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Abstract

Partition coefficients of light elements between the solid and liquid iron phases are crucial for uncovering the state and
dynamics of the Earth’s core. As one of the major light element candidates, sulfur has attracted extensive interests for mea-
suring its partitioning and phase behaviors over the last several decades, but the relevant experimental data under Earth’s core
conditions are still scarce. In this study, using a toolkit consisting of electronic structure theory, high-accuracy machine learn-
ing potentials and rigorous free energy calculations, we establish an efficient and extendible framework for predicting complex
phase behaviors of iron alloys under extreme conditions. As a first application of this framework, we predict the partition
coefficients of sulfur over wide range of temperatures and pressures (from 4000 K, 150 GPa to 6000 K, 330 GPa), which
are demonstrated to be in good agreement with previous experiments and ab initio simulations. After a continuous increase
below �250 GPa, the partition coefficient is found to be around 0.75 ± 0.07 at higher pressures and are essentially
temperature-independent. Given these predictions, the partitioning of sulfur is confirmed to be insufficient to account for
the observed density jump across the Earth’s inner core boundary and its roles on the geodynamics of the Earth’s core should
be minor.
� 2020 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

The Earth’s core is constituted of some light elements in
addition to the major components of iron and nickel (Birch,
1964; Allegre et al., 1995; Mcdonough and Sun, 1995). The
prime candidates for these light elements include sulfur,
oxygen, silicon, carbon, and hydrogen (Poirier, 1994; Li
and Fei, 2007; Hirose et al., 2013). It is recognized that they
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redistribute across the Earth’s inner core boundary (ICB),
with more in the outer core (�5–10 wt%) and less in the
inner core (�2–3 wt%). The difference in light element con-
tents between the outer and inner core helps explaining the
density jump across the ICB (Masters and Gubbins, 2003;
Cao and Romanowicz, 2004), anchoring the temperature
profile in the whole Earth’s core (Morard et al., 2014)
and inducing compositional stratification in the inner core
(Alboussiere et al., 2010). More importantly, compositional
buoyancy created by the redistribution of light elements
turns out to be the principal energy source for powering
the geodynamo in the outer core (Stacey and Stacey,
1999) and may be critical for driving the convection in
the inner core (Gubbins et al., 2013).

The distributions of light elements across ICB are lar-
gely controlled by their partition coefficients between the
coexisting liquid and solid phases. With several decades’
efforts of high-pressure experiments, current knowledge of
the partitioning or more broadly phase behaviors of iron
alloys has been significantly extended but is still far from
adequate (Morard et al., 2014). For sulfur, the focus of this
study, the eutectic melting phase relations have been deter-
mined by a number of experiments (Li et al., 2001;
Chudinovskikh and Boehler, 2007; Stewart et al., 2007;
Chen et al., 2008; Morard et al., 2008; Kamada et al.,
2010; Terasaki et al., 2011 Kamada et al., 2012; Morard
et al., 2014;; Mori et al., 2017; Yokoo et al., 2019). Most
of these experiments are done at pressures lower than 60
GPa and the data under the real core pressures (>140
GPa) are scarce. Although the highest-pressure record in
these experiments has reached 254 GPa (Mori et al.,
2017), it is still some distance away from true ICB condition
(330 GPa). With these experimental constraints, people find
a general trend of decreasing sulfur contents in the eutectic
liquids and increasing solubility of sulfur in the solid solu-
tions at higher pressures, which means an increasing ten-
dency for the partition coefficients of sulfur (Kamada
et al., 2012; Morard et al., 2014; Yokoo et al., 2019).

Complementary to high-pressure experiments, first prin-
ciples simulations (mostly based on Density Functional
Theory (DFT)) provide an alternative route to unravel
the partitioning and phase behaviors of iron alloys under
extreme conditions. While early DFT simulations have
already predicted the partition coefficient of sulfur under
ICB conditions (Alfe et al., 2002a, 2003, 2007), further
work is needed to establish consistency with the experimen-
tally measured values due to the gap in the T-P regime
accessible to the experiments and first principles simula-
tions. The reason for the lack of extensive first principles
simulations for the binary or more complex iron alloying
systems is the extremely high computational cost of such
simulations, typically taking many orders of magnitude
more than corresponding simulations employing empirical
atomistic potentials, which however are generally not accu-
rate enough to give meaningful predictions at extreme
conditions.

In this study, we are taking a different approach and use
a new generation of surrogate models in place of DFT,
interatomic potentials made using machine learning tech-
niques (Rupp, 2015). The basic idea of this approach is to
get a relatively small amount of DFT data (total energies,
forces and stresses from a short MD trajectory) and con-
struct nonparametric potentials that approximate the true
ab initio Born-Oppenheimer potential energy surface very
closely and then carry out the extensive sampling using
the potentials. With newly constructed highly accurate
potentials for the Fe-S binary system, combining with rig-
orous free energy calculations, our efforts in this study
not only extend the partition coefficients of sulfur to the
overlapping T-P regime of experiments and simulations
but also provide a general and extendible framework for
effectively predicting the phase behaviors of multi-
component iron alloying systems at extreme conditions.

2. METHODS

2.1. Machine learning potentials

We use the Gaussian Approximation Potential (GAP)
(Bartok et al., 2010), essentially a kernel ridge regression
method (Kung, 2014). This is just one of a class of recently
popularized machine learning methods for creating non-
parametric interatomic potentials, which has been shown
to be very successful in tackling difficult materials mod-
elling problems, ranging from investigating the structure
of amorphous materials (carbon (Deringer et al., 2017,
2019), silicon (Bartók et al., 2018)), the mechanics of metals
(tungsten (Szlachta et al., 2014), iron (Dragoni et al., 2018))
to molecular liquids such (water (Bartók et al., 2013a),
methane (Veit et al., 2019). There are many alternatives,
using other regression frameworks, such as artificial neural
networks (Behler and Parrinello, 2007) and even linear
regression (Shapeev, 2017; Drautz, 2019). All these methods
are improvable, since using more input data typically leads
to more accurate potentials, due to the nonparametric nat-
ure of the functional forms.

The theoretical details of the GAP model can be found
elsewhere (Bartók et al., 2013b; Ceriotti et al., 2018), we
only give a high-level description of the key formula here.
Assuming the Born-Oppenheimer potential energy surface
of a set of atoms is a smooth function of the atomic coor-
dinates, we write the total energy as a sum of atomic
contributions

E ¼
X
i

e qið Þ ð1Þ

where the short-ranged local atomic energy e is assumed to
depend explicitly on the positions of the atoms within a
sphere of radius rcut centered on atom i and qi is a vector
representing its local atomic environment. In the GAP
framework, Gaussian process regression is used to model e,

e qð Þ ¼
X
s

asK qs; qð Þ � k qð ÞTa ð2Þ

Given two atoms i and j, the kernel function K qi; qj
� �

is

the expected covariance of the respective local atomic ener-

gies e qið Þ and e qj
� �

, and can be interpreted as a measure of

similarity of the two local atomic environments. We choose
the Smooth Overlap of Atomic Positions (SOAP) kernel
(Bartók et al., 2013b),
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K qi; qj
� � ¼ r2

wjbqi � bqj jn ð3Þ
where the descriptor bqi is the rotational power spectrum of
the atomic neighbor density, which is a smooth and regular
function, invariant to rotation and permutation of like
atoms. The key advantage of the SOAP representation is
that there are very few empirical parameters needed, basi-
cally the cutoff distance, the Gaussian smearing of atomic
positions (essentially band-limiting the spherical Fourier
transform of the neighbor density), and small integer power
n to which the linear SOAP kernel is raised to, controlling
the body order of the resulting force field, such that higher
exponents result in higher order many-body terms. All the
hyper-parameters, including those inherent in the definition
of the rotational power spectrum are listed in Table 1.

2.2. Thermodynamics for predicting the partition coefficient

For the Fe-S binary systems, the partition coefficient of
sulfur and the other melting properties are determined by
the following chemical equilibrium between the liquid and
solid phase:

lliq
S T ; P ; cliqS
� �

¼ lsol
S T ; P ; csolS

� � ð4Þ

lliq
Fe T ; P ; cliqS
� �

¼ lsol
Fe T ; P ; csolS

� � ð5Þ

where lS and lFe are the chemical potential of sulfur and
iron respectively, the superscripts liq and sol denote liquid
and solid phase respectively and cS is the mole fraction of
sulfur in the solution.

Since the chemical potential lS diverges logarithmically
in the low-concentration limit (cS ? 0), at each temperature
and pressure it is useful to express lS as (Alfe et al., 2002a)

lS ¼ kBTlncS þ lS cSð Þ ð6Þ
where lS cSð Þ is well behaved for all concentrations. While
many models have been proposed for lS cSð Þ (or its equiva-
lences), such as various symmetric/asymmetric regular solu-
tion models (White, 2013) or those proposed by Ma (2001),
Table 1
Hyper-parameters for training the GAP models.

GAP software version
Atomic environment kernel
rcut
rD
renergy default
rforce default
rvirial default
rw
ratom
n
nmax

lmax

Representative environments
Sparse method
e0 (eV) 4000 K

5000 K
6000 K
7000 K
the following expansion for lS cSð Þ is simple but practically
meaningful

lS cSð Þ ¼ ly
S þ kScS þ O c2S

� � ð7Þ
In line with previous studies (Alfe et al., 2007; Gubbins

et al., 2013; Labrosse, 2014), we neglect higher order terms

(O c2S
� �

) in this study. Therefore, only two parameters of ly
S

and kS are involved in the calculations and we obtain the
following equation for the chemical potential of sulfur

lS ¼ kBT lncS þ ly
S þ kScS ð8Þ

According to the Gibbs-Duhem equation, we can
straightforwardly get the chemical potential of iron

lFe ¼ l0
Fe þ kBT þ kSð Þln 1� cSð Þ þ kScS ð9Þ

where l0
Fe is the chemical potential of pure iron at the same

temperature and pressure, which is the Gibbs free energy
per atom of pure iron.

Then the Gibbs free energy (G) of the whole system can
be expressed by

G ¼ NSlS þ NFelFe ¼ N cSlS þ 1� cSð ÞlFe½ �
¼ N cSlncS þ 1� cSð Þln 1� cSð Þ½ �kBT þ 1� cSð Þl0

Fe

�
þcSl

y
S þ cS þ 1� cSð Þln 1� cSð Þ½ �kS

� ð10Þ
where NFe is the number of iron atoms, NS is that of sulfur
atoms in the system and N = NFe + NS.

Now with the simulated free energies of both liquid and
solid phases at several concentrations, we can regress the

effective values of ly
S and kS with Eq. (10) and the chemical

potentials of sulfur and iron can be calculated thereafter
with Eqs. (8) and (9). Finally, the partition coefficient of
sulfur (DS) can be derived from the equilibrium composi-

tions from Eqs. (4) and (5), i.e., DS ¼ csolS =cliqS .

2.3. Free energy calculations

In this study, we calculated the Helmholtz free energies
(F) using thermodynamic integration, which rigorously
1527075646
SOAP
5.0 Å
1.0 Å
0.002 eV/atom
0.05 eV/Å
0.05 eV/atom
1.0 eV
0.5 Å
2
8
8
4000
CUR
Fe:-2.70299745:S:-1.33262117
Fe:-3.36146432:S:-1.66173158
Fe:-4.02404024:S:-1.99085328
Fe:-4.69558982:S:-2.32005321
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relate the free energy (F1) of the target system with that of a
reference system (F0) by

F 1 ¼ F 0 þ
Z 1

0

@F k

@k
dk ð11Þ

where k is a coupling parameter relates the two systems and
Fk is the free energy of the system with total energy Uk,
which is a hybrid total energy potential with the property
of being equal to the reference total energy U0 for k = 0
and the target total energy U1 for k = 1. If we choose
Uk=(1 � k)U0 + kU1, then the integrand in Eq. (11)
becomes the energy difference as a function of k,
@F k
@k ¼ U 1 � U 0h ik � DU kð Þ, where hik means thermal aver-

age in the ensemble generated by Uk.

2.3.1. Liquid phases

For the liquids, we choose the ideal gas at the same tem-
perature and composition as the reference system, i.e.,

F ideal
0 ¼ �kBT ln

V NFeþNS

NFe!NS!K
3NFe
Fe K3NS

S

 !
ð12Þ

where Ʌ=h/(2pMkBT)
1/2 (h is the Planck constant, kB is the

Boltzmann constant, M is the atomic mass of iron or sulfur
and T is the temperature) is the thermal wavelength of iron
or sulfur. Note that in standard statistical mechanics the
Stirling approximation is usually written as lnN! �
NlnN � N, but since we are dealing with small values of
N, the natural logarithm of first-order Stirling’s series

lnN! � N lnN � N þ 1
2
ln 2pNð Þ was used instead in the calcu-

lation of Eq. (12) to get more accurate free energy (Arfken,
1985).

To integrate from ideal gas to the target system, since
the energetic changes are large, especially near the end-
points, we used the Gauss-Lobatto quadrature by the fol-
lowing variable transformation

k xð Þ ¼ xþ 1

2

� 	 1
1�k

ð13Þ

with x spans from �1 to 1. Then the integral in Eq. (11)
becomesZ 1

0

@F k

@k
dk ¼ 1

2 1� kð Þ
Z 1

�1

DU k xð Þð Þk xð Þkdx

� 1

2 1� kð Þ
Xn
i¼0

xxiDU k xið Þð Þk xið Þk ð14Þ

k in Eqs. (13) and (14) is selected to be 0.8, which avoids the

endpoint singularity since the DU k xið Þð Þk xið Þk can be safely
set to be zero when k = 0 without loss of accuracy (Dorner
et al., 2018). In Fig. A.1(a) of Appendix A, we show a typ-
ical transformed integrand as a function of the integration
variable x.

The weight functions xxi in Eq. (14) can be calculated by

xxi ¼
2

n n� 1ð Þ Pn�1 xið Þ½ �2 ð15Þ

where Pn are the Legendre polynomials. Practically we
include 8 abscissas (n = 8) in our calculations of Eq. (14).
2.3.2. Solid phases

For the pure iron systems, we choose the harmonic hcp-
lattices at the same temperature and composition as the ref-
erence systems, whose free energies can be calculated
through lattice dynamics and quasi-harmonic approxima-
tion theory (Alfè, 2009). From the harmonic system to
the target system, since the energetic changes are small
and vary smoothly with the integration variable (as shown
in Fig. A.1(b) of Appendix A), we use the simpler three-
point Gauss-Legendre quadrature by the following linear
transformation

k xð Þ ¼ xþ 1

2
ð16Þ

with x spans from �1 to 1. Then the integral in Eq. (11)
becomesZ 1

0

@F k

@k
dk ¼ 1

2

Z 1

�1

DU k xð Þð Þdx � 1

2

X3
i¼1

xxiDU k xið Þð Þ ð17Þ

For a solid solution of Fe-S alloy under specific T-P

condition, we swapped the sulfur atoms into irons and cal-
culated the Helmholtz free energy change at the same vol-
ume through thermodynamic integration (Eq. (11)). In
this case, the energy barriers for interchanging the atoms
at various lattice sites greatly hinder a full sampling of
the phase space through simple molecular dynamic simula-
tions and the results would inevitably depend on the initial
configurations. To circumvent this problem and to avoid
exhaustively sampling all the possible configurations with
distinct sulfur orderings, which is infeasibe even considering
the reducible symmetries, we used the more efficient hybrid
Monte Carlo/molecular dynamics simulations (Widom
et al., 2014). Since the swapping of species changes the iden-
tities and masses of the atoms, the variations of ideal lattice
gas contributions to the free energies, which can be calcu-
lated through Eq. (12), need to be counted in the free
energy changes.

3. SIMULATION DETAILS

3.1. First principles simulations

To train the GAP models, we carried out a number of
density functional theory (DFT) simulations with VASP,
with the projector-augmented-wave method (Kresse and
Joubert, 1999). We use the PBE form of Generalized Gra-
dient Approximation (GGA) (Perdew et al., 1996) with
valence electrons of 16 (valence configuration
3s23p63d74s1) for iron, which has been demonstrated to clo-
sely resemble the all-electron potential and be important for
obtaining accurate melting properties (Sun et al., 2018), and
6 (3s23p4) for sulfur.

Extensive molecular dynamics (MD) simulations have
been deployed to sufficiently sample the T-P-X space span-
ning over 0–25 at. % sulfur concentrations, from 1000 K to
7000 K and from about 50 GPa to 500 GPa for the solid
phases, and from 4000 K to 10000 K and from about 100
GPa to 500 GPa for the liquid phases. Overall 243 simula-
tions have been carried out for the solid phases and 215
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simulations for the liquid phases. The solid solutions were
initiated with hexagonal close-packed (hcp) structures with
96 atoms in the supercells (4 � 4 � 3 extension of the unit-
cell). At high enough temperatures, the solids would always
be melted and the final configurations of these runs were
adopted to initialize liquid simulations. MD trajectories
were propagated in the NVT ensemble with the Nosé ther-
mostat for 3 � 6 ps. At each time step (1 fs interval), the
electronic structure is calculated at the Brillouin zone center
with an energy cutoff (ENCUT) of 500 eV and iteration
convergence criterion (EDIFF) of 10�6 eV.

From these sampled configurations, we extracted inde-
pendent configurations every 100–150 steps and re-
calculated their energies and forces with much higher preci-
sions. The energy cutoff was increased to 800 eV and the
Brillouin zone sampling grid of spacing (KSPACING)
was set to be 0.3 Å�1, which is well converged as revealed
by our benchmarks with finer spacing of 0.2 Å�1. The pro-
jection operators were evaluated in reciprocal space
(LREAL = .FALSE.). As in the MD simulations, the influ-
ences of finite temperature on the electronic free energy
were accounted through the Mermin functional (Mermin,
1965) with Fermi-Dirac smearing of electron occupancy
(ISMEAR = �1) and an electronic temperature equal to
that of the ions.

3.2. Training of GAP models

The GAP models were trained through the QUIP code
(Bartok et al., 2010) based on the high precision DFT sim-
ulation results. Since the potential energy surfaces sampled
by these simulations are implicitly a function of the elec-
tronic temperature, at each temperature we obtained DFT
energies that include electronic-entropy, the forces and
stresses from over 1000 configurations and organized them
into an extended xyz file for the GAP model training, as
explained in Appendix B.

We list the main hyper-parameters of trainings for the
GAP models in Table 1. In these parameters, the zero
points of the energy per atom (e0) of iron and sulfur find
their contributions mostly from the electronic entropy
and therefore are temperature-dependent. They were evalu-
ated by single-step DFT calculations with only one atom in
vacuum (without the effects of the periodic images). Finally,
to keep models robust at very short interatomic distances,
which may not be well sampled in the DFT-MD simula-
tions, we explicitly calculated the dimer potentials for pairs
of Fe-Fe, Fe-S and S-S and used their repulsive part as
baselines. Details for a typical GAP model training with
the QUIP code can be found in Appendix B.

3.3. Atomistic simulations with the GAP models

With the derived GAP models, we carried out three
types of atomistic simulations in this study: simple molecu-
lar dynamics simulations for pure iron and Fe-S liquids,
hybrid Monte Carlo/molecular dynamics simulations for
Fe-S solid solutions, and lattice dynamics simulations for
pure solid iron to get the reference harmonic free energy.
The energetics and forces in all these simulations were
calculated with the engine of VASP by invoking a
custom-made interface to QUIP. External scripts were uti-
lized to realize the construction of Metropolis Markov
chain in Monte Carlo move and relevant lattice dynamics
calculations.

For simple molecular dynamics simulations, at each T

and composition X, we carried out an NPT simulation to
evaluate the volume and lattice parameters at specific pres-
sure. Parrinello-Rahman dynamics with Langevin ther-
mostat was adopted to control the pressure and
temperature in the trajectory. For the liquid phases, the
unit cells were constrained to be cubic throughout the sim-
ulations; while for the solid iron, the lattice parameters are
constrained to be orthorhombic with b/a ratio fixed to that
of the hcp-lattice. In both the liquid and solid phases, we
generally used 180 atoms, which is demonstrated to be large
enough to get converged equations of state and the free
energy changes with respected to the referenced systems
(Sun et al., 2018). By discarding the first 5 ps (5000 MD
steps) as pre-equilibrium stage, we obtained the averaged
lattice parameters from the last 20 ps (20000 MD steps) tra-
jectories. Then we carried out an NVT simulation with
these lattice parameters, confirming that the system was
in a hydrostatic state with deviatoric stresses less than 0.5
GPa.

For the solid solutions, at each temperature and compo-
sition, with sulfur atoms initially randomly substituted on
the hcp-Fe lattice sites, we carried out the hybrid Monte
Carlo/molecular dynamics simulations (Widom et al.,
2014) in a sequence of every 20 MD steps followed by
one attempted Monte Carlo (MC) species swap. With a
duration of overall 20 ps MD steps and 1000 attempted
species swaps, the simulation finds its convergence with
well-sampled pressures/volumes and energies and this turns
out to be important for the free energy calculations.

Finally, lattice dynamics simulations were deployed with
PHON through small displacement method (Alfè, 2009).
Based on the final configurations of above-mentioned equi-
librated molecular dynamics simulations, with relaxations
of the time-averaged ionic positions, the interatomic force
constants were calculated by setting a displacement ampli-
tude of 0.01 Å for each atom. A dense 30 � 30 � 30 mesh
was used for the q-point sampling in the first Brillouin zone
to evaluate the vibrational density of state. For each struc-
ture of solid phase, we carefully confirmed that the phonon
spectra are dynamically stable with no imaginary phonon
frequencies, as demonstrated in Fig. A.2 of Appendix A.
In the framework of quasi-harmonic approximation theory,
the harmonic free energies at finite temperatures can be
calculated.

4. RESULTS

4.1. Benchmarks of the GAP models

As the fundamental benchmarks of the derived GAP
models in this study, we systematically compare their
atomic forces, stresses and energies with those from DFT
simulations. As shown in Fig. 1(a), which includes
344,928 data retrieved from both simulations at 6000 K,



Fig. 1. Comparisons of atomic forces (a), stresses (b) and energies (c) between DFT and the GAP model at 6000 K. 1178 energies, 3534
normal stress components and 344,928 forces are included in these comparisons. The red dashed lines are guides for perfect matches. In the
inset plots, we show the cumulative probability distribution of force component errors and energy errors (relative to reference DFT
calculations).
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we find very good agreements between the GAP forces
and DFT forces. The deviations of the atomic forces are
generally within ±2 eV/Å and the average error is around

0.2 eV/Å. The GAP model also reproduces the stress tensors
very well, with averaged error of the normal components
less than 0.8 GPa as illustrated in Fig. 1(b). Furthermore,
it is remarkable that the GAP energies agree excellently
with those from DFT simulations, with most of the devia-
tions in GAP energy within ±10 meV/atom and the aver-
aged energy error of 3.6 meV/atom as shown in Fig. 1(c).
These accurate depictions of microscopic interactions and
reproductions of the energies guarantee the almost identical
samplings of the phase spaces with the GAP models as
compared with those of the DFT simulations.
To further demonstrate the accuracy of the GAP models
for the free energies, we carried out a benchmark simulation
with the GAP model at 6000 K. The NVT simulation trajec-
tory is propagated in a 4.6 cm3/mol cell with 88 iron atoms
and 8 sulfur atoms (corresponding to about 237 GPa). We
randomly picked out 20 independent configurations from
the trajectory and carried out high precisionDFT simulations
(withparametersmentioned in the secondpart of Section 3.1).
Since the energies are sufficiently close between GAP and
DFT, through the one-step thermodynamic perturbation

method, DF ¼ kBTln e�DU=kBT

 �

, we estimated the free energy

deviation to be only about 0.3 meV/atom (0.029 kJ/mol).
In Fig. 2, we show the benchmark of the GAP models

for the microscopic structures. It is evident that the simula-
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Fig. 2. Comparisons of the radial distribution functions of a Fe-S
liquid (6000 K, 237 GPa and cS = 0.21) from the DFT simulation
(full lines) and that with the GAP models (broken lines).

Fig. 3. Equation of state (a) and free energy profiles (b) of pure
iron at 5000 K. In (a), the filled symbols are simulation results with
GAP models without phase transition over the whole trajectories,
while the open symbols are the statistical averages after the phase
changes. The dashed lines are Birch-Murnaghan equations
regressed from the filled symbols. The solid lines are those provided
by Komabayashi and Fei (2010) based on experimental data. In the
upper plot of (b), the line is the Gibbs free energy change
(DG = Gsolid-Gliquid) and light-blue shadow marks the uncertainty.
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tion with GAP models has perfectly sampled the local struc-
tures around different atoms as compared with those from
the DFT simulation. Just as previous findings from first
principles simulations (Alfe and Gillan, 1998; Alfe et al.,
2003), we can easily observe the net S-S repulsions and
Fe-S attractions in the solution. And almost all the struc-
tural features (positions of local maximums and minimums,
and spreading of the peaks) of the Fe-S system have been
reproduced in the GAP model simulation. Since the radial
distribution functions are closely related with the free
energy (Ben-Naim, 2006), this benchmark again verifies
the robustness of the GAP models in predicting the thermo-
dynamic properties of Fe-S systems.

4.2. Free energy and melting of pure iron

To determine the melting points of pure iron, we firstly
carried out some explorative simulations for its equation of
states. As shown in Fig. 3(a), squeezing the liquid or
expanding the solid inevitably find phase transitions when
the pressure deviates far enough from the melting point
(Pm with uncertainty in the figure, determined below). We
carefully inspect the radial distribution functions, mean
square displacements and fluctuations of energies and
pressures in the trajectories to verify the stabilities of the
simulations within the simulation length scales. Based on
these points we get the auxiliary Birch-Murnaghan equa-
tion of state for the liquid and solid respectively, which
are shown in Fig. 3(a) with dashed curves and the numerical
data can be found in Appendix C. It is apparent that the
melted solids quickly establish new equilibrium within the
duration of the simulation and their P-V relations match
the predictions of the liquid EOS quite well, while the solid-
ifying liquids take much longer time to be fully crystalized
and the averaged volumes/pressures are still slightly larger
than the solid EOS predictions. These points give us rough
estimates of the upper and lower limits of the melting
pressure. In Fig. 3(a), we also include the curves provided
by Komabayashi and Fei (2010) based on existing
experimental data and find very good agreements with the
simulated EOS.

Based on the observations of these simulations, for each
temperature we chose a point to calculate its free energy
directly with the thermodynamic integration techniques.
As listed in Table 2, we got the free energies of eight points,
which were used as references for the profiles over the
whole pressure range with the aid of the auxiliary equation
of state mentioned above. Then through the crossover of
these Gibbs free energy profiles of the liquid and solid
phases we finally determined the melting points, as demon-
strated in Fig. 3(b). The uncertainty of melting pressure was
estimated as the half of distance between the upper and



Table 2
Simulated Helmoholtz free energies (F) of pure iron.

T (K) P (GPa) Liquid Solid

V (cm3/mol) F (kJ/mol) V (cm3/mol) F (kJ/mol)

4000 100 5.4277 �1040.49 ± 1.16 5.2783 �1024.35 ± 0.46
5000 190 4.8171 �1061.59 ± 1.25 4.7146 �1041.26 ± 0.48
6000 330 4.2473 �1024.00 ± 1.27 4.1721 �1001.65 ± 0.59
7000 400 4.0714 �1069.38 ± 1.29 4.0072 �1041.69 ± 0.94
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lower bound of the crossover by counting the errors of free
energies.

Fig. 4 shows the calculated melting points of iron at four
temperatures. By interpolating these points with simple
second-order polynomial, we obtained the following equa-
tion for the simulated melting temperature (Tm) of pure
iron (valid from about 110 GPa to 430 GPa)

Tm ¼ 2572þ 14:094� P � 0:00891� P 2 ð18Þ
From this equation and considering the error bars of the

four points in Fig. 4, the melting temperature at 330 GPa is
estimated to be 6253 ± 170 K, comparing very well with
6170 ± 200 K as recently estimated by Sun et al. (2018)
and 6350 ± 300 K as predicted by Alfe et al. (2002c). In
contrast, simulations by Belonoshko et al. (2000) and
Laio et al. (2000) give significantly higher (7100 K) or lower
(5400 K) melting temperature, respectively, at the inner
core boundary. With careful evaluations of the free energy
errors from the classical potentials used in their studies, it is
possible to correct these results to be in much better accor-
dance with the DFT simulations (Alfe et al., 2002b).

Compared with the experiments, it is remarkable that
our results almost perfectly agree with the measurements
and extrapolations by Anzellini et al. (2013) over the entire
pressure range. Shock wave measurements by Nguyen and
Holmes (2004) and Brown and McQueen (1986) also fall
into the same trend. On the other hand, diamond anvil
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Fig. 4. Melting of iron from different approaches. Symbols and
lines in blue are the experimental data, whole those in black are the
previous simulation results. The red squares are the melting points
from this study with GAP models.
measurements by Boehler (1993) and Sinmyo et al (2019)
and shock wave measurements by Yoo et al. (1993) give
much lower or higher melting temperatures by up to over
1000 K. The exact reasons for these remarkable observed
differences in experiments are still under debate due to the
extreme technical challenges (Aquilanti et al., 2015;
Morard et al., 2018).

4.3. Free energies of Fe-S alloys

For the Fe-S alloys, we deployed simulations with 9–36
sulfur atoms in the 180-atom cells (corresponding to
cS = 0.05 � 0.20, which is within the stability regime of
hcp-structured Fe-S solid solutions according to previous
studies (Cote et al., 2008; Gavryushkin et al., 2016)) and
for each concentration we calculated its free energies
through the thermodynamic integration techniques at sev-
eral T-P conditions (as listed in Table 3), based on which
the free energies over the pressures can be derived through
the auxiliary Birch-Murnaghan equation of states at vari-
ous temperatures, as listed in Appendix C.

In Fig. 5, we show the simulated Gibbs free energies of
Fe-S at 4000 K, 250 GPa and 6000 K, 330 GPa. We include
the free energies of solid solutions calculated from thermo-
dynamic integrations based on simple MD simulations
(open blue circles) to emphasize the importance of
enhanced sampling. With quasi-random initial occupations
of sulfur atoms on the hcp-lattice sites, these free energies
agree with those from more sophisticated hybrid MC/MD
samplings at low concentrations, but the deviations become
more and more severe at high concentrations. The clues for
explaining such errors can be found in Fig. 6, which illus-
tratively compares the evolutions of thermodynamic prop-
erties and structures in the simulations at 4000 K,
4.3893 cm3/mol and cS = 0.20. From Fig. 6(a), obviously
the hybrid MC/MD sampling quickly finds a more stable
state with total energy decreased by over 8.4 kJ/mol within
about 4000 steps (involving only 200 attempted MC swap-
ping of the species). The major structural feature of this
more stable state is the decreased number of nearest-
neighbor S-S pairs (NNS-S), as shown in the bottom plot
of Fig. 6(a) and demonstrated in Fig. 6(b) by the radial dis-
tribution functions. NNS-S decreases from the initial quasi-
random arrangement value (around 43 here for a 180-atom
cell with 36 sulfur atoms, i.e., NNS-S = 0.5zNScS, where
z = 12 for the hcp-lattice) to less than half of the initial
value (around 19 in Fig. 6), and the S-S coordination num-
ber decreases from 2.5 to 1.1. Since the interactions among
nearest-neighbored S-S pairs dominate the energetic change
of the Fe-S solution as compared with pure iron (Alfe et al.,



Table 3
Simulated Helmoholtz free energies (F) of Fe-S alloys.

T (K) Phase cS V (cm3/mol) P (GPa) F (kJ/mol)

4000 Liquid 0.05 5.4239 100.07 ± 0.15 �1028.15 ± 0.81
0.10 5.4245 100.12 ± 0.14 �1012.87 ± 0.77
0.15 5.4330 99.64 ± 0.30 �996.13 ± 1.11
0.20 5.4462 99.80 ± 0.24 �978.22 ± 0.84

4000 Solid 0.05 4.3603 249.61 ± 0.05 �858.26 ± 0.42
0.10 4.3896 241.92 ± 0.06 �847.21 ± 0.42
0.15 4.3819 243.42 ± 0.11 �826.18 ± 0.50
0.20 4.3893 243.87 ± 0.16 �804.96 ± 0.47

5000 Liquid 0.05 4.8086 189.94 ± 0.20 �1047.60 ± 0.92
0.10 4.7990 190.30 ± 0.17 �1030.67 ± 1.04
0.15 4.7968 190.14 ± 0.14 �1012.67 ± 1.10
0.20 4.7955 189.88 ± 0.20 �992.56 ± 0.95

5000 Solid 0.05 4.1225 329.36 ± 0.05 �878.78 ± 0.30
0.10 4.1131 330.06 ± 0.07 �859.37 ± 0.31
0.15 4.1139 328.59 ± 0.12 �840.38 ± 0.49
0.20 4.1153 327.80 ± 0.09 �820.03 ± 0.42

6000 Liquid 0.05 4.2395 329.51 ± 0.20 �1010.93 ± 1.67
0.10 4.2268 330.44 ± 0.37 �992.56 ± 1.03
0.15 4.2195 330.32 ± 0.17 �973.51 ± 1.21
0.20 4.2134 329.73 ± 0.19 �951.78 ± 1.26

6000 Solid 0.05 4.1636 329.27 ± 0.10 �987.78 ± 0.54
0.10 4.1807 322.99 ± 0.10 �977.19 ± 0.43
0.15 4.1692 325.74 ± 0.20 �954.92 ± 0.47
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2002a), the net repulsions of S-S interactions here sampled
by the hybrid Monte Carlo/molecular dynamics simula-
tions effectively push the systems to lower energy states.
As shown in the middle plot of Fig. 6(a), the accommoda-
tions of sulfur atoms in the more appropriate sites result in
a smaller pressure by over 4.2 GPa, which would further
contribute to the decreasing of free energy. For the
readers’ reference, the converged configurations of Fe-S
solid solutions through hybrid Monte Carlo/molecular
dynamics simulations at various conditions can be found
in Appendix C.

4.4. Partitioning of sulfur

From the data points in Fig. 5, we obtained the free
energy profiles over the composition range by linear least-
square regressions with Eq. (10). The partitioning of sulfur
in the coexisting liquid and solid iron phases can be firstly
inferred from the variations of the two regressed parame-
ters over temperatures and pressures. As listed in Table 4,

the difference of ly;sol
S � ly;liq

S is positive. It is almost invari-
ant to pressure but shows clear temperature dependence: it
is about 65 kJ/mol at 4000 K, around 21 kJ/mol at 5000 K
and 13 kJ/mol at 6000 K. These observations demonstrate
that sulfur would generally prefer the liquid iron phase,
as expected, but this tendency would be decreased at higher

temperatures. On the other hand, the difference of ksolS � kliqS
keeps increasing from �192 kJ/mol at 4000 K and 150 GPa
to 135 kJ/mol at 6000 K and 330 GPa. This opposite trend
would greatly balance the partitioning of sulfur between the
two phases.

By solving Eqs. (4) and (5), we quantitatively calculated

the partition coefficients of sulfur (DS ¼ csolS =cliqS ), as shown
in Fig. 7. At 250 GPa and 330 GPa, similar values of DS

are predicted over temperature change of 1000 K, which
reveals the minor temperature dependence of DS and this is
in accordance with the experimental findings (Kamada
et al., 2010; Yokoo et al., 2019). For pressures lower than
250 GPa, we find remarkable pressure dependence of DS:
its value decreases by over 40% from 250 GPa to 150 GPa.
The simulated data of DS in this study perfectly match the
available experimental measurements and their trends up
to 254 GPa (Li et al., 2001; Stewart et al., 2007; Kamada
et al., 2010; Kamada et al., 2012; Mori et al., 2017; Yokoo
et al., 2019). From 250 GPa to higher pressures, it is notable
that DS becomes almost pressure independent with an aver-
aged value of 0.75 ± 0.07. This is in good agreement with the
early prediction by Alfe et al. (2002a) through DFT simula-
tions. The simple MD simulations with random solid solu-
tions turn out to significantly underestimate DS (�0.53
± 0.04 as illustrated in Fig. 7), which again emphasizes the
importance of sufficient sampling with the hybrid Monte
Carlo/molecular dynamics simulations.
5. IMPLICATIONS

According to our simulations in this study, the melting of
pure iron at Earth’s current inner core boundary pressure
(330 GPa) results in a density jump (Dq�qsol � qliq) of
0.24 g/cm3, which amounts to 1.8% of qsol (i.e., Dq/qsol�1.8%)
and compares very well with those predicted by previous
simulations (as listed in the Table II of Sun et al. (2018)).
This density jump is far smaller than the seismologically
observed value of 0.6 g/cm3 (Dziewonski and Anderson,
1981) or 0.8 ± 0.2 g/cm3 (Masters and Gubbins, 2003).
Assuming Fe-S binary model for the Earth’s core and the
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Fig. 5. Gibbs free energies of Fe-S solutions under 4000 K, 250
GPa (a) and 6000 K, 330 GPa (b). The filled black and red symbols
are the free energies for liquids and solids, respectively. The lines
are regressions with Eq. (10) based on these data (relevant
parameters are listed in Table 4). Open blue circles are the results
for solid solutions through simple molecular dynamics samplings,
as compared with the filled red circles through hybrid Monte
Carlo/molecular dynamics samplings (see the text). The uncertain-
ties of the free energies are generally smaller than the sizes of the
symbols.

Fig. 6. Effects of Monte Carlo swapping on the samplings of
thermodynamic properties and structures of the Fe-S solid solu-
tion. In (a), we show the propagations of total energy (U), pressure
(P) and number of nearest-neighbored S-S pairs (NNS-S) during the
trajectories of the two simulations (one with simple MD, in green;
the other with hybrid Monte Carlo and MD, or MD + MC, in
black) at 4000 K, 4.3893 cm3/mol, cS = 0.20. The broken lines are
equilibrium averaged values (i.e., discarding the first 5000 fs as pre-
equilibrium stage) from both simulations (MD, in blue; MD
+ MC, in red) for better guides of the fluctuations. In (b), we
compare the radial distribution functions of different pairs from the
two simulations.

14 Z. Zhang et al. /Geochimica et Cosmochimica Acta 291 (2020) 5–18
temperature around 6000 K, we would need around 20%

sulfur (cliqS � 0:20) to match the outer core density
(qsol = 12.166 g/cm3, according to Dziewonski and
Anderson (1981)) at ICB. With smaller amount of sulfur

coexisting in the inner core, csolS ¼ DS � cliqS ¼ 0:15, the
density jump Dq increases to 0.39 g/cm3. So the partition-
ing with sulfur alone is insufficient to account for the
observed density jump across the Earth’s inner core
boundary and the Earth’s core composition should be
more complex than the simple Fe-S binary, which supports
the findings of previous studies (Alfe et al., 2002a, 2003,
2007).
Although the exact core compositions are still elusive,
geochemical studies often place around 2 wt% sulfur in
the Earth’s core (Allegre et al., 1995; McDonough, 2003;
Wood et al., 2006). With this amount of sulfur, according
to the comprehensive explorations by Badro et al (2014),
the outer core would additionally need about 2.6 wt% oxy-
gen and 1.8 wt% silicon to best fit the densities and seismic
velocities at ICB and CMB (core mantle boundary). This

leads to an outer core composition with cliqO ¼ 0:083,

cliqSi ¼ 0:033 and cliqS ¼ 0:032. Since DSi�1, DO < 0.01 (calcu-
lated from the parameters provided by Alfe et al (2002a))
and DS = 0.75, we would estimate the coexisting inner core



Table 4
Parameters for chemical potential and free energy at various T-P conditions (Eqs. (8)–(10)).

T (K) P (GPa) Liquid Solid

l0Fe (kJ/mol) lyS. (kJ/mol) kS (kJ/mol) l0Fe (kJ/mol) lyS (kJ/mol) kS (kJ/mol)

4000 150 �237.94 ± 1.16 116.43 ± 1.11 463.67 ± 12.04 �243.08 ± 0.46 182.49 ± 7.23 271.38 ± 92.00
4000 200 3.66 ± 1.16 349.75 ± 1.97 496.38 ± 21.30 �6.50 ± 0. 415.01 ± 5.81 317.29 ± 73.86
4000 250 231.91 ± 1.16 566.66 ± 2.19 525.74 ± 23.73 217.31 ± 0.46 629.14 ± 7.19 405.41 ± 91.53
5000 250 132.88 ± 1.25 518.53 ± 6.73 322.69 ± 72.17 128.11 ± 0.48 542.03 ± 2.73 365.32 ± 31.77
5000 300 353.11 ± 1.25 726.27 ± 6.97 361.62 ± 74.72 344.14 ± 0.48 746.94 ± 2.80 442.20 ± 32.65
5000 330 480.79 ± 1.25 844.73 ± 6.68 393.97 ± 71.60 469.52 ± 0.48 865.41 ± 2.84 478.25 ± 33.07
6000 330 377.61 ± 1.27 766.37 ± 5.51 375.25 ± 61.15 375.48 ± 0.50 779.01 ± 6.12 510.14 ± 88.08
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Fig. 7. Partition coefficients of sulfur between solid and liquid iron.
Filled symbols are those from this study at different temperatures
and pressures. The additional red crossed circle at 6000 K and 330
GPa is the result from simple MD simulations with random solid
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(Kamada et al., 2012; Kamada et al., 2010; Li et al., 2001; Mori
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simulations (Alfe et al., 2002a). Note that all the experimental
data have been carefully converted to the ratio of mole faction to
be consistent with simulation results.
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composition with about 1.7 wt% silicon and 1.4 wt% sulfur

(i.e., csolO � 0, csolSi � cliqSi ¼ 0:033 and csolS ¼DS� cliqS ¼ 0:024).
Now with the solid solution model provided by Li et al
(2018), the obtained inner core density would agree well
with the PREM model by Dziewonski and Anderson
(1981) with a relative error of 0.5% and the density jump
would be around 0.66 g/cm3. Note that we have not
included hydrogen and carbon here since the properties of
their alloys with iron are much more unclear, although they
may be potentially important for explaining the seismic
observations under certain circumstances (Li et al., 2018;
Li et al., 2019; Mashino et al., 2019; Umemoto and
Hirose, 2020).

If the above core composition is plausibly in accord with
geochemical and geophysical constraints, then the roles of
sulfur on the geodynamics of Earth’s core should be minor.
This may be inferred from its contribution to the density
jump (0.66 g/cm3 as mentioned above), which is important
for evaluating the gravitational energy to drive the geody-
namo (Stacey and Stacey, 1999; Gubbins et al., 2004). By
‘‘turning on” the partitioning coefficients stepwise (i.e., we
inspect the differences by switching the DO and DS from
1.0 to the expected values), the exclusion of oxygen in the
inner core and partitioning of sulfur would account for
about 0.44 g/cm3 and 0.04 g/cm3 respectively, in addition
to 0.18 g/cm3 from the assumed congruent freezing (i.e.,
the solid is assumed to be in the same composition with
the coexisting liquid). It seems that the 6% contribution
here from sulfur cannot be entirely neglected, but this is
likely to be an upper bound, since sulfur is recently found
to be less siderophile in the Earth’s core (Suer et al., 2017).

Finally, the almost invariant partition coefficient from
250 GPa to higher pressures is interesting. It would imply
a constant partitioning of sulfur since the advent of the
solid inner core to the time when its radius expands to at
least 1000 km larger as compared with the present size. This
would support a stable stratification of sulfur in the Earth’s
inner core, since more sulfur precipitates in the inner core as
the outer core sulfur concentration increases over time
(Cottaar and Buffett, 2012; Deguen and Cardin, 2011). By
contrast, without counting the T-P dependence of the rele-
vant parameters in the equations of chemical potentials (as
listed in Table 4 and analyzed in the previous section),
recent numerical simulations propose continuously decreas-
ing partition coefficient with time and find its destabilizing
buoyancy effects on the stratification of the Earth’s inner
core (Gubbins et al., 2013; Labrosse, 2014; Lythgoe et al.,
2015). Our results in this study show that these simulations
may need to be re-evaluated at least for sulfur based on our
results.

6. CONCLUDING REMARKS

In this study, we derive new generation nonparametric
interaction potentials for Fe-S systems applicable under
Earth’s core conditions. Based on machine learning tech-
niques, these Gaussian Approximation Potentials are
shown to reproduce the first principles simulation results
with unprecedented accuracies, including the interatomic
forces, local structures and, most importantly, the free ener-
gies that fundamentally govern all thermodynamic proper-
ties. With a similar approach, we will be able to derive
accurate potentials for more complex systems (e.g., multi-
component systems including elements of Ni, O, S, Si, C,
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H), which are very difficult to investigate solely with first
principles techniques due to the increase in the size of the
phase space.

The substantial initial efforts of training the machine
learning potentials provide a return in the remarkable effi-
ciency in sampling the phase spaces of iron and its alloys
under various temperature and pressure conditions. It is
then possible for us to simulate free energies and predict
phase behaviors with fundamentally rigorous thermody-
namic integration method within affordable computational
cost. In fact, to thoroughly sample the phase space around
the liquidus and solidus of Fe-S solutions, we have carried
out over 500 independent atomistic simulations in this
study, each with 180 atoms and at least 20,000 steps. The
current implementation of the GAP models takes about
12 CPU seconds for each step in each run. With parallel
acceleration of 24 CPU cores for each run, we have man-
aged to accomplish the simulations within two months.
As a comparison, the direct high precision DFT simulations
are about three orders of magnitudes slower than the GAP
simulations.

As a first application of the framework mentioned
above, we focus in this paper on the partition coefficients
of sulfur between the solid and liquid iron under Earth’s
core conditions. While the results at ICB are in good agree-
ments with early DFT simulations, we obtained the melting
and partitioning behaviors over the entire relevant T-P
regime of the Earth’s core. In particular, the invariance of
partition coefficients from 250 GPa to higher pressures
found in this study provides new constraint on the compo-
sitions and dynamics of Earth’s inner and outer core.

Finally, since the phase behaviors of iron alloys are com-
prehensively complex, it should be noted that much more
endeavors are needed beyond our current efforts of predict-
ing sulfur partitioning in Fe-S binary systems under core
conditions. The interplays of different impurities, the possi-
ble stabilization of face-cubic-centered (fcc) or even body-
cubic-centered (bcc) structures, the immiscibility of liquid
iron-alloying systems, the heterogeneities of the Earth’s
inner core, etc., can all be important to estimate the roles
of light elements in real Earth’s core. Interests in these
issues would imply quickly growing demands of computa-
tions over broader phase spaces. The high accuracy and effi-
ciency gained by the framework proposed in this study
would benefit providing new constraints over all these
issues.
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