure range where comparison with ex-
periment could be made. Much subsequent FPMD work has
focused on still higher pressures60–66 where molecular disso-
ciation is dominant, and is not directly relevant to the present
work. Supercritical conditions67 are also very different from
those of interest here. The only previous FPMD simulations
of the liquid that we know of at pressures of a few GPa near
the melting curve are those of Ikeda et al.,43 which employ
the little-used exchange-correlation functional of Hamprecht
et al.68 The FPMD work of Kang et al.69 at very high tem-
peratures is also of some relevance, as is the very recent
dispersion-corrected FPMD work of Corsetti et al.35 on the
compressibility of the near-ambient liquid.

The state having temperature T = 420 K and density
1.245 g/cm3, corresponding to experimental pressure 1.5 GPa,
was chosen for the present simulations because it was studied
in the neutron diffraction work of Strässle et al.41 and is close
to states studied with x-ray diffraction by Weck et al.42 After
summarizing our techniques (Sec. II), we present our simu-
lation results in Sec. III, where we test the uncorrected and
corrected DFT approximations by comparing with thermody-
namic and structural data from experiment and with energetic
data from QMC. Use of the many-body expansion to separate
2B and B2B errors allows us to show the importance of B2B
errors, as has been done for other water systems.7–9, 17, 34 To
gain further insight, we present (Sec. IV) results for these er-
rors in thermal samples of compressed clusters ranging from
the 3-mer to the 27-mer, using coupled-cluster and QMC
benchmarks to compute these errors. An overall summary is
given in Sec. VI.

II. TECHNIQUES

The VASP code70 was used for all the FPMD simula-
tions of the compressed liquid. The calculations employed the
projector augmented wave (PAW) technique71 with a plane-
wave cut-off of 1200 eV and core radii of 0.8 bohr for H
and 1.1 bohrs for O. The simulations were performed in the
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(N,V, T ) ensemble, with the Andersen thermostat72 used to
ensure canonical sampling. We implemented the thermostat
by drawing new velocities from the appropriate Gaussian dis-
tribution at intervals of 0.1 ps. Since we are not concerned
with dynamics here, we avoid the need for a very short time
step by setting both the O and H masses to 16 amu, all our
FPMD simulations being performed with the time step �t
= 1.0 fs. For details of equilibration times and lengths of pro-
duction runs, see below (Sec. III A). Our DFT energy calcu-
lations on the clusters with PBE were done as for the liquid,
but with the somewhat lower plane-wave cut-off of 875 eV.
The BLYP calculations on the clusters were performed with
the PWSCF code,73 employing pseudopotentials of von Barth-
Car and Troullier-Martins types for H and O, respectively, the
plane-wave cut-off being 3400 eV.

Details of our GAP techniques for correcting 1B and
2B errors of any chosen DFT approximation are given in
Ref. 34. The GAP corrections used in the present work
employ the configuration sets and benchmarks described in
Ref. 17, which provides examples demonstrating the high ac-
curacy of the corrections. We denote by BLYP-1 and PBE-1
the approximations obtained by correcting BLYP and PBE for
1B errors alone, and by BLYP-2 and PBE-2 the approxima-
tions after correction for both 1B and 2B errors. Our FPMD
simulations based on BLYP-2 and PBE-2 employ a modified
version of the VASP code, with corrections to the forces and
stress tensor being based on formulas for the exact derivatives
of the GAP energy corrections.

The QMC benchmark energies for snapshots of the liq-
uid in periodic boundary conditions and for all the clusters
from 9-mer to 27-mer were performed by diffusion Monte
Carlo (DMC)36–38 with the CASINO code,74 using the set-
tings described in our previous work.9 The same Dirac-Fock
pseudopotentials75 were used, non-locality being treated in
the usual locality approximation. The trial wavefunctions
were of Slater-Jastrow type, with a single Slater determi-
nant, the single electron orbitals being obtained from DFT-
LDA plane-wave calculations with the PWSCF package,73 us-
ing the same plane-wave cut-off as before. The orbitals were
represented in a basis of B-splines,76 and the time step was
0.005 a.u. (For the tests justifying this choice of time step, see
Refs. 9 and 13.)

Our calculations of benchmark values of the 3B energy
of H2O trimers (Sec. IV A) employ the CCSD(T) technique
close to the complete basis-set limit, rather than QMC. These
calculations were performed using the MOLPRO code.77, 78

The strategy used to ensure accurate basis-set convergence is
described in an earlier report.8 This involves the separation of
the 3B energy into its Hartree-Fock and correlation parts, with
the correlation part computed using the second-order Møller-
Plesset (MP2) technique as an initial approximation. The dif-
ference between the CCSD(T) and MP2 correlation ener-
gies is then added as a final correction. Details of the coun-
terpoise and explicit-correlation (F12) techniques used are
exactly as in Ref. 8. We use the Dunning augmented
correlation-consistent basis sets aug-cc-pVXZ,79, 80 with X
the cardinality, referred to here simply as AVXZ. We know
from previous work8 that with AVTZ the residual basis-set
error on the HF 3B energy and the MP2 correlation compo-

nent of 3B energy is no more than ∼10 μEh (0.27 meV). For
the δCCSD(T) correction to the correlation component of the
3B energy, we use AVDZ, which is expected to incur a basis-
set error of no more than 20 μEh in the correction. For the
DFT 3B energies, we use AVTZ, which leaves basis-set er-
rors of no more than ∼10 μEh.

We shall see that correction of BLYP and PBE for 1B
and 2B errors still leaves significant errors in the energies of
the liquid and the clusters and the pressure of the liquid. We
recently showed9 that a scheme due to Medders, Babin, and
Paesani (MBP)81, 82 gives a useful way of correcting the B2B
errors of BLYP for small clusters, and we use the same meth-
ods here. The scheme was described in detail in the original
MBP paper81 and our own implementation was outlined in the
supplementary material of Ref. 9. Here, we recall the main
points, and we explain how we have somewhat generalized
the way of applying it.

We denote the benchmark 3B energy of an (H2O)3 cluster
by E

(3)
bench(i, j, k) and the DFT approximation by E

(3)
DFT(i, j, k),

both being functions of the positions, orientations, and inter-
nal deformations of monomers i, j, and k. We seek a function
φ(i, j, k) which approximately represents the 3B errors:

φ(i, j, k) � �E(3)(i, j, k) ≡ E
(3)
DFT(i, j, k) − E

(3)
bench(i, j, k),

(2)

and we mitigate the B2B error of DFT for any water system
by subtracting the sum

∑
i < j < k φ(i, j, k) of all its 3B errors.

Following Ref. 81, φ(i, j, k) is the product of factors s3 and
V3, with s3 an overall smooth cut-off function and V3 a sum
of products of functions η(rab), with rab the distance between
atoms a and b in different monomers. The function s3 depends
only on the three O–O distances and on inner and outer cut-
off distances RI and RF, chosen to optimize the representation.
Included in V3 are products of two functions η(rab)η(rcd) and
products of three functions η(rab)η(rcd)η(ref), with the condi-
tion that in every such product there is at least one atom from
every one of the three monomers. To ensure invariance of φ(i,
j, k) under interchange of any two monomers and under in-
terchange of the H atoms in any given monomer, we work
with symmetrized sums of products κn(i, j, k), where each
κn is the sum of a chosen second-degree product η(rab)η(rcd)
or third-degree product η(rab)η(rcd)η(ref) and all the distinct
products formed from it by permutation of monomers and
intra-monomer interchange of H atoms (see Ref. 81 for de-
tails). The function V3 is then represented as a linear com-
bination

∑
n cnκn(i, j, k) of the “basis functions” κn. As in

Ref. 81, the η(r) are chosen to be decaying exponentials η(r)
= exp (−kr), with k being adjustable inverse lengths, which
differ for O–O, O–H, and H–H pairs.

In the original MBP scheme, the coefficients cn are de-
termined by a least-squares fit of φ(i, j, k) to the 3B error
�E(3)(i, j, k) for a large set of trimer configurations. How-
ever, this places only weak constraints on the cut-off func-
tion s3, which is crucially important for extended water sys-
tems. In this work, we therefore prefer to perform a “global”
least-squares fit of φ(i, j, k) to a large set of configurations
of clusters of different sizes and of the periodic liquid, as
well as trimers. Naturally, this approach can work only if the
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B2B errors of the systems involved in the fit are mainly 3B
errors.

III. COMPRESSED LIQUID

Our calculations on the liquid at T = 420 K and den-
sity (light water, H2O) 1.245 g/cm3 (1245 kg m−3) are of
two kinds. First, we report FPMD simulations based on BLYP
and PBE and their corrected versions BLYP-2 and PBE-2 (see
Sec. II). These simulations used cubic cells with 64 monomers
per cell, the cube edge being L = 9.1638 Å. The second kind
of calculation consists of energy benchmarks from diffusion
Monte Carlo on samples of configurations drawn from DFT
simulations of the liquid performed on 32-monomer periodic
systems. Systems of only 32 monomers would give inaccu-
rate thermodynamic and structural quantities, but our earlier
tests9 indicate that such systems suffice to assess the differ-
ences between DFT and QMC energies. The liquid config-
urations used for our QMC benchmarks come from FPMD
simulations performed with BLYP, PBE, and their corrected
counterparts.

A. First-principles molecular dynamics simulations

Our FPMD simulations had a duration of typically 40 ps,
of which the first 10 ps were discarded for equilibration (see
Table I). The equilibration time was decided by monitoring
the evolution of the energy (recall that these are constant-T
simulations) in sub-periods of the simulation. The average
pressures computed from the production parts of the simula-
tions are compared in Table I with experimental values at the
given temperature and density. We report both the raw values
of pressure computed directly from the simulations and the
values after correction for two kinds of systematic error: First,
our earlier tests9 on simulations at ambient conditions indicate
that with our chosen plane-wave cut-off a Pulay correction
of ∼0.2 GPa (2 kilobars) is needed; second, previous work29

suggests that simulations of liquid water with 64 monomers
overestimate the pressure by ∼0.1 GPa compared with the
thermodynamic limit. The net correction to be added to our
raw values is thus 0.1 GPa. The computed internal energies
given in the table for each DFT approximation do not include
the kinetic energy of the nuclei, and are relative to the energy
of isolated water molecules computed with the same DFT

TABLE I. Duration of FPMD simulations, excluding equilibration period,
and computed time average of pressure and internal energy, with energy
relative to that of isolated H2O monomer at equilibrium geometry of Par-
tridge and Schwenke.83 Values of pressure in parentheses are obtained by
correction for errors of plane-wave cut-off and finite cell size. (Units: 1 GPa
= 10 kilobars; 1 mEh = 27.2 meV = 0.63 kcal/mol.)

Method Duration (ps) Pressure (GPa) Energy (mEh/monomer)

BLYP 20 3.14 (3.24) − 6.7
PBE 33 2.25 (2.35) − 11.5
BLYP-2 34 1.13 (1.23) − 14.1
PBE-2 23 2.22 (2.32) − 10.3
Expt. ... 1.50 ...

approximation, always at the standard equilibrium geometry
of Partridge and Schwenke.83 We do not attempt a compari-
son with the experimental internal energy of the liquid relative
to the vapor, because this quantity is expected to be strongly
affected by quantum nuclear effects. (Infrared data84 indicate
that the molecular stretch frequencies are lowered by some-
thing like 10% relative to the free molecule, and the resulting
loss of zero-point energy would be expected to stabilize the
liquid by around 2 mEh (∼50 meV) per monomer.) However,
the errors on the DFT energies will be quantified below using
benchmarks from QMC.

The computed pressures show substantial errors. The
BLYP and PBE pressures are too high by factors of 2.2
and 1.6, respectively, and correction of PBE for its 1B and
2B errors makes little difference. The BLYP-2 pressure is
too low by 18%. The excessive pressures with BLYP and
PBE are expected, since earlier work29 shows that at ambi-
ent density BLYP and PBE give pressures that are too high by
∼0.7 GPa and 0.4 GPa, respectively. The failure of PBE-2 to
improve the pressure indicates that the problem is not due to a
poor description of dispersion, which should be mainly a 2B
effect. The unreliability of the computed internal energies is
also clear. The difference of binding energy by over a factor
of 2 between BLYP and BLYP-2 is not a surprise, since ear-
lier work on liquid water and ice9, 17, 34 shows that BLYP and
BLYP-2 will be underbound and overbound, respectively.

We noted in the Introduction the qualitative change of
structure revealed by diffraction experiments39–44 as pressure
is increased from ambient to around 1 GPa. This change
is clear from a comparison of the O–O rdf given by our
present high-pressure BLYP-2 simulation with our recent
ambient-pressure BLYP-2 simulation at T = 350 K,9 shown in
Fig. 1. In agreement with x-ray and neutron experiments, the
position of the first peak remains almost unchanged, while
the second peak at ∼4.2 Å suffers complete collapse, with the
second neighbors moving inward to form a broad shoulder on
the first peak.

Comparison of the partial rdfs gαβ (r) from our four
FPMD simulations with the neutron diffraction results of

2 3 4 5 6
r (Å)

0

1

2

gOO

BLYP-2 P = 0 GPa
BLYP-2 P = 1.5 GPa

FIG. 1. Comparison of O–O radial distribution functions gOO(r) from
simulations performed with BLYP-2 approximation at high pressure (red
solid curve) and near-ambient pressure (black dotted curve). High-pressure
gOO(r) is from present work at T = 420 K and density ρ = 1.245 g/cm3

(1245 kg m−3), low-pressure gOO(r) is from BLYP-2 simulation reported in
Ref. 9 at T = 350 K, ρ = 1.049 g/cm−3.
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Strässle et al.41 at P = 1.5 GPa, T = 420 K (Fig. 2) shows
reasonable overall agreement, though there are some signifi-
cant differences between the simulation rdfs. The predictions
of PBE-2 and BLYP-2 are very close to each other, but differ
noticeably from those of PBE and BLYP. There are signifi-
cant differences between the approximations for gOO(r), with
more inward displacement of the second shell into the region
of the first shell with BLYP-2 and PBE-2 and considerably

FIG. 2. Comparison of O–O, O–H, and H–H radial distribution functions
gαβ (r) from present FPMD simulations with neutron-diffraction measure-
ments of Strässle et al.41 FPMD results are from simulations performed with
BLYP (black dashed), BLYP-2 (red solid), PBE (green solid), and PBE-
2 (blue dotted) approximations, with experimental results shown as yellow
solid curves. Note: intra-molecular O–H and H–H peaks are excluded from
experimental results.

less with PBE. The differences between the approximations
for gOH(r) are also significant, with BLYP-2 and PBE-2 show-
ing appreciably less structure than BLYP and PBE. We note
that the first peak in gOO(r) from simulation is slightly lower
and broader and displaced to high r compared with experi-
ment, except in the case of PBE, but the position of the first
minimum is very poor with PBE. A striking deviation from
experiment is the greater structuring of gOH(r) around the first
minimum and second maximum produced by all the simula-
tions. Many authors have shown82, 85–87 that quantum nuclear
effects significantly soften the structure of liquid water, and
the softening is particularly marked for gOH and gHH. These
effects may partly explain the differences between simulation
and experiment.

In assessing the discrepancies between our simulations
and neutron diffraction, we note that the extraction of the
three gα, β(r) from the experiments does not employ isotope
substitution,40, 88 but instead uses the EPSR technique (em-
pirical potential structure refinement).89 In this approach, the
measured structure factor S(q) is compared with the structure
factor predicted by molecular dynamics simulations based on
a standard reference potential (the SPC/E model90 was used
by Strässle et al.41) together with a superimposed empirical
potential. The latter potential is then refined to fit the mea-
sured S(q). However, we can avoid any uncertainties arising
from the EPSR procedure itself by directly computing S(q)
from our simulations. The required formulae are given in stan-
dard references, e.g., Ref. 91. Since the neutron diffraction
measurements of Strässle et al. were performed on D2O, we
use the coherent neutron scattering lengths of 16O and 2H.

In Fig. 3, we compare the S(q) from our BLYP-2 simu-
lation with experimental data and the EPSR fit. The overall
agreement for wavevectors 1.7 < q < 15.0 Å−1 is good (up-
per panel), but there are significant discrepancies in the region
2.5 < q < 6.0 Å−1 (see lower panel). Specifically, there is a
systematic offset between the BLYP-2 S(q) on the one hand
and the experimental and EPSR S(q) on the other hand be-
tween 4.5 and 6.0 Å−1. The difference is small, but this q
region appears to be important, because Strässle et al.41 show
that this is where the measured S(q) depends most strongly
on thermodynamic state. Most of the differences visible in
Fig. 2 appear to arise from small differences in this region.
It is natural to ask whether the neutron diffraction data con-
tain enough information to distinguish between the structures
predicted by our four DFT approximations. We have tested
this by comparing the S(q) produced by BLYP-2, PBE and
BLYP simulations with the experimental data. The compar-
isons (see supplementary material92) show significant differ-
ences in the region around 4.4 Å−1, where PBE and BLYP
display a pronounced peak, which is weak with BLYP-2 and
absent from experiment. All the simulations show the system-
atic offset from experiment for 4.5 < q < 6.0 Å−1. In addition,
PBE and BLYP deviate significantly from experiment around
q ∼ 3.0 Å−1. Thus none of the DFT approximations agrees
perfectly with experiment, but BLYP-2 and PBE-2 agree bet-
ter than PBE and BLYP.

We have analyzed the close approach of non-H-bonded
neighbors by separating the O–O rdf into H-bonded and non-
H-bonded contributions gHB

OO(r) and gNHB
OO (r). Following Luzar
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FIG. 3. Neutron-weighted structure factor S(q) (see text) computed from
present BLYP-2 simulations of liquid water at T = 420 K, ρ = 1245 kg m−1

(red points), compared with experimental measurements of Strässle et al.41

(black points) and EPSR fit to experiment (green points). Lower panel shows
expanded view of upper panel for restricted wavevector range 2.5 < q
< 6.0 Å−1.

and Chandler,93 we characterize the geometry of a monomer
pair by the O–O distance rOO and the four angles φOH.O be-
tween the intramolecular OH bonds and the intermolecular
O–O axis. (The angles are such that if an H atom is between
two O atoms, then φOH.O is zero.) A pair is counted as H-
bonded if rOO and φOH.O fall below chosen cut-off values. We
define a H-bond weight wHB as a product of distance and an-
gle factors: wHB ≡ wr

HBw
φ
HB. Here, wr

HB is zero if rOO > r1

and is unity if rOO < r0, with r0 and r1 inner and outer cut-off
distances; between r0 and r1 it is given by a smoothly con-
necting cubic function. Similarly w

φ
HB is zero and unity for

φmin > φ1 and φmin < φ0 with smoothly connecting values
between φ0 and φ1, φmin being the smallest of the four angles
φOH.O. We then define the H-bonded component gHB

OO(r) of the
O–O rdf exactly like the usual rdf gOO(r), except that contri-
butions are weighted by wHB; its non-H-bonded component
is gNHB

OO ≡ gOO(r) − gHB
OO(r). We use inner and outer cut-off

values r0, r1 = 3.1, 3.5 Å, and φ0, φ1 = 30◦, 40◦.
We show in Fig. 4 the decomposition of gOO(r) into

its HB and NHB parts for the PBE and the BLYP-2 sim-
ulations. (The BLYP results are intermediate between PBE
and BLYP-2, and the PBE-2 results are almost the same as
those from BLYP-2.) For comparison, we show the same
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FIG. 4. Hydrogen-bonded and non-hydrogen-bonded components gHB
OO(r)

and gNHB
OO (r) of the O–O radial distribution function gOO(r) from FPMD

simulations of compressed liquid water (T = 420 K, ρ = 1.245 g/cm3

= 1245 kg m−3) with PBE and BLYP-2 approximations and near-ambient
liquid water (T = 350 K, ρ = 1.049 g/cm−3) with BLYP-2 approximation.

decomposition from our recently reported BLYP-2 simulation
of the liquid at ambient pressure and T = 350 K. These plots
allow us to gauge the amount of penetration of NHB neigh-
bors into the first shell of HB neighbors. According to the
BLYP-2 simulations, there is significant penetration even at
ambient pressure, with an appreciable probability of finding
NHB monomers at the typical O–O distance of 2.8 Å charac-
teristic of H-bonding. At 1.5 GPa (15 kilobars), BLYP-2 gives
substantially increased penetration. The amount of penetra-
tion given by PBE and BLYP is very much less, and indeed
the penetration with PBE at 1.5 GPa is no greater than with
BLYP-2 at ambient pressure.

We asked in the Introduction whether the close approach
of NHB monomers entails a disruption of the H-bonded net-
work. The number of other monomers with which a monomer
forms H-bonds is the sum of the weights wHB between the
given monomer and its neighbours, i.e., the integrated coor-
dination number of gHB

OO(r). In our high-pressure simulations
with BLYP, PBE, BLYP-2 and PBE-2, we find HB coordina-
tion numbers of 3.70, 3.77, 3.60, and 3.62. For comparison,
the same analysis performed for our BLYP-2 simulation at
ambient pressure yields the value 3.54. Similar numerical es-
timates of the number of H-bonds formed by each monomer
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in ambient water have been reported by other researchers.94

These comparisons indicate that the H-bonding network is not
disrupted by compression.

B. Analysis of DFT errors using QMC benchmarks

We saw in Sec. III A that our DFT-based approximations
predict very different internal energies, some of which must
be seriously in error. However, detailed comparison with the
experimental internal energy is difficult, since our FPMD sim-
ulations do not account for quantum nuclear effects. Here, we
present QMC benchmark energies for sets of snapshots of the
entire simulated system drawn from FPMD simulations. The
high accuracy of QMC for water systems8, 13, 51, 52 allows us
to quantify the energy errors of DFT for the liquid without
any uncertainty from quantum nuclear effects. In addition, we
obtain not only the thermal average of the errors, but also in-
formation about their fluctuations.

We have performed FPMD simulations on the 32-
monomer liquid at the same compressed state as before, us-
ing the BLYP, PBE, BLYP-2, and PBE-2 energy functions. In
these simulations, the equilibration time was typically 10 ps,
and we drew 20 configurations at intervals of typically 1 ps
from the subsequent production runs of each simulation, so as
to form an overall sample of 80 configurations spanning the
different kinds of structure represented by the rdfs of Fig. 2.
We then calculated benchmark energies of these 80 configura-
tions using DMC, and we also calculated their energies using
BLYP, PBE, BLYP-2, and PBE-2.

By averaging over the 20 configurations drawn from each
of the four simulations, we have computed the mean error per
monomer and the rms fluctuation of this error for the four en-
ergy algorithms (Table II). With EDFT the energy of a given
DFT algorithm, and EDMC the DMC energy, the error is �E
≡ EDFT − EDMC. The mean value 〈�E〉 is proportional to
the number Nmolec of monomers, so that the mean error per
monomer is 〈�E〉/Nmolec. The fluctuation of the error is δ�E
≡ �E − 〈�E〉, and we expect 〈(δ�E)2〉 to be proportional to
Nmolec, so the rms reported in the table is [〈(δ�E)2〉/Nmolec]1/2.

TABLE II. Normalized mean errors 〈�E〉/Nmolec and root-mean-square
fluctuations of errors [〈(δ�E)2〉/Nmolec]1/2 of energies computed with algo-
rithm X for configurations drawn from simulations performed with energy
algorithm Y (rms fluctuations are given in parentheses). Errors are com-
puted as deviations from QMC benchmarks: �E ≡ EDFT − EDMC, with δ�E
≡ �E − 〈�E〉 the fluctuation of the error about its mean value, and Nmolec

the number of molecules in the system. Energy algorithms X consist of un-
corrected PBE and BLYP functionals, and their versions corrected for 1-body
errors (PBE-1, BLYP-1) and for both 1- and 2-body errors (PBE-2, BLYP-2).
Energy units: mEh (1 mEh = 27.2 meV = 0.63 kcal/mol.)

Simulation method Y

Energy alg. X PBE PBE-2 BLYP BLYP-2

PBE 0.38 (1.56) 1.68 (1.34) 0.56 (1.87) 1.52 (1.40)
PBE-1 1.69 (0.85) 2.25 (0.67) 1.86 (1.22) 2.19 (0.76)
PBE-2 1.45 (0.51) 1.48 (0.51) 1.49 (0.46) 1.49 (0.41)
BLYP 4.89 (1.20) 5.92 (1.18) 4.99 (1.54) 5.79 (1.03)
BLYP-1 6.42 (0.58) 6.58 (0.57) 6.51 (0.80) 6.57 (0.51)
BLYP-2 − 2.52 (0.57) − 2.38 (0.55) − 2.42 (0.58) − 2.39 (0.51)

Table II shows that uncorrected BLYP and its corrected
version BLYP-1 are always severely underbound, by ∼5.5
and ∼6.5 mEh, respectively, while PBE and PBE-1 are al-
ways somewhat underbound, by ∼1.0 and ∼2.0 mEh, respec-
tively (1 mEh � 27 meV � 0.63 kcal/mol). The raising of
energy caused by 1B corrections is expected, since the en-
ergy cost of distorting the H2O monomer is too low with
both BLYP and PBE.8, 95 Correction for 2-body errors gives
substantial improvements, particularly for BLYP, but the re-
sulting errors of ∼−2.5 and ∼1.5 mEh/monomer are still ap-
preciable. (For comparison, the energy difference between 4-
fold coordinated ice Ih and 8-fold coordinated ice VIII is only
1.2 mEh/monomer,13, 96 so errors of more than 1 mEh must be
considered important.) For all the configuration sets, the rms
fluctuations of the errors always decrease monotonically as
1B and 2B errors are removed. The results of Table II will be
highly relevant to our presentation of energy errors in thermal
samples of water clusters in Sec. IV.

IV. THERMAL SAMPLES OF COMPRESSED
CLUSTERS

In elucidating the relationship between DFT errors in the
compressed liquid and in clusters, our main interest will be
in beyond-2-body (B2B) errors, since we already know how
to correct for 1B and 2B errors. We start by studying 3-body
(3B) errors in a large sample of trimers chosen to represent the
configurations found at both high and low pressures. We use
this sample to show the usefulness of the MBP technique81

for representing 3B energy errors. We then study the B2B er-
rors of BLYP and PBE in samples of the 9-mer, the 15-mer,
and the 27-mer clusters under compression. Our aim is to in-
vestigate how these errors evolve towards the errors found in
the compressed liquid.

A. Three-body errors in compressed trimers

Our sample of trimer configurations is drawn mainly
from our FPMD simulation of compressed liquid water per-
formed with the BLYP-2 energy function (see Sec. III A), but
also from an earlier simulation of the liquid at T = 300 K and
zero pressure based on the empirical AMOEBA force field.8 To
extract trimers from the liquid, we take the atomic coordinates
of the periodic system at a particular time step and repeatedly
place a sphere of chosen radius Rrad at a random position until
a case is found for which the number of monomers within the
sphere is exactly 3. (For this purpose, a monomer is within
the sphere if its O atom is within the sphere.) When such a
case is found, the trimer in question is added to the list, and the
procedure is repeated. The time-steps at which this is done are
equally spaced at intervals of ∼0.1 ps. We formed a set of 230
configurations in this way with Rrad = 1.9 Å. With Rrad this
small, we find that the shortest O–O distance in each trimer
is never greater than 3.0 Å and the longest is never greater
than 3.7 Å, and in about 30% of cases all three distances are
less than 3.2 Å, so that the trimers are all rather compact. A
further set of 263 more extended trimers was formed using
Rrad = 2.3 Å. We added a further set of 207 trimers from the
ambient AMOEBA simulation, these being drawn completely
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at random subject only to the condition that the largest O–O
distance is less than 4.5 Å. The overall set thus contains 700
trimer configurations spanning a wide range of geometries.

We computed CCSD(T) benchmark values and BLYP
and PBE values of the 3B energies of our sample of
700 trimers, using the methods and basis sets outlined in
Sec. II. Plots of the DFT errors, i.e., the differences
E(3)(DFT) − E(3)(bench) against the benchmark 3-body en-
ergy E(3)(bench) (Fig. 5) show that the 3B errors of PBE are
almost entirely positive, with values typically in the range
0.2–0.6 mEh, while those of BLYP are mainly in the range
−0.3 to 0.2 mEh, being mainly negative when the 3-body en-
ergy itself is negative. It is not accidental that the signs of
these errors are the same as the signs of the errors of PBE-2
and BLYP-2 in the liquid, as we shall see.

We have performed least-squares fits of the MBP ana-
lytic representation of the 3B errors (see Sec. II). We show in
Fig. 5 the corrected error plots obtained when the inner and
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FIG. 5. Errors of PBE (upper panel) and BLYP (lower panel) approximations
for 3-body energy of a sample of 700 configurations of the water trimer. Er-
rors are computed as deviations from CCSD(T) benchmark values. For each
approximation, errors are shown before (blue: BLYP, red: PBE) and after
(magenta: BLYP, green: PBE) correction using the MBP scheme.81 Units:
mEh.

outer cut-off distances RI and RF have the values 3.5 and 4.5 Å
and the inverse decay lengths kOO, kOH, and kHH have the val-
ues 0.5, 2.0, and 1.0 Å−1, respectively. We see that the MBP
representation is effective, since it achieves a substantial re-
duction of the 3B errors.

B. Beyond-two-body errors in compressed
nano-droplets

We generate sets of configurations that are roughly rep-
resentative of water clusters in thermal equilibrium (“nano-
droplets”) following the method described in a previous
report9 This consists of running classical m.d. simulations us-
ing the TTM3-F model of Fanourgakis and Xantheas85 (see
Sec. II), with a weak confining potential added to suppress
evaporation. For present purposes, we need to control the de-
gree of compression of the cluster, which we characterize by
the squared radius of gyration, defined by

R2
gyr = 1

Nmolec

∑

i

|ri − r0|2, (3)

where ri is the O position of monomer i, r0 is the centroid of
the O positions of the entire cluster, and Nmolec is the number
of monomers in the cluster. During the simulation, Rgyr spon-
taneously fluctuates, but has a mean square value 〈R2

gyr〉 deter-
mined by the temperature and the force-field parameters. It is
convenient to increase the compression, i.e., to reduce 〈R2

gyr〉,
by making the dispersion coefficient C more negative. (The
standard value of C in the model is C = −723 kcal/mol Å6;
note that 1 kcal/mol = 43.4 meV = 1.59 mEh.)

Previously,9 we computed DMC benchmarks for a set
of 100 configurations each for the 9-mer and the 15-mer, of
which 50 employed the standard value of C and the other 50
employed the reduced value −200 kcal/mol Å6. Here, we gen-
erated a further 100 configurations each for the compressed
9-mer and 15-mer. Each set of 100 was assembled from sub-
sets of 25 configurations drawn from separate TTM3-F sim-
ulations performed with C = −1000, −1500, −2000, and
−2500 kcal/mol Å6, these simulations being performed at
T = 200, 250, 300, and 300 K and having a duration of typi-
cally 1 ns. We also present here DMC benchmarks for the 27-
mer for a set of 100 configurations assembled from five sub-
sets of 20 configurations drawn from separate TTM3-F simu-
lations performed with C = −1000, −1250, −1500, −1750,
and −2000 kcal/mol Å6 at T = 250, 275, 300, 300, and
300 K.

The DMC benchmark energies for all configurations of
the nano-droplets were computed in the usual way, the runs
being long enough to reduce the statistical errors to ∼0.1 mEh

per monomer. The BLYP and PBE energies were computed in
periodic boundary conditions with the PWSCF73 and VASP70

codes, respectively. The cube edge in all these calculations
was chosen as 21.2 Å, on the basis of tests reported earlier.9

GAP 1B and 2B corrections were then applied to obtain
the BLYP-1, BLYP-2, PBE-1, and PBE-2 energies. We illus-
trate the results by showing (Fig. 6) the errors of the PBE-1,
PBE-2, BLYP-1, and BLYP-2 energies (deviations from the
DMC benchmarks) for the 100 configurations of the 27-mer
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FIG. 6. Energy errors of binding energies of DFT-based approximations
PBE-1, PBE-2, BLYP-1, and BLYP-2 for sample of 100 configurations of the
water 27-mer cluster drawn from molecular dynamics simulations performed
with the TTM3-F force-field (see text). Errors are plotted against squared
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nano-droplet, plotted against the squared radius of gyration.
The errors for the 9-mer and the 15-mer (see the supplemen-
tary material92) are smaller, but have the same general form.

The plots for each approximation show a common pat-
tern, revealing how the errors evolve with increasing cluster
size. BLYP-1 is severely underbound, with errors that grow
rapidly with increasing compression, making the cluster ex-
pand too much in thermal equilibrium. Correction for 2-body
errors gives the overbound BLYP-2 approximation, whose
B2B errors become more negative with compression, mak-
ing the clusters contract too much. The sizes of the BLYP-1
and BLYP-2 errors grow with cluster size, reaching roughly
5 mEh/monomer and −2 mEh/monomer for the 27-mer, which
are close to their counterparts in the liquid (see Table II). We
have noted9 that the dependence of the BLYP-1 and BLYP-
2 errors on R2

gyr is related to the errors in equilibrium den-
sity of the ambient liquid. The errors of PBE-1 and PBE-2
differ greatly from those of BLYP-1 and BLYP-2, and for the
9-mer are rather small. However, they grow with cluster size
to nearly 2 mEh/monomer for the compressed 27-mer, which
is similar to their values in the compressed liquid (Table II).
They increase with compression, as expected from the marked
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FIG. 7. Energy errors of BLYP-2 approximation before (red) and after (blue) MBP 3-body corrections. Upper four panels show errors for thermal samples of
(a) 6-mer, (b) 9-mer, (c) 15-mer, and (d) 27-mer as function of squared radius of gyration R2

gyr (see text). Lower two panels show errors for (e) 10 configurations

of liquid at ρ = 1.049 g/cm3, T = 350 K and (f) 20 configurations of compressed liquid at ρ = 1.245 g/cm3, T = 420 K, both configuration sets being drawn
from FPMD simulations based on the BLYP-2 approximation. Energy units: mEh/monomer.
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overestimation of pressure in the liquid with both PBE and
PBE-2 (Table I). Importantly, the errors of PBE-2 in the clus-
ters are only slightly less than those of PBE-1, so that they
must be mainly B2B errors.

V. CORRECTING FOR BEYOND-TWO-BODY ERRORS

Our results for DFT errors in the nano-droplets suggest
their close relationship with the corresponding errors in the
liquid, and confirm the importance of B2B errors in both sys-
tems. The simplest scenario would be that the B2B errors are
mainly 3B errors, in which case the representation of 3B er-
rors presented in Sec. IV A could be used to correct the B2B
errors of both clusters and liquid. We reported recently9 that
this method of correcting the B2B errors of BLYP-2 works
well for clusters up to the 15-mer, but our initial attempts to
extend this to the liquid were unsuccessful. One reason is that
spatial cut-offs are very important for the liquid, but trimers
alone do not give enough information about these cut-offs.
However, we have had some success with an alternative strat-
egy, in which the parameters of the MBP representation are
determined by a “global” least-squares fit to the B2B errors
of trimers, larger nano-droplets and liquid configurations, as
described in Sec. II.

To show that this approach has merit, we compare in
Fig. 7 the errors of BLYP-2 before and after correction using
the global-fit MBP scheme for the 6-mer, 9-mer, 15-mer, and
27-mer nano-droplets and for configurations from our BLYP-
2 simulations of both compressed and ambient liquid water.
The DMC benchmarks and the BLYP-2 energies used here
for the nano-droplets are taken from the results of Sec. IV B,
while the corresponding results for the compressed liquid
are for the 20 configurations from our BLYP-2 simulations
(Sec. III). The data for the 6-mer and for the ambient liq-
uid (ρ = 1.049 g/cm3, T = 350 K) are taken from the work
of Ref. 9. The cut-off distances RI and RF appearing in the
function s3 (see Sec. II and Ref. 81) have the values 3.5 and
4.5 Å respectively, and the inverse decay lengths kOO, kOH,
and kHH for O–O, O–H, and H–H pairs are 0.5, 2.0, and
1.0 Å−1. The weights of the clusters and the liquid config-
urations in the least-squares fit were chosen to give a bal-
anced representation of the B2B errors in the different sys-
tems. The results of Fig. 7 show that the correction of B2B
errors using the MBP scheme achieves a considerable im-
provement, with the remaining errors after correction being
typically ∼0.5 mEh (15 meV) per monomer.

VI. DISCUSSION AND CONCLUSIONS

We have shown that the widely used BLYP and PBE ap-
proximations suffer from serious errors for compressed liq-
uid water, even after correction for 1- and 2-body errors. This
is at odds with the idea that the errors are mainly due to
dispersion, which should be mainly a 2-body effect in wa-
ter. Uncorrected BLYP underbinds the liquid with respect
to free monomers by a factor of 2, while the BLYP-2 ap-
proximation obtained by correcting for 1B and 2B errors
overbinds by 20% (errors of ∼5 mEh � 140 eV/monomer and
−2.5 mEh � −65 meV/monomer, respectively). The pres-

sures with uncorrected and corrected BLYP are too high by a
factor of 2 and too low by 25% (errors of 1.6 and −0.4 GPa),
respectively. The errors of binding energy with uncorrected
and corrected PBE are smaller (8% and 12%, or ∼1 mEh

� 30 meV/monomer and ∼1.5 mEh � 40 meV/monomer,
respectively), but the pressure errors are substantial (50% or
0.75 GPa both before and after correction). These errors are
similar to well documented errors for the energetics of ice
structures computed with PBE and BLYP and their 1- and
2-body-corrected counterparts.13, 16, 17, 34

Comparison with diffraction data has been one of
the key ways of testing DFT approximations, and very
recently wavefunction-based methods, for ambient liquid
water,17, 18, 21, 22, 27–30, 33, 34, 97 and we have presented a com-
parison of this kind for the compressed liquid. All our sim-
ulations reproduce semi-quantitatively the collapse of the
second-neighbor shell in gOO(r) and the large increase of co-
ordination number between ambient pressure and 1.5 GPa, but
our simulated rdfs appear to differ significantly from those
deduced from neutron diffraction41—in particular, our com-
puted gOH(r) are appreciably more structured than the exper-
imental data. The differences may be partly due to quantum
nuclear effects, but we have also noted that the experimental
rdfs were extracted from the measured structure factors S(q)
using the EPSR technique, and we have tested our simulations
more directly against experiment by computing the neutron-
weighted S(q) from our simulations. The agreement between
the S(q) from experiment and simulation is good, but there are
discrepancies that appear to be real, with the S(q) from BLYP-
2 and PBE-2 being better than the uncorrected versions.

The O–O rdfs from the various DFT approximations dif-
fer significantly. The gOO(r) from PBE, and to a lesser extent
BLYP, show a less complete collapse of the second shell and
a more extended shoulder on the first peak compared with the
gOO(r) from BLYP-2 and PBE-2, which are almost identical to
each other. The forms of these O–O rdfs suggest that BLYP-2
and PBE-2 make the close approach of non-H-bonded pairs
more favorable than BLYP and PBE. We confirmed this by
analyzing gOO(r) into H-bonded and non-H-bonded compo-
nents. The analysis reveals substantial differences in the de-
gree of penetration of non-H-bonded second neighbors into
the shell of H-bonded first neighbors, with BLYP-2 and PBE-
2 showing considerably more penetration than BLYP and par-
ticularly PBE. This same analysis confirms earlier indications
from experiment41 that the large change of structure caused
by increasing pressure involves no disruption of the H-bonded
network.

Our many-body analysis of DFT errors in thermal sam-
ples of compressed water clusters confirmed the importance
of B2B errors7–9, 17 and showed that essentially the same er-
rors seen in the liquid are already exhibited by quite small
clusters. We showed that PBE and BLYP, when applied to a
large sample of trimers drawn mainly from our simulations
of the compressed liquid, suffer from substantial 3B errors.
For PBE, these are systematically positive and have a typi-
cal value of ∼0.4 mEh (11 meV). To see that this is impor-
tant, we note that in the ice VIII structure there are 12 trimers
per monomer having all three O–O distances less than 3.5 Å,
so that the error just mentioned would cause ice VIII to be
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underbound relative to ice Ih by 4.8 mEh (130 meV). We saw
that the 3B errors of BLYP can be both negative and posi-
tive, so that their net effect depends on the system of interest,
but their magnitude is again significant. We found that the
3B errors of both PBE and BLYP are quite accurately repre-
sented by the scheme developed by Medders, Babin, and Pae-
sani (MBP)81 for representing the 3B errors of parameterized
force fields for water.

The aim of our study of DFT errors in the larger nano-
droplets was to trace the evolution of these errors as we ap-
proach the bulk liquid through finite systems of increasing
size. By referring to QMC benchmarks, we found a consis-
tent pattern of 2B and B2B errors for both BLYP and PBE.
The B2B errors of BLYP are systematically negative, and
for the 27-mer they are quantitatively close to what we ob-
serve in the liquid (∼−1.8 mEh/monomer for the 27-mer ver-
sus −2.3 mEh for the liquid). The consistent trend to more
positive BLYP errors and more negative BLYP-2 errors with
increasing compression of the cluster accords with the over-
and under-estimates of pressure by BLYP and BLYP-2 in the
compressed liquid. An important finding for the PBE approx-
imation is that the errors of PBE-1 and PBE-2 are almost the
same. The trend towards more positive errors with increas-
ing compression in this case accords with the over-estimate
of liquid pressure by both PBE and PBE-2.

Given the evident importance of B2B errors, we have
sought ways of representing them that are valid for the en-
tire range of systems we have studied—from trimers, through
larger nano-droplets to the bulk liquid. We pointed out that
this complex problem becomes manageable if we can assume
that B2B errors are dominated by 3B errors. We showed that
in this case a representation can be achieved by using the MBP
scheme81 to perform a “global” least-squares fit to the B2B
errors of all the nano-droplets together with the bulk liquid.
This idea turns out to work reasonably well for the B2B er-
rors of BLYP-2, so that we then have a DFT approximation
corrected for 1B, 2B, and B2B errors which represents the en-
ergies of the thermal samples for all the water systems treated
here to within ∼0.5 mEh � 15 meV/monomer. Surprisingly,
the same strategy does not appear to work well for the B2B
errors of PBE-2, so that these errors are presumably not dom-
inated by 3B contributions. The availability of a DFT approx-
imation whose 1B, 2B, and B2B errors are well characterized
and can be (mostly) corrected opens new opportunities, which
we plan to explore. If our corrected BLYP total energy func-
tion is as good as our tests suggest, then it should be capable
of reproducing the thermodynamic, structural, and dynamic
properties of liquid water over a wide range of conditions.
Finding out whether or not this is true will provide an impor-
tant test of the ideas presented in this paper.

Whatever the fate of our corrected BLYP approxima-
tion, further analysis of the errors in existing DFT function-
als is needed, even though exciting progress is beginning to
be reported in the simulation of liquid water using correlated
wavefunction-based methods.97 An accurate description of
dispersion is essential in water,13, 16, 27–30, 33, 35 as it is in other
molecular systems. However, dispersion is expected to be
mainly a 2-body effect in water,98 so that dispersion errors
in water should be partly correctable by adding appropriate

2-body interaction potentials, as in the DFT+D schemes of
Grimme.99, 100) Since the GAP-based approach we use es-
sentially eliminates all 2B (as well as 1B) errors, it auto-
matically includes a correct description of dispersion, apart
from many-body contributions. Although 3B (Axilrod-Teller-
Muto) dispersion101, 102 is not entirely negligible in the ice
VIII structure,96 it cannot be responsible for the B2B errors of
∼2 mEh/monomer that we have discussed here, so we should
look elsewhere for the origin of these B2B errors. The sen-
sitivity of 2B exchange-repulsion to the choice of exchange
functional is well known,103, 104 and the effects can range from
excessive repulsion (e.g., BLYP, revPBE) to spurious attrac-
tion (e.g. PW91).104 Erroneous exchange can cause substan-
tial 3B errors in rare-gas systems, where PBE is known to
suffer from a positive 3B error.105 Similar 3B errors have also
been reported in the methane hydrate system.106 The inaccu-
rate description of polarizabilities by semi-local functionals
is known to have a significant effect on the dielectric proper-
ties of water systems,107 and this source of B2B errors could
also be important. More detailed investigation of both kinds
of B2B errors would therefore be timely.

In the course of this work and our other recent work,
we have created a large data-base of QMC energy bench-
marks for water systems ranging from small and large clus-
ters to ice structures to periodic representations of the liquid
under various conditions. We believe that this could serve
as a useful resource in the development and testing both
of improved density functionals and of parameterized force
fields.108 Until recently, accurate ab initio data was mainly
confined to small clusters, but the availability of QMC cal-
culations on both clusters and periodic systems, perhaps in
combination with correlated quantum chemistry on periodic
systems,97 seems certain to change this situation for the
better.109, 110

In conclusion: (a) both uncorrected and corrected
PBE and BLYP reproduce semi-quantitatively the large
compression-induced changes of liquid structure given by
diffraction experiments, and they confirm that compression
does not disrupt the H-bonding network; (b) correction for 1-
and 2-body errors causes significantly increased penetration
of non-H-bonded neighbors into the shell of H-bonded first
neighbors; (c) even after correction for these errors, the pres-
sure and internal energy of the compressed liquid are poorly
predicted, so that beyond-2-body errors are important; (d) the
2-body and beyond-2-body errors in the liquid are closely re-
lated to similar errors in compressed water clusters; (e) the
beyond-2-body errors of BLYP can be quite well corrected by
treating them as mainly 3-body errors.
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