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Abstract

The use of ®rst-principles molecular dynamics to calculate the viscosity of liquid metals using the Green±Kubo

relations is described. The ®rst-principles techniques are based on density functional theory, the pseudopotential ap-

proximation, and plane-wave basis sets. The statistical-mechanical basis of the Green±Kubo relations is summarised,

and extensive ®rst-principles molecular dynamics simulations of liquid aluminium are presented to demonstrate that the

method works in practice. Calculated viscosity results are reported for two important systems: liquid iron at Earth's

core conditions, and liquid selenium at states on the liquid±vapour curve. The signi®cance of the viscosity results for an

understanding of these systems is discussed. Ó 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

First-principles molecular dynamics (FPMD)
has become a widely used simulation method for
studying liquid metals and a variety of other
condensed-matter systems. Since the pioneering
work of �Stich et al. on liquid Si [1], a large amount
of simulation work has been published on all kinds
of liquid metals, including Cu [2], Al [3], Ge [4], Hg
[5] and Se [6], as well as liquid alloys such as Ag/Se
[7]. Comparisons with di�raction data show that in
many cases the structure of the real liquid is pre-
cisely reproduced by FPMD simulations. Atomic
di�usion coe�cients are generally well reproduced
as well. But up to now, rather little attention has
been paid to transport coe�cients such as viscos-
ity, even though these quantities are often very

important for practical reasons or for under-
standing the dynamics of the liquid.

The aim of this paper is to show that the FPMD
calculation of the viscosity of liquid metals is now
becoming feasible. In Section 2, we summarise the
statistical±mechanical background, emphasising
the Green±Kubo relations used in this work. Sec-
tion 3 reports results on three systems: liquid Al,
chosen for our initial tests because of its simplicity;
a liquid Fe/S alloy at Earth's core conditions, which
illustrates the geological importance of viscosity
calculations; and liquid Se, a case where the vis-
cosity is intimately related to the unusual structure
of the liquid. Discussion and conclusions are pre-
sented in Section 4 and Section 5, respectively.

2. Theoretical ideas

The technique of FPMD [8], based on density
functional theory (DFT), the pseudopotential
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approximation and plane-wave basis sets, is now
very well established, and we do not describe it in
detail here. The main idea is to calculate the total
energy of a system and the forces on all the atoms
for each set of atomic positions by solving
Schr�odinger's equation to ®nd the electronic
ground state. The forces are then used to generate
the time evolution of the atomic positions using
Newton's equation of motion, with the ground
state being recalculated at every time step. The key
approximation ± indeed the only signi®cant one ±
is the functional used to represent the electronic
exchange-correlation energy. It is important to
stress that although FPMD is well established,
liquid metals (and particularly transition metals)
pose special problems. Our practical calculations
rely heavily on the technical advances made by
Kresse and Furthm�uller as implemented in the
VASP code [9±11]. General reviews of DFT and
FPMD are given in Refs. [12,13]; a non-technical
review of FPMD and its multifarious applications
is given in Ref. [14]. In the rest of this section, we
give a brief review of the statistical mechanics
needed to calculate transport coe�cients, and we
then summarise the technical details that apply to
all the simulations presented. Further details par-
ticular to each simulation will be given in the ap-
propriate place in Section 3.

2.1. Statistical mechanics

The most obvious way to calculate the viscosity
is to subject the simulated system to a steady shear
rate, calculate the average shear stress, and divide
one by the other. However, this is not necessarily
easy to do in practice; we prefer a more indirect
approach, which exploits the relation between
transport coe�cients and equilibrium correlation
functions. This approach has been widely used in
classical molecular dynamics simulation [15], but
has so far been little discussed in the ®rst-princi-
ples context. It will therefore be useful to give a
brief summary of the basic ideas.

There is a branch of statistical mechanics
known as `linear response theory', concerned with
the response of a system to a weak external per-
turbation. (The meaning of `weak' will be made
clear below.) The corner-stone of linear response

theory is the ¯uctuation±dissipation theorem [16],
which gives a rigorous relation between the re-
sponse to a perturbation and spontaneous ¯uctu-
ations in the absence of the perturbation. Many
external perturbations can be described by a time-
varying term added to the Hamiltonian. If H0 is
the Hamiltonian of the system without the per-
turbation, then an external perturbation varying at
frequency x can be described by adding a term
Aexp�ixt�, so that the total Hamiltonian is

H�t� � H0 � kAexp�ixt�: �1�
Here A is a dynamical variable describing the
perturbation, and k is a parameter specifying the
size of the perturbation. Now we want to know
how some other variable B responds to this per-
turbation. Denote by hB�t�i the average value of B
at time t. Because of the perturbation, hB�t�i varies
in time at frequency x. If the perturbation is weak
enough, this variation will be proportional to k, so
that we can write

hB�t�i � kvBA�x�exp�ixt�; �2�
where vBA�x� is a so-called response function
characterising the frequency-dependent response
of B caused by A. (The requirement that the re-
sponse is proportional to k de®nes what is meant
by a `weak' perturbation.) We assume here that the
average of B in the absence of the perturbation is
zero.

The ¯uctuation±dissipation theorem says that
the response function vBA�x� can be rigorously
expressed in terms of a correlation function de-
scribing the ¯uctuations of A and B when the
system is in thermal equilibrium with no pertur-
bation applied. For systems in which the move-
ment of the atoms can be described by classical
mechanics, the theorem says

vBA�x� �
1

kBT

Z1
0

dteixt d

dt
hB�t�A�0�i: �3�

Now transport coe�cients are a special kind of
response function concerned with a special kind of
variable. In general, the dynamics of atoms hap-
pens on a time-scale of ps. But there are some
degrees of freedom that vary on time-scales of
seconds, minutes or even longer. The origin of this
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remarkable behaviour lies in the existence of con-
served quantities. For example, energy is con-
served, so the energy in one region of the system
can only change by the ¯ow of energy from sur-
rounding regions. The same is true of other con-
served quantities such as particle number and
momentum. But the ¯ux of such quantities is
caused by gradients in the system, so that it de-
pends on the wavevector of the disturbance. As the
wavevector gets smaller, the time rate of change
gets smaller. Transport coe�cients specify the
proportionality between the ¯ux of a conserved
quantity and the gradient of a thermodynamic
variable.

Since transport coe�cients describe the re-
sponse to a disturbance, the ¯uctuation±dissipa-
tion theorem tells us that they can be expressed in
terms of correlation functions. It turns out that the
dynamical variables entering these correlation
functions are none other than the ¯uxes of the
conserved quantities. The resulting general for-
mulas expressing transport coe�cients in terms of
equilibrium correlation functions of the ¯uxes of
conserved quantities are called Green±Kubo rela-
tions. The huge advantage of calculating transport
coe�cients this way in a simulation is that we
never have to apply any disturbance at all. We
simply do a normal simulation and calculate the
correlation functions.

Viscosity is about the transfer of momentum,
and the ¯ux of momentum is the stress tensor Pab,
so it is not surprising to ®nd that the Green±Kubo
formula for the shear viscosity g is [15]

g � V
kBT

Z1
0

dthPxy�t�Pxy�0�i; �4�

where V is the total volume of the system. Here Pxy

is the o�-diagonal component of the stress tensor,
with x and y the Cartesian components. The ¯uc-
tuating stress tensor Pxy at any instant of time can
be calculated in FPMD, as it can in classical mo-
lecular dynamics, so this formula gives us a fun-
damentally based procedure for calculating the
viscosity of a liquid from ®rst principles. We refer
to the quantity hPxy�t�Pxy�0�i in the following as the
stress autocorrelation function (SACF). In fact,
there are ®ve independent SACFs corresponding

to the ®ve components of the traceless stress ten-
sor: Pxy , Pyz, Pzx,

1
2
�Pxx ÿ Pyy� and 1

2
�Pyy ÿ Pzz�. In a

large system, the ®ve SACFs would be statistically
identical by spherical symmetry, but the cubic
periodic boundary conditions that we use break
this symmetry slightly. In the practical calcula-
tions, each SACF like hPxy�t�Pxy�0�i is computed as
an average of the quantity Pxy�t � t0�Pxy�t0� over
time origins t0 for given time di�erences t.

2.2. Practicalities of FPMD

The results we shall present all come from
FPMD simulations done with the pseudopotential
plane-wave code VASP [9±11]. As noted above,
metallic systems pose special technical problems,
which the VASP code has been speci®cally de-
signed to overcome. Unlike the FPMD technique
originally proposed by Car and Parrinello [8],
VASP performs an iterative minimization to the
electronic ground state at every molecular-dy-
namics step. Particularly important in VASP is a
charge-mixing scheme based on ideas proposed by
Pulay and others (see Ref. [10]) which plays a
crucial role in accelerating the search for the
ground state. Also important is an e�cient itera-
tive matrix-diagonalization scheme based on re-
sidual minimization. A smearing method is used to
avoid problems with level crossing, and electronic
free energy is used as the variational quantity, with
the electronic levels occupied according to Fermi
statistics corresponding to the temperature of the
system. Forces and the stress tensor are calculated
using the Hellmann±Feynman theorem (see Ref.
[10]). The temperature is controlled using a Nos�e
thermostat [17]. In the present approach to
FPMD, convergence to the ground state at each
step is accelerated by extrapolating the wavefunc-
tions and the charge density from previous steps,
as described in Ref. [4]. In the present work, we use
a modi®cation of the procedure described by
Kresse and Furthm�uller [10,11]. We represent the
charge density q�r� as qatom�t� � dq�t�, where qatom

is a linear superposition of atomic charge densities.
The initial value of the small quantity dq is then
obtained for each new step by quadratic extrapo-
lation from the two previous steps. This gives
better performance than extrapolation of the full
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density employed in the standard version of the
VASP code [10,11].

All our calculations use ultrasoft pseudopoten-
tials, following the ideas originally proposed by
Vanderbilt [18]. The use of such pseudopotentials
is particularly crucial for our liquid iron simula-
tions, which would otherwise be computationally
prohibitive. The general problem of constructing
e�cient ultrasoft pseudopotentials has been dis-
cussed in detail by Kresse and Hafner [19], and a
detailed assessment of the VASP pseudopotentials
as applied to transition metals has recently been
published by Moroni et al. [20].

3. Illustrative results

3.1. A test case: liquid aluminium

We choose liquid aluminium for our initial
tests, because it is a rather simple system for
FPMD. The calculations are rapid, and the ex-
perimental shear viscosity is well established. The
present calculations build directly on our recent
work in which ®rst-principles simulations were
used to study the melting properties of aluminium
[21]. Technical details of the present calculations
are as follows: The local density approximation
was used for the electronic exchange-correlation
energy, and the plane-wave cut-o� was 130 eV.
The simulations were done on a periodic system
with 64 atoms in the cell, using C-point sampling.
The time step used for integration of the equation
of motion was 3 fs, and the self-consistency tol-
erance on the ground-state energy was 1:5� 10ÿ8

eV/atom. With this tolerance, the drift in the total
energy was �0.2 meV/atom/ps, which is extremely
small. Our longest simulation of l-Al was done at
1000 K (the melting point is 930 K), and a density
of 2470 kg mÿ3, which gives a calculated pressure
close to zero; this density is ca. 5% greater than the
experimental value at this temperature. We believe
the discrepancy is mainly due to the LDA, which
generally underestimates equilibrium volumes. The
total duration of this simulation was 80 ps.

The average /�t� of the ®ve SACFs, normalised
by dividing by the value /�0�, is displayed in
Fig. 1. As expected, /�t� decays rapidly to zero as

t!1. We have estimated the statistical error on
/�t�, and we ®nd that it is almost independent of t,
having a root-mean-square value of ca. 1.5% of the
correlation function at t � 0. For t greater than ca.
0.4 ps, the average value of /�t� is smaller than this
error.

Fig. 2 reports the viscosity integral
R t

0
dt0/�t0� as

a function of t, the t!1 limit of the integral being
the shear viscosity. We have estimated the error in
the integral as a function of t using the scatter of the
SACFs calculated by breaking the simulation into
short, statistically independent intervals. This
method is combined with an analytic expression for
the error, and the resulting error estimate is also
reported in Fig. 2. From the point where /�t� falls
below the noise, we integrate only the latter, so no
further information can be gained. If we assume
that /�t� is zero for t > 0:4 ps, we obtain g � 2:2�
0:1 mPa s, which should be compared with the ex-
perimental value of 1.25 mPa s [22].

The point we wish to stress is that the statistical
error on our calculated g is only ca. 5%. This
means that the fully ®rst-principles calculation of
the viscosity, with an accuracy that is more
than enough for most practical purposes, is now
feasible.

Fig. 1. Average over the ®ve independent components of the

autocorrelation function of the traceless stress tensor /�t� cal-

culated for liquid Al at 1000 K at the density 2470 kg mÿ3.

Values are normalised by dividing by /�0�.
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Nevertheless, the agreement with the experi-
mental g is not entirely satisfactory. Our tests
suggest that the discrepancy is mainly due to the
error in the equilibrium density produced by LDA.
To check this, we have performed another simu-
lation under the same conditions, but at the ex-
perimental density of 2350 kg mÿ3 (this yields a
calculated pressure of ÿ2 GPa). The duration of
this simulation was 20 ps. The results for the vis-
cosity integral reported in Fig. 2 give g � 1:4�
0:15 mPa s, which is in close agreement with the
experimental value.

3.2. Liquid iron in the Earth's core

We now turn to a problem of fundamental
importance in the Earth sciences: the viscosity of
the material in the Earth's outer core. Seismic
studies show that the Earth's core consists of a
liquid outer part and a solid inner part [23]. Ar-
guments based on the abundance of chemical ele-
ments in the Sun and in meteorites lead one to
expect a large amount of iron in the core [23]. A
combination of seismic and other data gives a
fairly accurate pro®le for the density (and hence

pressure) as a function of depth, and the inferred
density as a function of pressure is close to that
given by laboratory experiments on iron. Never-
theless, the inferred density is about 10% less than
that of pure iron [23], so there is little doubt that
the core consists of iron alloyed with lighter ele-
ments; sulphur, oxygen and silicon are leading
candidates [23]. The liquid outer core is in a state
of turbulent convection, and this motion drives the
dynamo responsible for the generation of the
Earth's magnetic ®eld, as well as transporting heat
from the inner core to the mantle.

The viscosity of the outer core is one of the
most poorly determined quantities in geophysics,
with estimates from di�erent sources spanning
some 12 orders of magnitude, as reviewed recently
by Secco [24]. It is also an important quantity,
because if it was as large as some estimates suggest,
the nature of the turbulent convection could be
radically altered. If the core consisted of pure iron,
we should expect the liquid to have a simple close-
packed structure not very di�erent from that of a
hard-sphere system, and then it would be hard to
imagine that the viscosity would be much di�erent
from that of normal liquid metals under ambient
conditions. But if iron is combined with other el-
ements, perhaps at concentrations greater than
20%, a much larger viscosity cannot be ruled out.

In an e�ort to improve our understanding of
iron in the Earth's core, we have initiated a pro-
gramme of work in which ®rst-principles calcula-
tions are being used to investigate the properties of
both solid and liquid iron over a wide range of
conditions. We have recently reported VASP cal-
culations on solid and liquid Fe at pressures up to
those in the Earth's core [25,26]. We demonstrated
that calculations based on ultrasoft pseudopoten-
tials reproduce rather precisely the known prop-
erties of solid iron under ambient pressures (see
also Moroni et al. [20]), and that they give good
agreement with the results of all-electron calcula-
tions on the zero-temperature solid at high pres-
sures. Our FPMD simulations of l-Fe at several
thermodynamic states relevant to the outer core
showed the close-packed structure expected under
these conditions. We made viscosity estimates
based on the value of the di�usion coe�cient, and
these indicated low values in the region of 13 mPa s.

Fig. 2. Viscosity integral of the average stress autocorrelation

function and its statistical error as a function of time for liquid

Al at 1000 K. Results are shown for the calculated zero-pres-

sure density 2470 kg mÿ3 and the experimental density 2350

kg mÿ3.
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We present here some results from our current
work on a liquid Fe/S alloy in which we have
calculated the viscosity directly from the Green±
Kubo formula. The S mole fraction was taken to
be 18.75%, in line with maximum estimates for S
abundance in the core [23], the temperature was
6000 K, and the density was 12 330 kg mÿ3 (the
inferred density of the liquid at the inner-core
boundary is ca. 12000 kg mÿ3). The simulations
were performed on a system of 64 atoms per re-
peated cell (52 Fe and 12 S), with the generalised
gradient approximation for exchange-correlation
energy [27], a plane-wave cut-o� of 350 eV, a time
step of 1 fs and a self-consistency threshold of
1:5� 10ÿ7 eV/atom. The total duration of the
simulation was 10 ps.

The viscosity integral
R t

0
dt0/�t0� from this sim-

ulation is reported in Fig. 3, together with the er-
ror estimated as for the l-Al case. The SACF itself
appears to have gone to zero after ca. 0.2 ps, and
our estimate of g from these results is 9� 2 mPa s.
Clearly the statistical error is substantial, because
the run is relatively short, but given the uncer-
tainties faced by earth scientists, the result is still
valuable. It is similar to our earlier estimate for
pure l-Fe under core conditions, and fully con®rms
that the viscosity is not much greater than that of

typical liquid metals at ambient pressures (recall
the g of 1.4 mPa s for l-Al).

We are currently engaged in similar calculations
on the l-Fe/alloy, which are giving even smaller
viscosities. So even at this preliminary stage, we
have evidence against the much larger g values that
have sometimes been suggested on the basis of
seismic and other data.

3.3. Structure and dynamics of liquid selenium

Liquid Se is an unusual and much studied sys-
tem. In the trigonal crystal structure of the solid,
the atoms form in®nite chains, with strong cova-
lent bonds between neighbouring atoms within the
chains, but rather weak bonds between di�erent
chains. This chain structure survives essentially
unchanged when the system melts (Tm � 490 K),
and di�raction measurements show that the co-
ordination number in the liquid is almost exactly
equal to 2 [28]. Just above the melting point, the
viscosity is exceptionally high, with a value of �5
Pa s [29], i.e. about 3000 times that of l-Al. With
increasing temperature, the viscosity decreases
rapidly, reaching values of �4 mPa s at 1000 K
[29]. This decrease indicates that the Se chains
become more and more disrupted as the temper-
ature increases, though di�raction measurements
[28,30] indicate that the average coordination
number remains close to 2 even at high tempera-
tures. Experimental measurements using nuclear
magnetic resonance (NMR) and other techniques
have been used to derive the average chain length
(number of atoms per chain), and reported values
go from �104 at the melting point to �10 at 1600
K [31,29].

There has been a considerable amount of sim-
ulation work on l-Se, using both ®rst principles
[6,32±34] and tight-binding [35] methods. The
FPMD simulations we shall present here are an
extension of the simulations reported recently by
Kirchho� et al. [6]. A detailed analysis of these
simulations to extract chain lengths and defect
concentrations has been made by Kresse et al. [36].
The structure factors and radial distribution
functions produced by the recent FPMD simula-
tions [6,34] agree fairly closely with di�raction
data. However, it has become clear that the

Fig. 3. Viscosity integral of the average stress autocorrelation

function and its statistical error as a function of time for liquid

Fe/S under Earth's core conditions.
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simultaneous presence of weak and strong bonds
poses non-trivial problems for DFT, and that the
LDA is much less satisfactory than GGA [6]. The
chain lengths calculated even from the most recent
FPMD simulations do not appear to agree very
well with experimental estimates, particularly at
temperatures near the melting point. In our recent
analysis [36], we found chain lengths of 62 and 23
at 870 and 1370 K, respectively, compared with
NMR values of �1000 and �20 at these two
temperatures. This indicates quite good agreement
at high temperatures but a di�erence of at least an
order of magnitude at 870 K.

Because of the relationship between chain
length and viscosity, it is clear that a calculation of
viscosity can help to show whether the disagree-
ment about chain lengths is pointing to a real de-
®ciency in the simulations, rather than, for
example, a problem with the interpretation of the
experimental data. We have calculated the viscos-
ity of l-Se from FPMD simulations at 870 and
1370 K. The simulation techniques and details of
the pseudopotentials are exactly the same as in our
recent work [6]. As before, there are 69 atoms in
the repeating cell. The present simulations repre-
sent continuations of the previous ones, and our
viscosity results are calculated from runs of 14 ps
duration at both temperatures.

The viscosity integrals are shown in Fig. 4,
together with the estimated errors. From the
asymptotic values we estimate viscosities of
0:52� 0:04 and 0:30� 0:04 mPa s at 870 and 1370
K, respectively. We compare these with the values
of 6.0 mPa s and 0.55 mPa s at 870 and 1370 K,
respectively, given by the measurements of Perron
et al. [29]. (The value at 870 K is taken directly
from their Fig. 1, but the 1370 K value is our ex-
trapolation of their results, which extend only to
1000 K.) Our results therefore agree moderately
well with experiment at high temperature, but
there is a substantial disagreement at 870 K. It
seems likely that this disagreement is related to the
disagreement about chain lengths. Since the chain
length in the simulated system appears to be too
short by about an order of magnitude at 870 K, it
is intuitively reasonable that the viscosity should
be too small by a similar amount. Our viscosity
calculations for l-Se therefore suggest rather

strongly that the disagreement about chain lengths
is due to some kind of de®ciency in the FPMD
simulations.

It seems possible that this problem may be due
to the small size of our simulated system. To in-
vestigate this further, we are now performing
molecular dynamics simulations using an order-N
tight-binding technique, which should allow us to
go to systems of at least 1000 atoms. Even though
the use of the tight-binding approximation entails
a loss of absolute accuracy, this approach should
be perfectly adequate to discover whether size ef-
fects are important for this type of problem.

4. Discussion

The results we have presented on liquid alu-
minium leave little doubt that transport coe�-
cients such as viscosity can now be calculated
entirely from ®rst principles, without any need for
empirical modelling or adjustable parameters.
Given the well established accuracy of ®rst-prin-
ciples methods for many kinds of system, the re-
liability of calculated transport coe�cients raises
two main issues: statistical accuracy, and size ef-
fects. The statistical accuracy depends on the
duration of the simulation, and for a collective

Fig. 4. Viscosity integral of the average stress autocorrelation

function and its statistical error as a function of time for liquid

Se at the temperatures 870 and 1370 K.
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quantity such as viscosity is generally almost in-
dependent of the size of the simulated system. Our
demonstration that the purely statistical errors on
the calculated viscosity for l-Al are of order 5%
shows that, at least for this simple type of metal,
this source of error can be brought under control.
However, the question of size e�ects is more subtle
and more interesting.

For simple model systems, such as the hard-
sphere and Lennard-Jones liquids, the in¯uence of
size e�ects on transport coe�cients calculated by
classical molecular dynamics has been exhaustively
studied by many authors. For example, Schoen
and Hoheisel [37] studied the viscosity for
Lennard±Jonesium using system sizes ranging from
32 atoms to 2048 atoms. They found that even a
system as small as 32 atoms gave quite respectable
values of the viscosity. The system-size error is
known to depend quite strongly on thermody-
namic state, but near the triple point we expect this
kind of error for a system of �64 atoms to be in
the region of 10%. Clearly size errors cannot sim-
ply be ignored, and ®rst-principles calculations on
larger systems are desirable, but for simple liquids
this kind of error does not appear to be a major
issue. Liquid iron and its alloys with sulphur and
oxygen under Earth's core conditions should
count as `simple' in this sense, because of their
close-packed structure, whereas selenium may well
not be `simple'. Indeed, the case of selenium shows
that for some liquids there are still problems. Al-
though the calculated viscosity is essentially cor-
rect at high temperatures, it becomes de®nitely
incorrect at lower temperatures. The origin of this
problem needs further investigation.

Although we have focused entirely on the shear
viscosity in this paper, we emphasise that other
transport coe�cients such as thermal and electrical
conductivity are also extremely important. But for
metals we cannot simply apply the present meth-
ods to calculate these quantities, because electronic
degrees of freedom play a crucial role. The essen-
tial distinction here is that in calculating the vis-
cosity it is correct to assume that the electrons
follow the nuclei adiabatically (the Born±Oppen-
heimer principle). So provided the motion of the
nuclei is correctly described the viscosity will be
correct. But for thermal and electrical conductivi-

ties transport due to electronic degrees of freedom
is of the essence. There have already been ap-
proximate ®rst-principles calculations of the elec-
trical conductivity of liquid metals, based on
Kubo±Greenwood theory [38,39]. (This is related
to the Green±Kubo theory used in the present
work, but applies to transport of electrons.) How-
ever, we suggest that what is now needed for a full
treatment of electronic transport in liquid metals is
a many-body analysis based perhaps on the GW
approximation. The calculation of electronic re-
sponse functions by computational many-body
theory is a rapidly developing ®eld, and calcula-
tions of this kind should soon become feasible.

5. Conclusions

We have demonstrated that the ®rst-principles
calculation of the viscosity of liquid metals is now
feasible, and that it is capable of delivering accu-
rate and reliable results. The potential importance
of being able to do this has been illustrated by
calculations on liquid iron and its alloys under
Earth's core conditions. However, we have shown
that liquid selenium is an unusual case where the
calculated viscosity agrees less well with experi-
ment, and where deeper study is needed.
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