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ABSTRACT
Despite the importance of graphene based carbon capture devices, an accurate estimate of the interaction strength of a carbon dioxide
molecule with graphene from periodic calculations is lacking. In this work, we compute a fixed node quantum diffusion Monte Carlo ref-
erence value for the interaction energy of a carbon dioxide molecule with a periodic free-standing graphene sheet, obtaining a value of
−152 ± 15 meV. In addition, we evaluate the performance of several widely used density functional theory approximations and founda-
tion machine learning interatomic potentials, for both carbon dioxide and water adsorption on graphene, competitive processes that play
an important role in carbon capture technologies. Among the approaches tested, the B86bPBE-XDM, PBE-D3, revPBE-D3, rev-vdW-DF2,
SCAN+rVV10, and PBE0-D3-ATM functionals achieve the closest agreement with DMC for the carbon dioxide–graphene interaction. The
vdW-DF2, rev-vdW-DF2, and PBE0-D4-ATM functionals perform better for the competitive adsorption of water and carbon dioxide.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0283254

Nanoporous carbon-based devices are becoming increasingly
popular for energy storage applications,1,2 chemical sensors,3–7 and
carbon dioxide capture strategies.8–13 However, a fundamental ques-
tion at the base of any CO2–graphene-based device remains unan-
swered: what is the interaction strength of a CO2 molecule with a
graphene sheet?

Recent experiments analyzed the adsorption of carbon dioxide
on epitaxial graphene.14,15 In particular, Takeuchi et al.14 measured
an adsorption energy of carbon dioxide on a monolayer of epitax-
ial graphene on a SiC(0001) surface of ∼312 ± 15 meV at low CO2
coverage (θ = 0.02, where θ is the ratio between the number of CO2
molecules and the number of carbon atoms in the graphene layer),
which decreased to 263 ± 15 meV at higher coverages (θ = 0.08). In
addition to the experiment, using periodic density functional theory
(DFT), they suggested that CO2 is adsorbed parallel to the surface.
Smith and Kay15 measured an adsorption energy of ∼270 ± 21 meV

for low CO2 coverage on a graphene sheet attached to a Pt(111) sub-
strate, although they suggest that CO2 is tilted away from the surface
rather than parallel. These measurements imply that the underlying
substrate has a significant influence on both the adsorption energy
and adsorption structure; making a well-defined determination of
the adsorption energy on a free-standing graphene sheet desirable.

Simulations, therefore, provide an important tool to obtain
the necessary atomistic resolution and gain insight into the physic-
ochemical processes at the heart of these devices. Unfortunately,
calculations with DFT—the workhorse of materials science—yield
a large range of values for the CO2–graphene interaction energy.
In particular, the interaction energy depends sensitively on the
exchange–correlation functional used, varying in a range larger
than 200 meV.14,16 In this context, providing reference data for the
interaction energy is crucial to inform the choice of the DFT approx-
imation, or the parameterization of classical or machine learning
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force fields, to be employed in large-scale routine simulations of
carbon-based devices.

In principle, high accuracy quantum mechanical methods pro-
vide a route to accurate reference data.16–18 In fact, a recent tour
de force involving both periodic DFT, as well as coupled cluster
with single, double, and perturbative triple excitations, and sym-
metry adapted perturbation theory (SAPT) calculations with cluster
models, suggested that CO2 is adsorbed parallel to the surface and
that the adsorption energy can change by ∼30 meV between free-
standing and supported graphene.16 Despite the valuable insight into
the adsorption process of carbon dioxide on graphene that these
calculations provided, explicit periodic calculations with quantum
chemistry accuracy for the interaction energy of carbon dioxide on
graphene are still missing.

In this brief Communication, we report the interaction energy
curve for the CO2 molecule on graphene using periodic fixed
node quantum diffusion Monte Carlo (FN-DMC), a widely trusted
approach for the description of interaction energies of molecules
on surfaces,17,19–29 as well as in gas and condensed phases.30–35 In
particular, we obtain an interaction energy of −152 ± 15 meV at a
CO2–graphene distance of ∼ 3.24 Å. In addition, we compute the
interaction energy curves with several widely used DFT approxi-
mations, as well as recent foundation machine-learning interatomic
potentials (MLIPs). Finally, we benchmark the performance of both
the DFT functionals and the MLIPs on the difference between
the interaction energy of carbon dioxide and water on graphene,
whose competitive adsorption plays a fundamental role in carbon
capture technologies, such as supercapacitors,12,13,36 metal–organic
frameworks,37–39 and more. Overall, the reference FN-DMC val-
ues allow us to identify reliable approximations to be used for the
description of the carbon dioxide–graphene and water–graphene
interactions and can be used as useful reference data to benchmark
additional approximations and to parameterize analytical potentials.

To compute the interaction energy of the CO2 molecule on a
periodic graphene layer, we use an established approach that has
been used before for FN-DMC adsorption energy calculations on
similar systems, such as water or hydrogen molecules adsorbed on
graphene20,21 and hBN.20 This approach consists of estimating the
interaction energy as

Eint = Eb − Ef, (1)

where Eb is the total energy of the bound configuration, i.e., the con-
figuration with the CO2 molecule adsorbed on the graphene layer,
and Ef is the total energy of the configuration with the CO2 molecule
far from the substrate, at a distance of ∼ 10 Å. The CO2–graphene
distance is evaluated as the distance between the carbon atom in
the carbon dioxide molecule and the flat graphene sheet. We use
a 5 × 5 graphene supercell with a 25 Å vacuum in the direction
perpendicular to the graphene sheet. The initial adsorption struc-
ture, corresponding to the “bridge” carbon dioxide configuration,16

was taken from Ref. 40. This structure was optimized on a frozen
graphene surface at the DFT level with the PBE41 functional and
the D3 correction.42 Note that throughout this article, we use D3
to refer to the correction with zero-damping, unless stated other-
wise. The interaction energy curve configurations were generated
by translating the rigid carbon dioxide molecule along the direction

FIG. 1. Adsorption structure of CO2 on graphene. Top (a) and side (b) views
of the adsorption configuration for the CO2 molecule adsorbed on a graphene
sheet. Carbon atoms are shown in gray (with different shades between C atoms
belonging to graphene and the C atom in carbon oxide) and oxygen atoms in red.

perpendicular to graphene. Additional tests on the adsorption con-
figurations are reported in Sec. I of the supplementary material. The
adsorption configuration is shown in Fig. 1.

FN-DMC calculations were performed using CASINO.43

We use energy-consistent correlated electron pseudopotentials44

(eCEPP) with the determinant locality approximation45 (DLA)
and the ZSGMA46 algorithm for the time step convergence. The
trial wave-functions were of the Slater–Jastrow type with sin-
gle Slater determinants, with the single-particle orbitals obtained
from DFT local-density approximation (LDA)47 plane-wave cal-
culations performed with PWscf48,49 using an energy cutoff of
600 Ry and re-expanded in terms of B-splines.50 The Jastrow fac-
tor includes an electron–electron term, electron–nucleus terms,
and electron–electron–nucleus terms. The variational parameters
of the Jastrow were optimized by minimizing the variance of the
total energy in the adsorbed configuration. We used a DMC time
step of 0.01 a.u. and took into account finite size errors (FSE)
using the model periodic Coulomb correction51–53 and further cor-
rect for the (smaller) independent particle FSE. We provide addi-
tional information on the DMC setup, as well as tests on the
convergence of the time step bias and FSE in Secs. S2–S4 of the
supplementary material. In addition, we report tests of the sen-
sitivity of the interaction energy estimate to the DFT-optimized
structure in Sec. S5 of the supplementary material, showing that the
interaction energies obtained for adsorption structures optimized
with two different functionals change less than the DMC stochastic
error bar.

The interaction energy curves were computed according to
Eq. (1), by performing single point calculations (i.e., without
geometry optimization). Most DFT calculations of the interaction
energy curves were performed with VASP,54–57 using the projector-
augmented plane wave method with hard pseudo-potentials,58,59

a dense FFT grid, and an energy cutoff of 1000 eV. We use a
1 × 1 × 1 k-point grid to sample the Brillouin zone, except for the
hybrid functionals for which we use a 2 × 2 × 1 k-point grid. This
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setup provides converged interaction energies to within 1 meV,
as shown in Sec. S7 of the supplementary material. The interac-
tion energies with B86bPBE-XDM60 and the hybrid functionals
(PBE0-D3-ATM,61,62 and B3LYP-D3-ATM,63,64 where ATM stands
for the three body Axilrod–Teller–Muto contribution65,66) were
computed with FHI-AIMS using the “tight” basis set.67 The D4-
ATM correction was evaluated with the dftd4 package.68–70 In
Sec. S8 of the supplementary material, we show that the VASP
and FHI-AIMS setups used in this work yield equivalent level of
accuracy on the estimates of the interaction energy. Finally, we
evaluated the interaction energies with pre-trained MLIPs using
atomistic simulation environment.71 In the main text, we showcase
results for (r2SCAN72-based) MACE-MATPES-r2SCAN-0 (with the
D3 dispersion correction),73,74 [ωB97M-D3(BJ)75-based] MACE-
OFF23 (medium),76 the PBE41-based MatterSim (model MatterSim-
v1.0.0–5M),77 and the most recent Universal Models for Atoms
(UMA) for molecular crystals (UMA-OMC).78 Additional models
are tested in Sec. S12 of the supplementary material, including the
Orb models.79,80 However, these are not included in the main text
because of the size consistency error discussed in Sec. S12.1. Addi-
tional details on the DFT calculations, as well as tabulated values of
all the DFT interaction energy curves, are provided in Secs. S6, S9,
and S11 of the supplementary material.

Figure 2 reports the interaction energy as a function of
the CO2–graphene distance with FN-DMC (red stars) and sev-
eral DFT approximations. Functionals of similar type are grouped
together for comparison. In particular, we report generalized
gradient approximation (GGA) functionals (first panel), nonlo-
cal van der Waals (vdW) inclusive functionals (second panel),
meta-GGAs (third panel), and hybrids (fourth panel). In addi-
tion, we test the performance of a selection of pre-trained MLIPs
(fifth panel): MACE-MATPES-r2SCAN-0 (with the D3 disper-
sion correction),73,74 MACE-OFF23,76 MatterSim,77 and UMA-
OMC.78 The interaction energy in the adsorbed configuration
with a CO2–graphene distance of ∼ 3.24 Å with FN-DMC is
−152 ± 15 meV. The adsorption energy computed at the distance
∼ 3.33 Å is only slightly higher (−150 ± 13 meV, and equivalent
within the stochastic error bar).

We now indicate with ΔE the difference between the
DFT and DMC energy in the adsorption configuration with
d ∼ 3.24 Å. The functionals that are in better agreement with
DMC are B86bPBE-XDM60 (ΔE ∼ 10 meV), revPBE-D342,81

(ΔE ∼ −12 meV), PBE-D341,42 (ΔE ∼ −9 meV), rev-vdW-DF282

(ΔE ∼ −8 meV), SCAN+rVV1083 (ΔE ∼ −11 meV), and PBE0-D3-
ATM (ΔE ∼ −2 meV). Note that the energy differences ΔE are all
within one standard deviation (15 meV) from the DMC reference
value; therefore, these methods are equivalent within the estimated
error bar. The plot of the differences between the DFT and DMC
prediction is reported in Sec. S10 of the supplementary material.

A highly active area of research in computational materials sci-
ence is the development of foundation machine learning force fields,
which aim to enable DFT-level accuracy simulation of large and real-
istic systems at a fraction of the computational cost. In this context,
benchmarking their performance against high-level reference data
is valuable to assess their suitability for modeling extended systems
and prototypical device architectures. In particular, we find that the
interaction energy at the minimum is well-reproduced with MACE-
OFF23 and UMA-OMC. Additional data on the performance of the

FIG. 2. Interaction energy curves of carbon dioxide on graphene. The figure
shows the interaction energy as a function of the carbon dioxide–graphene dis-
tance with reference DMC calculation (red stars) and several density functional
approximations (GGA first panel, non-local vdW functionals second panel, meta-
GGA third panel, and hybrids fourth panel), and machine learning force fields (fifth
panel). Here, M stands for “medium” model.

pre-trained models is reported in Sec. S12 of the supplementary
material.

A value of ∼−213 meV has been reported with SAPT calcula-
tions for the carbon dioxide–graphene interaction energy. This value
was computed with SAPT0 on PBE-D3 optimized geometries via
cluster expansion extrapolation, with the jun-cc-pVDZ basis set.16

The interaction energy reported in our work is higher than both
the experimental estimates and the SAPT0 prediction. The differ-
ence with the experiment is expected due to the influence of the
substrate on the adsorption energy and structure.14–16 As shown in
Ref. 16 with PBE-D3 calculations, cluster extrapolated estimates
tend to overbind the interaction energy by ∼10 − 20 meV. The
methodological differences between the cluster extrapolated SAPT0
and periodic FN-DMC might further contribute to the discrepancy
between the two theoretical predictions.
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So far, we have focused on the adsorption of carbon dioxide
on graphene. However, carbon capture technologies may depend
on the competitive adsorption between carbon dioxide and water
molecules.37–39 It is not clear a priori which molecule is likely to
interact more strongly with the substrate. Therefore, in Fig. 3, we
investigate such competitive adsorption by comparing the interac-
tion energy in the adsorbed configuration computed with FN-DMC
and DFT, both for the CO2 molecule (red) and the water molecule
(blue).

The reference FN-DMC value for the interaction energy of
a single water molecule on free-standing graphene is EH2O

int = −99
± 6 meV. This was computed for the “2-leg” water configura-
tion, that is, with both hydrogen atoms pointing toward graphene,
using the same setup as in Eq. (1).24 The DFT interaction ener-
gies for the water molecule were taken from Ref. 84, except for
the functionals B86bPBE-XDM, r2SCAN, r2SCAN-D3, PBE0-D3-
ATM, PBE0-D4-ATM, and B3LYP-D3-ATM computed in this
work. Details of the water–graphene calculations are provided in
Sec. S11. FN-DMC predicts that CO2 binds more strongly than water
to pristine graphene, with a difference of ECO2

int − EH2O
int of ∼ −53

± 16 meV. Most of the tested approximations qualitatively capture

FIG. 3. Interaction strength of carbon dioxide and water on graphene. The
figure shows the interaction energy (in meV) with DMC (first row of each panel),
DFT (top panel), and machine learning force fields (bottom panel) for carbon diox-
ide on graphene (in the adsorbed configuration at d ∼ 3.24 Å, red triangles) and
the water molecule on graphene (blue empty circles). The shaded areas highlight
the stochastic error bar on the DMC calculations. The DMC reference energy for
the water molecule adsorbed on graphene is taken from Ref. 24. “MACE-MATPES”
stands for MACE-MATPES-r2SCAN-0-D3.

this trend, except for PBE, PBE-MBD, SCAN, and r2SCAN. Quan-
titatively, the closest agreement for the interaction energy difference
between carbon dioxide and water is obtained with vdW-DF2,85

rev-vdW-DF2,82 and PBE0-D4-ATM. Interestingly, all the function-
als tested in this work except the non-local vdW functionals and
PBE0-D4-ATM underestimate the interaction energy difference. A
plot of the difference between the DFT and DMC on the rela-
tive interaction energy ECO2

int − EH2O
int is reported in Sec. S10 of the

supplementary material. Among the tested MLIPs, MACE-OFF23
is the most reliable, yielding ECO2

int − EH2O
int ∼ −58 meV, followed by

UMA-OMC, which predicts ECO2
int − EH2O

int ∼ 0.1 meV. However, this
value is sensitive to the ∼25 meV size consistency error discussed
in the supplementary material. By contrast, MatterSim underbinds
the water molecule and predicts ECO2

int − EH2O
int ∼ −147 meV, while

MACE-MATPES-r2SCAN-D3 significantly overbinds the water
molecule by predicting ECO2

int − EH2O
int ∼ 548 meV.

Finally, we comment on the nature of the carbon
dioxide–graphene interaction. By analyzing the electronic charge
rearrangement upon adsorption, Brandenburg et al.24 showed that
although the water–graphene interaction is mainly dominated by
dispersion effects, electrostatics play a significant role depending
on the different orientations of the hydrogen atoms with respect
to graphene. In Fig. 4, we compare the change of electronic charge
density upon adsorption of both carbon dioxide and water on
graphene. In particular, we plot the top and side views of the charge
density rearrangement for water (left) and carbon dioxide (right)
adsorbed on graphene. The charge densities were computed with
VASP with PBE-D3 and plotted with VESTA.86 The plot shows
that the charge redistribution is much more localized for the CO2
molecule compared to the water molecule. Therefore, as suggested
from both Figs. 2 and 3, dispersion is the main interaction charac-
terizing the adsorption of carbon dioxide on graphene. As pointed
out in Ref. 24, differences in the charge density rearrangement lead
to a variation in the surface multipole moment and hence the work
function of the substrate, which can in principle be observed in
experiment.

In summary, we provide FN-DMC interaction energy curves
for carbon dioxide on a periodic graphene sheet and used these
to evaluate the performance of several DFT functionals and
MLIPs. The reference interaction energy obtained in this work
is −152 ± 15 meV, which means that a CO2 molecule binds
∼53 ± 16 meV stronger than a water molecule on graphene. Among
the tested foundation MLIPs, MACE-OFF23 and UMA-OMC
yield the closest agreement for the interaction energy in the
adsorbed configuration. The B86bPBE-XDM, PBE-D3, revPBE-D3,
rev-vdW-DF2, SCAN+rVV10, r2SCAN-D3, and PBE0-D3-ATM
functionals yield the closest agreement with FN-DMC for the
interaction energy of CO2 on graphene. Interestingly, vdW-DF2,
rev-vdW-DF2, and PBE0-D4-ATM obtain the closest agreement for
the difference between the interaction energy of carbon dioxide and
water on graphene. Overall, the FN-DMC interaction energies com-
puted in this work provide useful reference values for benchmarks
of electronic structure approaches and could be further used for
parameterization of analytical potentials.

The supplementary material provides additional information
on the setup and convergence tests of both DMC and DFT
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FIG. 4. Electronic density rearrange-
ment upon adsorption. The figure
shows the difference between the elec-
tronic density of the adsorbed configura-
tion and each individual fragments, for
water (left) and carbon dioxide (right).
For each system, we report the top and
side views of the charge density isosur-
faces. The isosurface level is 7.10855
× 10−5 electrons/Å3. The unit cell is indi-
cated by the black dashed lines. The
blue regions indicate density increase
upon binding and the red regions indi-
cate depletion.

simulations; additional information on the benchmark of DFT func-
tionals for the carbon dioxide–graphene and water–graphene inter-
action energies; tabulated values of the interaction energy curves
for all the DFT approximations considered in this work; additional
information on the performance of pre-trained MLIPs; and addi-
tional tests on the adsorption structure and the influence of the
DFT-optimized structure on the estimate of the interaction energy.
The supplementary material contains Refs. 16, 24, 32, 40–46, 48–67,
72, 75, 76, and 78–95.
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