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It is often known, from modelling studies, that a certain mode of climate tipping (of the oceanic ther-
mohaline circulation, for example) is governed by an underlying fold bifurcation. For such a case, we
present a scheme of analysis that determines the best stochastic fit to the existing data. This provides
the evolution rate of the effective control parameter, the variation of the stability coefficient and the path
itself and its tipping point. By assessing the actual effective level of noise in the available time series, we
are then able to make probability estimates of the time of tipping. This new technique is applied, first, to
the output of a computer simulation for the end of greenhouse Earth about 34 million years ago when the
climate tipped from a tropical state into an icehouse state with ice caps. Second, we use the algorithms
to give probabilistic tipping estimates for the end of the most recent glaciation of the Earth using actual
geological ice-core data.

Keywords: climate tipping; slow passage through saddle-node bifurcation; time-series analysis.

1. Introduction

One concern of the UN Climate Change Conference inCopenhagen(2009) was the prediction of future
climate change, subject to a variety of carbon dioxide emission scenarios. A particularly alarming feature
of any such prediction would be a sudden and (perhaps) irreversible abrupt change called atipping point
(Lentonet al., 2008;Scheffer, 2009). Such events are familiar in nonlinear dynamics, where they are
called (dangerous) bifurcations at which one form of behaviour becomes unstable and the system jumps
rapidly to a totally differentsteady state. Many tipping points, such as the switching on and off of ice
ages, are well documented in paleoclimate studies over millions of years of the Earth’s history.

There is currently much interest in examining climatic tipping points to see if it is feasible to pre-
dict them in advance using time series data derived from past behaviour. Assuming that tipping points
may well be governed by a bifurcation in an underlying dynamical system, recent work looks for a
slowing down of intrinsic transient responses within the data, which is predicted to occur before most
bifurcational instabilities (Held & Kleinen,2004;Livina & Lenton, 2007). This is done, for example,
by determining thepropagator, which is estimated via the correlation between successive elements of
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28 J.M. T. THOMPSON AND J. SIEBER

the time series, in a window sliding along the time series. This propagator is a measure for the linear
stability. It should increase to unity at tipping.

Many trial studies have been made on climatic computer models where an arbitrary time,t = T ,
can be chosen to represent ‘today’. The challenge is then to predict a future critical time,tC > T , at
which the model will exhibit a tipping instability, using only the time history of some variable (average
sea temperature, say) generated by the model before timeT . The accuracy of this prediction can then
be assessed by comparing it to the actual continued response of the simulation beyond timeT . In some
cases, these trials have been reasonably successful.

Much more challenging, and potentially convincing, is to try to predict real ancient climate tippings,
using their preceding geological data. The latter would be, for example, re-constituted time series pro-
vided by ice cores, sediments, etc. Using this data, the aim would be to see to what extent the actual
tipping could have been accurately predicted in advance.

One past tipping point that has been analysed in this manner (Livina & Lenton,2007) is the end of
the Younger Dryas event, about 11,500 years ago, when the Arctic warmed by 7◦C in 50 years. These
authors used a time series derived from Greenland ice-core paleotemperature data. A second such study
(one of eight made byDakoset al., 2008), using data from tropical Pacific sediment cores, gives an
excellent prediction for the end of ‘greenhouse’ Earth about 34 million years ago when the climate
tipped from a tropical state into an icehouse state.

After a review of recent research on tipping, we study in Section5 the saddle-node normal form
with a drifting normal form parameter and with additive Gaussian noise to determine the probability (or
rate) of early noise-induced escape from the potential well depending on the drift speed of the normal
form parameter and the noise amplitude.

We show how one can extract the relevant normal form quantities from a given time series. This
allows one to adjust predictions of tipping events based on the propagator to take into account the
probability of early escape. We demonstrate how it is possible to estimate the probability of noise-
induced escape from the potential well using two time series: one is an output from a simple stochastic
model and the other is a paleotemperature record from ice-core data. Since the propensity of the system
to escape early from its potential well depends only on the order of magnitude of the ratio between drift
speed and noise amplitude, we expect our estimates to be reasonably robust.

This prediction science is very young, but the above trials on paleoevents seem very encouraging,
and we describe some of them more fully below. The prediction offuture tipping points, vital to guide
decisions about geo-engineering, will benefit from the experience drawn from these trials and will need
the high quality data currently being recorded worldwide by climate scientists today.

2. Tipping of the climate and its sub-systems

2.1 Tipping points

Work at the beginning of this century which sets out to define and examineclimate tipping(Rahmstorf,
2001;Lockwood, 2001;National Research Council,2002;Alley et al.,2003;Rial et al.,2004) focused
on abrupt climate change: namely, when the Earth system is forced to cross some threshold, triggering a
sudden transition to a new state at a rate determined by the climate system itself and (usually) faster than
the cause, with some degree of irreversibility. Recently, theIntergovernmental Panel on Climate Change
(2007) made some brief remarks about abrupt and rapid climate change, whileLentonet al.(2008) have
sought to define these points more rigorously. The physical mechanisms underlying these tipping points
are typically internal positive feedback effects of the climate system (thus, a certain propensity for
saddle-node bifurcations).
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2.2 Tipping elements

In principle, a climate tipping point might involve simultaneously many features of the Earth system,
but it seems that many tipping points might be strongly associated with just one fairly well-defined
sub-system. Thesetipping elementsare well-defined sub-systems of the climate, which work (or can
be assumed to work) fairly independently, and are prone to sudden change. In modelling them, their
interactions with the rest of the climate system are typically expressed as a control parameter (or forcing)
that varies slowly over time.

Recently,Lentonet al.(2008) have listed nine tipping elements that they consider to be primary can-
didates for future tipping due to human activities and as such have relevance to political decision making
at Copenhagen(2009) and beyond. These elements, their possible outcomes, and Lenton’s assessment
of whether their tipping might be associated with an underlying bifurcation are

(1) loss of Arctic summer sea ice (possible bifurcation);

(2) collapse of the Greenland ice sheet (bifurcation);

(3) loss of the West Antarctic ice sheet (possible bifurcation);

(4) shut-down of the Atlantic thermohaline circulation (THC; fold bifurcation);

(5) increased amplitude or frequency of the El Niño Southern Oscillation (some possibility of bifur-
cation);

(6) switch-off of the Indian summer monsoon (possible bifurcation);

(7) changes to the Sahara/Sahel and West African monsoon, perhaps greening the desert (possible
bifurcation);

(8) loss of the Amazon rainforest (possible bifurcation) and

(9) large-scale dieback of the Northern Boreal forest (probably not a bifurcation).

The analysis and prediction of tipping points of climate sub-systems is currently being pursued in several
streams of research, and we should note in particular the excellent book by Marten Scheffer about tipping
points in ‘Nature and Society’, which includes ecology and some climate studies (Scheffer, 2009).

3. Bifurcations and their precursors

3.1 Generic bifurcations of dissipative systems

The great revolution of nonlinear dynamics over recent decades has provided a wealth of information
about the bifurcations that can destabilize a slowly evolving system like the Earth’s climate. These
bifurcations are defined as points during the slow variation of a ‘control’ parameter at which a qualitative
topological change of behaviour is observed in the multi-dimensional phase space of the system.

The Earth’s climate is what dynamicists would call adissipative system, and for this, the bifurcations
that can be typically encountered under the variation of a single control parameter are classified into
three types:safe,explosiveanddangerous(Thompsonet al.,1994;Thompson & Stewart, 2002).

The safe bifurcations, such as the supercritical Hopf bifurcation, exhibit a continuous supercritical
growth of a new attractor path with no fast jump or enlargement of the attracting set. They are deter-
minate with a single outcome even in the presence of small noise and generate no hysteresis with the
path retraced on reversal of the control sweep. The explosive bifurcations are less common phenomena
lying intermediate between the safe and dangerous types: we simply note here that, like the safe bifur-
cations, they do not generate any hysteresis. The dangerous bifurcations are typified by the simple fold
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(saddle-nodebifurcation) at which a stable path increasing with a control parameter becomes unstable
as it curves back towards lower values of the control and by the subcritical bifurcations. They exhibit
the sudden disappearance of the current attractor, with a consequential sudden jump to a new attractor
(of any type). They can be indeterminate in outcome, depending on the topology of the phase space, and
they always generate hysteresis with the original path not reinstated on control reversal.

Any of these three bifurcation types could in principle underlie a climate tipping point. But it is
the dangerous bifurcations that will be of major concern, giving as they do a sudden jump to a different
steady state with hysteresis, so that the original steady state will not be re-instated even if the controlling
cause is itself reversed. So any future climatic tipping to a warmer steady state may be irreversible: a
subsequent reduction in CO2 concentrationwill not (immediately or perhaps ever) restore the system to
its pre-tipping condition.

3.2 Time series analysis of incipient bifurcations

Most of the bifurcations in dissipative systems, including the static and cyclic folds that are the most
likely to be encountered in climate studies, have the following useful precursor (seeThompson &
Stewart, 2002for more details). The stability and attracting strength of the current steady state is be-
coming steadily weaker and weaker in one mode as the bifurcation point is approached. This implies
that under inevitable noisy disturbances, transient motions returning to the attractor will become slower
and slower: in the limit, the rate of decay of the transients decreases linearly to zero along the path.

Held & Kleinen (2004) andLivina & Lenton (2007) have recently presented algorithms that are
able to detect incipient saddle-node bifurcations from time series of dynamical systems. Both methods
estimate the linear decay rate (LDR) towards a quasistationary equilibrium that is assumed to exist
and to drift towards a saddle-node bifurcation. Typical test data for the algorithms come either from
geological records or from output of climate models. Both algorithms (degenerate fingerprintingby
Held & Kleinen, 2004anddetrended fluctuation analysis(DFA) by Livina & Lenton, 2007) have to
make assumptions about the process underlying the recorded time series that are generally believed to be
sensible for the tipping elements listed byLentonet al.(2008). First, one has to assume that the process
is a dynamical system close to a stable equilibrium that drifts only slowly but is perturbed by (random)
disturbances. The second assumption is that the system is effectively 1D, that is, the equilibrium of the
undisturbed system is strongly stable in all directions except a single critical one. Quantitatively, this
means that one assumes the presence of three well-separated time scales, expressed as rates:

κdrift � κcrit � κstab.

Here,κdrift is the average drift rate of those quantities that the algorithm treats as a parameter, e.g.
freshwater forcing in studies of the THC (the global heat- and salinity-driven conveyor belt of oceanic
water). The rateκcrit is the rate with which a small disturbance in state space relaxes back to equilibrium.
The rateκstab is the decay rate of all othernon-critical modes. We note that the drift rateκdrift becomes
larger thanκcrit oncethe drifting parameter is very close to its bifurcation value. Third, one assumes
that the disturbances are small in the sense that the relaxation to equilibrium is governed mostly by the
LDRs (this implies, for example, that the potential well in which the dynamical system can be imagined
to be sitting is approximately symmetric in the critical direction).

The basic procedure proposed byHeld & Kleinen(2004) consists of three steps, given a time series
(tk, zk) of measurementszk atpossibly unevenly spaced time pointstk.
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1. Interpolation. Choose a stepsizeΔt satisfying

κcrit �
1

Δt
� κstab

andinterpolate such that the spacing in time is uniform. Now, one has a new time series

zk,new = z(kΔt),

evenly spaced in time.

2. Detrending. Remove the slow drift of the equilibrium by subtracting a slowly moving average.
For example, choose a Gaussian kernel

Gk(t) =
1

√
2πd

exp

(

−
1

2

(t − kΔt)2

d2

)

of bandwidthd satisfying

κdrift �
1

d
� κcrit

andsubtract the average

Z(kΔt) =

∑N
i =1 Gk(i Δt)zi
∑N

i =1 Gk(i Δt)

of zk over the kernel. The result of this is a time series

yk = zk − Z(kΔt),

which fluctuates around zero and can be considered as stationary on time scales shorter than
1/κdrift .

3. Fit LDR in sliding window. One assumes that the remaining time series,yk, can be modelled by
a stable scalar linear mapping disturbed by noise, a so-called AR(1) model

yk+1 = ckyk + θηk, (3.1)

whereθηk is the instance of a random disturbance of amplitudeθ at time kΔt and ck is the
propagator, related toκcrit at timekΔt via

ck = exp(−κcrit,kΔt).

If one assumes that the disturbancesηk have a normal distribution and are independent from each
other and thatck is nearly constant on time scales shorter than 1/κdrift , one can choose a sliding
window sizew = 2m+ 1 satisfying

κdrift �
1

wΔt
and determine the propagatorck by an ordinary least-squares fit of

yj +1 = ckyj

over the set of indicesj = k − m, . . . , k + m. An estimate for the noise amplitudeθ can be
obtained from the standard deviation of the residual of the linear least-squares fit:

θk = stdev
(
[yj − ckyj ]

k+m
j =k−m

)
.
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32 J. M. T. THOMPSON AND J. SIEBER

FIG. 1. Illustration of sliding windows used in degenerate fingerprinting proposed byHeld & Kleinen (2004). The extracted
autocorrelation coefficientck is an estimate for the propagator at the mid-time of the sliding windows. Extrapolation is required
for prediction.

This process will stop when the front end of the last window hits the last data point. Note that when
using paleodata, the end of the analysed time series should be chosen before the tipping point that is
the object of the investigation. This choice is essential to prevent data, spurious to our predictions of
the pre-tipping behaviour, entering the analysis: it also makes a complete analogy with any attempt to
predict future tipping points from data terminating today. Figure1 illustrates this requirement on the
sliding windows (with a time series of lengthN = 20 for illustration). It also shows a simple linear
extrapolation that one might make in order to predict where tipping occurs. In this manner,Held &
Kleinen (2004) obtain the so-called propagator graph of the estimatedck versus its central time as
illustrated in Fig.1. On this graph,c is expected to head towards+1 at any incipient bifurcation. In
other words, the slowing down of the relaxation from disturbances along the times series can serve as
an early warning signal for an imminent bifurcation (Dakoset al., 2008). We should finally note that
having used a first-order mapping in (3.1) and employed autocorrelation techniques, the propagatorc
is often called the first-order autoregressive coefficient and written as ARC(1). The prediction based on
DFA, as proposed byLivina & Lenton (2007), also reconstructs the propagatorc but does so via the
scaling exponent of the variance of the (detrended) time series. For a more complete description of the
time series techniques employed see the recent review byThompson & Sieber(2010). Also, seeCorsi
& Taranto(2007) for a discussion of similar problems in power systems engineering (the prediction of
fold bifurcations leading to voltage collapse in energy networks).

4. Review of recent work

4.1 First prediction of an ancient tipping

The first prediction of an ancient climate tipping event using preceding geological data is due toLivina &
Lenton(2007) who tested their DFA on the rapid warming of the earth that occurred about 11,500 years
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CLIMATE TIPPING AS A NOISY BIFURCATION: A PREDICTIVE TECHNIQUE 33

FIG. 2. Results ofLivina & Lenton (2007): (a) Greenland ice-core (GISP2) paleotemperature with an unevenly spaced record,
visible in the varying density of symbols on the curve. The total number of data points isN = 1586. (b) the DFA1 propagator
is calculated in sliding windows of lengthw = 500 points and mapped into the middle points of the windows. A typical sliding
window ending near the tipping is shown.

ago at the end of the so-called Younger Dryas event (analysing Greenland ice-core paleotemperature
data, which is available from 50,000 years ago to the present).

This Younger Dryas event (Houghton,2004) was a curious cooling just as the Earth was warming
up after the last ice age, as is clearly visible, e.g. in records of the oxygen isotopeδ18O in Greenland ice.
It ended in a dramatic tipping point, 11,500 years ago, when the Arctic warmed by 7◦C in 50 years. Its
behaviour is thought to be linked to changes in the THC. This ‘conveyor belt’ is driven by the sinking of
cold salty water in the North and can be stopped if too much fresh-melt makes the water less salty and
so less dense. At the end of the ice age when the ice sheet over North America began to melt, the water
first drained down the Mississippi basin into the Gulf of Mexico. Then, suddenly, it cut a new channel
near the St. Lawrence river to the North Atlantic. This sudden influx of fresh water cut off part of the
ocean conveyor belt, the warm Atlantic water stopped flowing North, and the Younger Dryas cooling
was started. It was the ‘re-start’ of the circulation that could have ended the Younger Dryas at its rapid
tipping point, propelling the Earth into the warmer Pre-Boreal era.

The results ofLivina & Lenton (2007) are shown in Fig.2, where their propagator (based on DFA)
is seen heading towards its critical value of+1 at about the correct time. Note, though, that from a pre-
diction point of view, the propagator graph should end at point A when the estimation window reaches
the tipping point. In this example, extracting the propagator is particularly challenging because the data
set was comparatively small (1586 points) and unevenly spaced.

4.2 Systematic study of eight ancient tippings

In a more recent paper,Dakoset al. (2008) systematically estimated a propagator stability coefficient
from reconstructed time series of real paleodata preceding eight ancient tipping events. These are
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(a) the end of the greenhouse Earth about 34 million years ago when the climate tipped from a
tropical state (which had existed for hundreds of millions of years) into an icehouse state with
ice caps, using data from tropical Pacific sediment cores;

(b) the end of the last glaciation, and the ends of three earlier glaciations, drawing data from the
Antarctica Vostok ice core;

(c) the Bølling–Aller̈od transition that was dated about 14,000 years ago, using data from the Green-
land GISP2 ice core;

(d) the end of the Younger Dryas event about 11,500 years ago, as discussed in Section4.1, but
drawing not on the Greenland ice core, but rather on data from the sediment of the Cariaco basin
in Venezuela and

(e) the desertification of North Africa when there was a sudden shift from a savanna-like state with
scattered lakes to a desert about 5,000 years ago, using the sediment core from ODP Hole 658C,
off the west coast of Africa.

In all the cases studied byDakoset al. (2008), the propagatorck asextracted by degenerate finger-
printing was shown to exhibit a statistically significant increase (corresponding to a slowing down of
the relaxation) prior to the tipping transition.Dakoset al. (2008) also demonstrated that their principal
result, the statistically significant increase ofck, is robust with respect to variations in smoothing kernel
bandwidthd, sliding window lengthw and the interpolation procedure.

5. Noise-induced systematic bias of extrapolated prediction

The intention behind the development of the time series analysis algorithms goes beyond statistical
evidence of an increasing LDR: the goal of both algorithms is topredict the time(or probability) of
the tipping event from the observational data before the event takes place. This is more challenging
and suffers from additional uncertainties. Apart from the dependence of the value ofck on algorithm
parameters (e.g. the sliding window lengthw), for a prediction of the time of tipping, we have to ex-
trapolate. This implies that we have to assume that the underlying control parameter drifts with nearly
constant speed during the recorded time series. This is often not the case in the study of sub-systems of
the climate when the control parameter is determined by the dynamics of another, coupled, sub-system.
Even if the control parameter drifts with constant speed, for prediction, we have to assume in addition
transversality, that is, the control parameter has to vary the unfolding parameter of the normal form of
the saddle-node bifurcation nearly linearly.

Figure3 shows two time series (a and c) and the corresponding time series of extracted estimates
for the propagatorck (b and d). Time series (a) is the output of a model simulation for a transition to an
icehouse Earth and is taken fromDakoset al. (2008). The model as presented byDakoset al. (2008)
is a scalar stochastic ordinary differential equation where a control parameter is varied linearly in time
and the system is known to encounter a saddle-node bifurcation (originally, the model was developed
by Fraedrich,1978; see supplement ofDakoset al., 2008). Time series (b) shows the propagatorck

extracted from time series (a) using degenerate fingerprinting. Time series (c) is a snapshot of tempera-
tures before the end of the last glaciation, 20,000 years ago. The data are taken fromPetitet al. (1999);
the window of the snapshot is identical to Fig. 1(I) inDakoset al. (2008). The estimated propagatorck

for time series (c) is shown in diagram (d). The graphs in diagrams (b) and (d) are qualitatively the same
as inDakoset al.(2008) but differ slightly quantitatively. This is likely due to minor variations between
the algorithm parameters that we used and the algorithm parameters used byDakoset al. (2008). To
provide a visual clue about the level of uncertainty in the time series ofck, the diagrams (b) and (d)
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FIG. 3. LDR estimates for the output of a model of transition to icehouse earth (a and b) and for an geological tempera-
ture record of the end of the recent glaciation (c and d). SeePetit et al. (1999) and main text for description. Data source:
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/vostok/deutnat.txt.

show estimates extracted using two different window size parametersw. Despite the uncertainty, two
features of the time series of propagatorsck are discernible: first, as studied in detail inDakoset al.
(2008),ck is increasing. Second, linear extrapolation does not match if we expect the tipping to occur
at the extrapolated time forc = 1 (which would correspond to the critical value of the propagator). In
both cases, the tipping occurs earlier, and at least for the model output (which is known to drift through
a saddle-node bifurcation), the bias of the linear extrapolation is systematic. There are two compet-
ing effects that might determine the systematic bias. On the one hand, the equilibrium starts to drift
rapidly (square-root like) when the drifting parameter approaches the saddle-node bifurcation; on the
other hand, random disturbances may kick the dynamical system out of the shrinking basin of attraction
prematurely. The numerical study in the following sections quantifies these two effects.

5.1 Rate of noise-induced escape from basin near saddle-node

We take the normal form of a saddle-node bifurcation, perturb it by adding Gaussian white noise and
let the control parametera drift with speedε (the climate model ofFraedrich(1978) is exactly of this
type):

dx = [a − x2]dt + σdWt , (5.1)

da = −εdt. (5.2)
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TheperturbationWt (sometimeswritten W(t) to avoid double subscripts) is a Wiener process, which is
defined by two properties:

1. W0 = 0 and

2. for every sequence of time points 06 t1 6 t2 6 ∙ ∙ ∙ 6 tk, all incrementsW(ti +1) − W(ti ) are
independentrandom variables with Gaussian distribution of zero mean and varianceti +1 − ti
(and,thus, standard deviation

√
ti +1 − ti ).

Thecoefficientσ controls the amplitude of the noise variance added to the slowly drifting equilibrium.
If we freeze the drifting (setε = 0) and set the noise amplitude to zero (σ = 0), then the dynamics of
(5.1) corresponds to the dynamics of an overdamped particle in a potential well of the shape

U (x) = −ax + x3/3.

This dynamics of (5.1) with a fixeda and no noise has a stable equilibriumXs at
√

a andan unstable
equilibrium Xu at−

√
a. Correspondingly, the potential wellU has a (local) minimum atXs =

√
a and

a hilltop (local maximum) atXu = −
√

a. For x going to−∞, the potentialU falls off to −∞, and
for x going to+∞, it increases to+∞. The differential equation (5.2) fora governs the drifting of the
control and has the solutiona(t) = a(0) − εt .

We say that a trajectoryx(t) ‘escapes’ if it reaches−∞ (typically in finite time). In numerical tests,
one can detect if the trajectory crosses a fixed negative thresholdxth from which it is unlikely to return
to the well (for example, setxth at some fixed distance belowXu). We are interested in finding the
cumulative escape probabilityPesc(a) for a trajectory to escape before the drifting control parameter
has reached the valuea. If the stochastic process (5.1)–(5.2) starts with a sufficiently largea(0) and if
ε is sufficiently small, then this probabilityPescdependsonly weakly on the initial distribution ofx as
long as this initial distribution is concentrated inside the potential well.

The perturbationWt is a random disturbance (noise) as ifx is the position of a particle that has a
temperature. If the modulus of the noise is orders of magnitude smaller than the height of the barrier
(the potential difference betweenXs andXu, which is 4a3/2/3), then the escape rate formulas developed
for chemical reaction rates (Kramers’ escape rate, seeHänggiet al., 1990) can be applied. As we are
interested in the transition ofa through zero, the standard reaction rate theory is not applicable. Analyti-
cal formulas for jumping times in periodic potentials from one period to the next and arbitrary noise are
given inMalakhov & Pankratov(1996). See alsoFischer & Imkeller(2006) for an analysis of stochastic
resonance between two slowly varying potential wells.

5.1.1 Re-scaling of parameters.In the noise-perturbed drifting normal form (5.1)–(5.2), we can re-
scale timet , x, a andε such that the noise amplitudeσ is equal to 1. Exploiting that dWρs =

√
ρdWs,

andsetting

toldσ
2/3 = tnew, σ−2/3xold = xnew, σ−4/3aold = anew and σ−2εold = εnew, (5.3)

we obtain a stochastic process for the re-scaled quantities that is of the same form as the original noise-
perturbed normal form (5.1)–(5.2) (except that the parameterσ has been absorbed as a unit):

dx = [a − x2]dt + dWt , (5.4)

da = −εdt. (5.5)
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In the rescaled coordinates, the node (the local minimum of the well) and the saddle (the barrier) are at

Xu,new = σ−2/3Xu,old and Xs,new = σ−2/3Xs,old,

respectively.

5.1.2 Escape rates for the saddle-node normal form with noise.For sufficiently small drift speeds
ε of the control parametera, we can approximate the escape probabilityPesc(a) in the drifting system
(5.4)–(5.5) using quantities of the frozen system (drift speedε = 0). A useful quantity is the ‘escape
rate’ k0. For fixeda > 0 in the noise-perturbed normal form (5.4), the escape ratek0(a) canbe defined
as follows:

1. set a large ensemble (sizeN) of initial valuesx inside the potential well (e.g.x = Xs);

2. evolve the noise-perturbed normal form (5.4) and measure the fractionr (t) of instances that have
reached−∞ during the previous unit time interval:

r (t) = lim
h→0

lim
N→∞

1

h

numberof instances reaching−∞ during [t, t + h]

numberof instances still finite at timet
and

3. after a transient this fractionr (t) converges to a constantk0.

Thisconvergence is achieved only in the limitN → ∞ due to depletion for finite ensembles. In numer-
ical calculations, one can replace−∞ with a finite thresholdxth � Xu. One can avoid depletion of the
finite ensemble by re-initializing the escaped instance to an initial value that is randomly selected from
the remaining (non-escaped) ensemble (‘putting the particle back into the well’).

Figure4 shows this escape ratek0 asa function ofa as a grey curve with circles. Note that thex-axis
corresponds to the re-scaleda after transformation (5.3). An escape ratek0 ≈ 0.1 at aσ−4/3 = 0.4
meansthat approximately 10% of the realizations cross the thresholdxth = −5 to escape per unit time
interval during the solution of the saddle-node normal form (5.1) withaσ−4/3 = 0.4.

5.1.3 Quasistaticapproximation of the cumulative escape probability.Using the escape ratek0(a)
for the frozen problem (ε= 0 in (5.4)–(5.5)), we can approximate the cumulative probabilityPesc of
escapefor a trajectory of the saddle-node normal form with drifting control parameter. If we assume
that escape is irreversible and denote byp(t) the probability that the trajectory has not escaped until
time t , then we have the relation

p(t + h) = [1 − (k0(a(t)) + O(ε))h] p(t) (5.6)

for small time stepsh > 0. The factor 1− k0(a(t))h is the probability that the trajectory escapes during
the time interval [t, t + h] if we approximate the slowly changing variablea by its left-end valuea(t)
in this interval. Relation (5.6) expresses that a trajectory will not escape until timet + h if it has not
escaped until timet and it does not escape during the interval [t, t +h]. Lettingh go to zero and ignoring
the slow drift ofa during the time interval [t, t + h] of order O(ε), we obtain the differential equation

d

dt
p(t) = −k0(a(t))p(t),

whichhas the solution

p(t) = exp

(∫ t

0
−k0(a(s))ds

)
(5.7)
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38 J. M. T. THOMPSON AND J. SIEBER

FIG. 4. Escape ratek0 from potential well for fixeda (in the original parameters of (5.1)–(5.2)). The functionK0(a) is the integral
of k0, as defined in (5.8), integrated froma to 3. The curvesε = 0.1, ε = 0.01 andε = 0.001 are the cumulative probabilities
for escape from the potential well for dynamically decreasing depth of the potential well beforea is reached. The quantityε
indicates the rate of change of the potential in the unscaled parameters. For comparison the quasistatic estimate for the cumulative
probability of escape is indicated using grey curves (see also Fig.5).

if we start with an initial distribution concentrated in the potential well (p(0) = 1). We want to find the
approximate cumulative probabilityPesc(a) of escape before the control has drifted to a certain valuea,
so we substitutea = a(0) − εt into expression (5.7) forp(t):

Pesc(a) = 1 − exp(−K0(a)/ε) whereK0(a) =
∫ a(0)

a
k0(a

′)da′. (5.8)

This approximation (5.8) for the escape probability assumes thatε is small, that the escape is irreversible
(which is accurate if the thresholdxth is sufficiently negative), and thata(0) � 1 (which makesPesc
nearly independent of the initial distribution ofx).

Figure 4 shows the quasistatic approximation of the cumulative escape probabilityPesc for ε =
0.1, 0.01 and 0.001 as grey curves. Superimposed are numerical observations of the cumulative escape
probabilityPescfor the normal form with drifting parametera (5.4)–(5.5) as black curves. In a simulation
of (5.4)–(5.5), one can approximate the cumulative escape probabilityPesc until time steptn with the
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CLIMATE TIPPING AS A NOISY BIFURCATION: A PREDICTIVE TECHNIQUE 39

FIG. 5. Percentiles of the probability of escape for dynamically varyinga (in black) in the original parameters of (5.1)–(5.2). For
fixed ε the x% curve shows at whicha x% of the realizations have escaped. For comparison, the grey curves show the estimate
obtained using the quasistatic approximation. The depth of the potential well (and, thus,a) decreases in time.

helpof a recursion for the probability 1− Pescof not escaping

1 − Pesc(tn+1) =
N − Nesc(tn)

N
(1 − Pesc(tn)),

whereNesc(tn) is the number of realizations that escape at time steptn and N is the overall ensemble
size. We keep the overall ensemble sizeN (of non-escaped realizations) constant by re-initializing every
escaped realization to a random non-escaped instance.

One can see that if the control parametera drifts slowly (ε � 1), the cumulative escape probability
increases sharply from nearly 0 to 1 in a range ofa of about length 1 (e.g. betweena = 1 anda = 2 for
ε = 0.001).

Figure5 shows the percentiles of the cumulative escape probabilities systematically forε ranging
between 0.001 and 0.5. Again, we superimpose black curves showing the percentiles of the cumulative
probability observed during a simulation of the normal form with drifting control parameter (5.4)–(5.5).

We draw two conclusions from the results shown in Figs4 and5:

1. the quasistatic approximation (5.8) of the cumulative escape probability is quantitatively accurate
to orderε. For largeε (∼ 0.1), the effect of the dynamic drifting of the control parameter delays
the escape slightly. Naturally, this effect is much weaker than the delay in exchange of stability
observed in slow passages through Hopf or Pitchfork bifurcations (seeKuske,1999;Baeret al.,
1989;Suet al.,2004for studies that quantify also the effect of noise).

2. Random disturbances make early escape probable as soon as the ratio of drift speedε and vari-
ance of the disturbanceσ 2 becomessmall in the original parameters of saddle-node normal form
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40 J.M. T. THOMPSON AND J. SIEBER

with drift and noise (5.1)–(5.2). The percentiles in Fig.5 quantify this effect after the axes have
been scaled using transformation (5.3):ε 7→ εσ−2, a 7→ aσ−4/3.

5.1.4 Control of accuracy in stochastic simulations.The ensemble size for the numerical simulation
wasN = 400, and the integration was performed with the Euler–Maruyama scheme (which is of order 1
for this problem) using stepsizeh = 0.01. Control calculations using different method parameters give
results that are visually indistinguishable from Fig.4. For control, we varied (one-by-one) the stepsize
(h = 0.05), the threshold for a realization to count as escaped (xth = −10) and the ensemble size
(N = 800). We also varied the re-initialization strategy: alternatively, we chose the new position of a
particle after escape according to a Gaussian distribution with meanXs =

√
a (thebottom of the well)

and varianceσ 2/
√

a. This would be the stationary distribution obtained for the linearization of the re-
scaled normal form (5.4) in its equilibriumXs. This alternative re-initialization works by construction
only for a > 0.

Figures4 and5 both show either long-time limits (such ask0(a) in Fig. 4) or cumulative quantities:
K0(a) and Pesc. These quantities can be approximated more accurately with relatively small ensemble
sizes and simple ensemble integration than probability densities. The density of the escape probability is
the time derivative ofPesc, which would be a much ‘noisier’ function of time (ora) for finite randomly
drawn ensembles thanPesc unlessone applies more sophisticated numerical methods and uses larger
ensemble sizes (Kuske,1999,2000).

For largea numerical simulations of the stochastic differential equation (5.4) become inefficient
because escape events become extremely rare. However, this case is covered analytically by classical
chemical reaction rate theory (Hänggiet al.,1990):

k0(a) ∼
2
√

a

π
exp(−2

√
a) for a � 1, (5.9)

wherethe expression on the right-hand side contains the dominant terms ofa in the pre-factor and in
the exponent. Thus, replacing the upper limit of integrationa(0) by +∞ in the approximation (5.8) of
Pescgives only a small change.

5.2 Extraction of noise-induced escape probability from time series

In order to estimate if noise-induced early escape plays a role, one needs to assume that the time series
zk is generated by a system with a parameter that drifts and approaches a saddle-node bifurcation. We
denote the drifting parameter bya in a manner that the saddle-node bifurcation is ata = 0 and equilibria
of the deterministic system with fixeda exist fora > 0. We introduce the parameterZ0 asthez-value of
the equilibrium at the saddle-node parametera = 0. If we assume that the underlying process is subject
to an additive (Gaussian) perturbation of amplitudeσz, thenzk canbe written as the measurements of
the system

dz =

[

qa(t) −
(z − Z0)

2

q
+ O((z − Z0)

3)

]

dt + σz dWt (5.10)

at timeskΔt . The parameterq in (5.10) measures the width of the parabolaa(z) of equilibria of (5.10)
for zero noise amplitude (σz = 0) and ignoring third-order powers ofz − Z0:

a(z) =
(z − Z0)

2

q2
.
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If q is negative, then the stable side of the parabola is belowZ0 andif q is positive, then the stable side
is aboveZ0. From the general form (5.10) of a system near a saddle-node, one can obtain the normal
form

dx = [a(t) − x2] dt + σ dWt (5.11)

by ignoring third-order powers ofz − Z0 andintroducing the re-scaled variable

x =
z − Z0

q
.

Thenoise amplitude scales correspondingly:

σ =
σz

q
. (5.12)

We demonstrate how to extract a (crude) estimate of the state and the parameters of (5.10) from a time
serieszk asshown for the model output in Fig.3(a,b). As long asa(t) is large, the potential well is
deep such that the Gaussian perturbationσz dWt is unlikely to kick z(t) out of the well of the stable
equilibrium. ChoosingΔt (the time spacing of the measurementszk) as our time unit, we first revert the
estimatesck andθk obtainedfrom the degenerate fingerprinting into estimates of the parametersκ(t)
andσ(t) appearing in the Ornstein–Uhlenbeck process obtained from linearizing (5.10) in its stable
equilibrium atq

√
a:

dz = −κ(t)zdt + σz(t)dWt .

Theestimatesκk for κ(kΔt) andσk for σ(kΔt) are

κk = − logck, (5.13)

wherethe estimateck is calculated using the fitting procedure in Section3.2and

σz,k = θk

√
2κk

(1 − c2
k)

(5.14)

(seeGillespie,1992),whereθk is the standard deviation of the detrended time series from the AR(1)
estimate. The estimateκk is an approximation of the LDR

κ(kΔt) = 2
√

a(kΔt) (5.15)

aslong the time serieszk is near the bottom of the potential well. Thus, we can estimatea(kΔt) for the
timeskΔt asak:

ak =
κ2

k

4
.

Consequently, estimates of the parametersa andσz arebyproducts of the AR(1) estimate to obtainck.
Theonly remaining unknown quantity that one needs to convert to the normal form (5.11) is the scaling
factor q. If we drop third-order terms ofz − Z0, fix a at ak, and consider only the deterministic part
(σz = 0), then the equilibriumZk of (5.10) satisfies

√
akq − Zk + Z0 = 0, which is equivalent to

κk

2
q + Z0 = Zk. (5.16)
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We see thatq is the ratio between the slope ofκk/2 (for which we have an estimate) and the slope
of the equilibrium state that the time serieszk fluctuatesaround. An estimate forZk hasalso been
obtained during the degenerate fingerprinting procedure as the kernel average ofzk (alsonamedZk in
Section3.2).Thus, an estimate forq is the ratio between the mean slope ofZk andthe mean slope ofκk.

In our analysis of the normal form with drift and noise, we considered the case where the parameter
a drifts with a uniform (small) speedε. This is unrealistic for paleoclimate records and in models
whenever the parametera is driven by the output of another sub-system, for example, ifa is freshwater
forcing as inRahmstorf(2000). In order to predict how the parametera continues to drift beyond the
final sliding window, we assume that the process drivinga is stationary. So,

a(t) = a(0) −
∫ t

0
ε(s)ds, (5.17)

whereε is not constant but a random variable with a stationary probability distribution. The distribution
has been estimated for the period of time whereκ is available:εk arethe increments between successive
a estimates:

εk =
ak − ak+1

Δt
.

Theseεk form an empirical sample of the distribution ofε(s) from which we can draw to calculatea(t)
using (5.17) without estimating any further parameters. If the mean ofε exists and is bigger than zero,
thena(t) will reach 0 almost surely, resulting in a probability distribution

Pa(t) = 1 − P(a(s) > 0 for all s < t),

which is the probability that the random variablea reaches its critical valuea = 0 before timet . The
probability Pesc(t) of a trajectory escaping before timet can now be estimated using a direct numerical
simulation of

dx = [a − x2] dt + σ dWt ,

da = −ε(t)dt.

Alternatively, if the mean ofε is sufficiently small, one can use the quasistatic approximation

Pesc(t) = 1 − E

[
exp

(∫ t

0
k0(a(s))ds

)]
,

wherethe escape ratek0(a) (whichexists only for positivea) is given in Fig.4 andE[x] is the mean of
the random variablex.

Figure6(b) and (c) show the quantitiesκk, ak andσz,k for the time serieszk of the stochastic model
output in Fig.6(a) (the same serieszk asin Fig. 3(a)). Figure6(b) also shows the cumulative probabil-
ity function Pa(t) for a crossingthe critical value 0 beforet (dashed curve) and its quartiles (dashed
threshold lines), and the probabilityPesc(t) for escape before timet (solid curve) and its quartiles (solid
threshold lines). The threshold for a trajectory counting as escaped was set atxth = −5. Table1 lists
the values ofq as determined by relation (5.16) andσ = σz/q. Also, the table lists the empirical mean
value of the random variableε and its empirical standard deviation (the distribution ofε is only mod-
erately skewed). The mean ofε/σ 2 indicatesif the parameter drift is rapid or slow in rescaled normal
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FIG. 6. Prediction of saddle-node bifurcation and early escape for two time series shown inDakoset al. (2008). Diagram (a)
shows the stochastic model output also shown in Fig.3(a). All quantities have been obtained only from data prior to the cut-off
time indicated by the grey vertical line in diagram (a). Diagram (b) shows the linear decay rateκk (as extracted by degenerate
fingerprinting with window sizew, compare to Fig.3(b)) and the corresponding normal form parametera. It also contains the
cumulative probability functions for reaching the critical valuea = 0 and for escape,Pa andPescon the right axis. The graph in
diagram (c) is the estimated noise amplitudeσ extracted from the time series. The diagrams (d–f) discuss the time series shown in
Fig. 3(c), which is a snapshot from the paleoclimate record ofPetitet al.(1999) at the end of the last glaciation using the identical
procedure to the one applied to the time series in diagram (a).

form coordinates. Figure6(e) and (f) show the quantitiesκ, a, Pesc, Pa andσz for the ice-core record in
Fig. 6(d) (the same serieszk as in Fig.3(c)).

We observe that the parameter drift in the model output (see Fig.6(b)) is fast compared to the noise
level such that early escape plays no role. Table1 also shows that the ratio between drift and variance is
large, which confirms the visual impression that drift dominates the noise. The probability distribution
for escape is even shifted to the right such that trajectories are expected to escape ‘later’ than the drifting
system parametera reaches its critical value.

We note that the actual escape of the observed instance from Fig.6(a) occurs relatively late (at
the 90% percentile). This shifts down (to below 75%) for shorter sliding windows in the degenerate
fingerprinting procedure. Both probability distributions are relatively symmetric and concentrated in a
range of approximately 1000 model years.

In contrast, the time series of the ice-core record, shown in Fig.6(d), has a slowly drifting parame-
ter compared to the noise level (note that one cannot be certain that the underlying mechanism for the
apparent tipping is indeed a passage through a saddle-node). Consequently, trajectories of the estimated
saddle-node normal form system escape significantly earlier thana reaches its critical value: the cu-
mulative probabilityPesc is shifted to the left ofPa. For example, the median (50%) time for escape is
1.1 × 104 years before the median time for reaching the critical valuea = 0. We note that both dis-
tributions,Pa and Pesc are highly skewed, having a long tail at the right end. This makes the expected
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TABLE 1 Numericalvalues of estimates of parameters that are not visible in
Fig. 6

Parameter Model output Fig.6(a–c) Ice-core record Fig.6(d–f)

Meanε 2.2 × 10−4 5.2 × 10−6

Standarddeviationε 1.1 × 10−3 5.9 × 10−5

q 621 13.5
σ 1.4 × 10−3 3.0 × 10−2

Meanεσ−2 105 5.9 × 10−3

escapetime (mean escape time) as a point estimate sensitive to small perturbations such as measure-
ment uncertainty or a different choice of method parameters in the degenerate fingerprinting procedure,
whereas the median times are comparatively robust. A systematic analysis, including the dependence on
the cut-off time (the grey vertical line in all panels of Fig.6), is a topic for future work.

6. Conclusion

Methods to identify incipient climate tipping using time series analysis have recently been developed by
Held & Kleinen(2004) andLivina & Lenton(2007). These methods have been tested on model outputs
and paleoclimate data byLivina & Lenton(2007) andDakoset al.(2008). Time series analysis should be
seen as a complement to the huge modelling efforts that are invested into the analysis and prediction of
climate changes. WhileDakoset al. (2008) could demonstrate that the characteristic quantity extracted
from the time series, the propagator, indeed increases (as it should according to bifurcation theory) using
this quantity for prediction is much more challenging. The extraction of the propagator from a time series
makes assumptions that are, for geological records, difficult to check: separation of time scales between
parameter drift, decay of critical mode and decay of stable modes or the nearly constant-speed approach
of the underlying control parameter towards its critical value.

We studied another source of uncertainty, which exists even if the underlying deterministic dynamics
is drifting with constant speed close to a saddle-node bifurcation and the estimated LDR is accurate.
Namely, the escape of the dynamics from the potential well around the stable equilibrium can be either
premature or delayed, depending on the ratio between parameter drift speed and the amplitude of the
random disturbances. We derived an approximate (semi-analytic) formula that is valid in the quasistatic
limit (that is, the parameter drifts sufficiently slowly compared to the noise amplitude). We found that
the early escape effect vanishes if the drift is more rapid (drift speedε ≈ 0.3 in normal form scaling).

We also demonstrated how one can estimate this effect from time series data, using what we might
call a ‘fold for incipient tipping’ method. This was tested for two examples, the output of a stochastic
model (a case of rapid drift) and an ice-core record (a case of slow drift or large noise amplitude). We
plan to study the consistency of the proposed escape prediction for time series more systematically in
the future. This should be done by generating time series instances from saddle-node normal forms with
drifting parameter and noise, predicting escape distributions from these time series, and then comparing
the predictions to the original distributions shown in Fig.5.

Our estimates for early escape from a potential well are all stated in probabilistic terms, which is
appropriate if one treats the disturbances as random. Normal form based estimates such as ours may also
be useful when studying tipping in climate models because running simulations for large ensembles of
realizations in sophisticated climate models is expensive. If the modelled scenario is close to tipping and
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deterministiccalculations reveal the presence of a saddle-node bifurcation, then the diagrams in Figs4
and5 help to give estimates for the escape probability depending on the speed of parameter drift and the
amplitude of the disturbances.

Finally, we note that our scenario corresponds to the escape from a potential well of an overdamped
particle (this appears to be the relevant case, for example, in ocean circulation models, seeDijkstraet al.,
2004). The weakly damped case,

d2x

dt2
+ γ

dx

dt
= −U (x) + σξ(t),

whereγ is a small coefficient determining the amount of damping (0< γ � 1), U is the potential
and ξ is the disturbance (for example, a random Gaussian noise) has also been covered by reaction
rate theory (the classical theory treats the case where the noise amplitudeσ is much smaller than the
potential barrier, seeHänggiet al.,1990for a review).
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