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It is often known, from modelling studies, that a certain mode of climate tipping (of the oceanic ther-
mohaline circulation, for example) is governed by an underlying fold bifurcation. For such a case, we
present a scheme of analysis that determines the best stochastic fit to the existing data. This provides
the evolution rate of the effective control parameter, the variation of the stability coefficient and the path
itself and its tipping point. By assessing the actual effective level of noise in the available time series, we
are then able to make probability estimates of the time of tipping. This new technique is applied, first, to
the output of a computer simulation for the end of greenhouse Earth about 34 million years ago when the
climate tipped from a tropical state into an icehouse state with ice caps. Second, we use the algorithms
to give probabilistic tipping estimates for the end of the most recent glaciation of the Earth using actual
geological ice-core data.

Keywords climate tipping; slow passage through saddle-node bifurcation; time-series analysis.

1. Introduction
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One concern of the UN Climate Change Conferendgapenhage2009) was the prediction of future
climate change, subject to a variety of carbon dioxide emission scenarios. A particularly alarming feature:
of any such prediction would be a sudden and (perhaps) irreversible abrupt change tpadjgoint
(Lentonet al., 2008; Scheffer 2009). Such events are familiar in nonlinear dynamics, where they are
called (dangerous) bifurcations at which one form of behaviour becomes unstable and the system jumps
rapidly to a totally differensteady state. Many tipping points, such as the switching on and off of ice
ages, are well documented in paleoclimate studies over millions of years of the Earth’s history.

There is currently much interest in examining climatic tipping points to see if it is feasible to pre-
dict them in advance using time series data derived from past behaviour. Assuming that tipping points
may well be governed by a bifurcation in an underlying dynamical system, recent work looks for a
slowing down of intrinsic transient responses within the data, which is predicted to occur before most
bifurcational instabilitieseld & Kleinen,2004;Livina & Lenton, 2007). This is done, for example,
by determining theropagator which is estimated via the correlation between successive elements of
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thetime series, in a window sliding along the time series. This propagator is a measure for the linear
stability. It should increase to unity at tipping.

Many trial studies have been made on climatic computer models where an arbitrary #m€,
can be chosen to represent ‘today’. The challenge is then to predict a future critical%imeT, at
which the model will exhibit a tipping instability, using only the time history of some variable (average
sea temperature, say) generated by the model beforeTtiide accuracy of this prediction can then
be assessed by comparing it to the actual continued response of the simulation beyohditirseme
cases, these trials have been reasonably successful.

Much more challenging, and potentially convincing, is to try to predict real ancient climate tippings,
using their preceding geological data. The latter would be, for example, re-constituted time series pro-
vided by ice cores, sediments, etc. Using this data, the aim would be to see to what extent the actual
tipping could have been accurately predicted in advance.

One past tipping point that has been analysed in this mahinénd & Lenton, 2007) is the end of
the Younger Dryas event, about 11,500 years ago, when the Arctic warmedhy 30 years. These

authors used a time series derived from Greenland ice-core paleotemperature data. A second such study

(one of eight made bypakoset al., 2008), using data from tropical Pacific sediment cores, gives an
excellent prediction for the end of ‘greenhouse’ Earth about 34 million years ago when the climate
tipped from a tropical state into an icehouse state.

After a review of recent research on tipping, we study in Sechidhe saddle-node normal form
with a drifting normal form parameter and with additive Gaussian noise to determine the probability (or
rate) of early noise-induced escape from the potential well depending on the drift speed of the normal
form parameter and the noise amplitude.

We show how one can extract the relevant normal form quantities from a given time series. This
allows one to adjust predictions of tipping events based on the propagator to take into account the
probability of early escape. We demonstrate how it is possible to estimate the probability of noise-
induced escape from the potential well using two time series: one is an output from a simple stochastic
model and the other is a paleotemperature record from ice-core data. Since the propensity of the system
to escape early from its potential well depends only on the order of magnitude of the ratio between drift
speed and noise amplitude, we expect our estimates to be reasonably robust.

This prediction science is very young, but the above trials on paleoevents seem very encouraging,
and we describe some of them more fully below. The predictidiutoire tipping points, vital to guide
decisions about geo-engineering, will benefit from the experience drawn from these trials and will need
the high quality data currently being recorded worldwide by climate scientists today.

2. Tipping of the climate and its sub-systems
2.1 Tipping points

Work at the beginning of this century which sets out to define and exactimate tipping(Rahmstorf,
2001;Lockwood 2001;National Research Councf2002;Alley et al.,2003;Rial et al.,2004) focused

on abrupt climate change: namely, when the Earth system is forced to cross some threshold, triggering a
sudden transition to a new state at a rate determined by the climate system itself and (usually) faster than
the cause, with some degree of irreversibility. Recently|thergovernmental Panel on Climate Change
(2007) made some brief remarks about abrupt and rapid climate changel emitnet al. (2008) have

sought to define these points more rigorously. The physical mechanisms underlying these tipping points
are typically internal positive feedback effects of the climate system (thus, a certain propensity for
saddle-node bifurcations).
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2.2 Tipping elements

In principle, a climate tipping point might involve simultaneously many features of the Earth system,
but it seems that many tipping points might be strongly associated with just one fairly well-defined
sub-system. Thestiipping elementare well-defined sub-systems of the climate, which work (or can
be assumed to work) fairly independently, and are prone to sudden change. In modelling them, their
interactions with the rest of the climate system are typically expressed as a control parameter (or forcing)
that varies slowly over time.

RecentlyLentonet al. (2008) have listed nine tipping elements that they consider to be primary can-
didates for future tipping due to human activities and as such have relevance to political decision makin
at Copenhage2009) and beyond. These elements, their possible outcomes, and Lenton’s assessme
of whether their tipping might be associated with an underlying bifurcation are

IYem

(1) loss of Arctic summer sea ice (possible bifurcation);

(2) collapse of the Greenland ice sheet (bifurcation);

(3) loss of the West Antarctic ice sheet (possible bifurcation);

(4) shut-down of the Atlantic thermohaline circulation (THC; fold bifurcation);

(5) increased amplitude or frequency of the EfdliSouthern Oscillation (some possibility of bifur-
cation);

(6) switch-off of the Indian summer monsoon (possible bifurcation);

(7) changes to the Sahara/Sahel and West African monsoon, perhaps greening the desert (possil
bifurcation);

(8) loss of the Amazon rainforest (possible bifurcation) and
(9) large-scale dieback of the Northern Boreal forest (probably not a bifurcation).
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The analysis and prediction of tipping points of climate sub-systems is currently being pursued in severaE:
streams of research, and we should note in particular the excellent book by Marten Scheffer about tlppln@
points in ‘Nature and Society’, which includes ecology and some climate stigibeffer 2009).

3. Bifurcations and their precursors

3.1 Generic bifurcations of dissipative systems
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The great revolution of nonlinear dynamics over recent decades has provided a wealth of informationg
about the bifurcations that can destabilize a slowly evolving system like the Earth’s climate. These
bifurcations are defined as points during the slow variation of a ‘control’ parameter at which a qualitative 2 S
topological change of behaviour is observed in the multi-dimensional phase space of the system. =

The Earth’s climate is what dynamicists would catlissipative systepand for this, the bifurcations
that can be typically encountered under the variation of a single control parameter are classified into
three typessafe,explosiveanddangerougThompsoret al.,1994; Thompson & Steway2002).

The safe bifurcations, such as the supercritical Hopf bifurcation, exhibit a continuous supercritical
growth of a new attractor path with no fast jump or enlargement of the attracting set. They are deter-
minate with a single outcome even in the presence of small noise and generate no hysteresis with the
path retraced on reversal of the control sweep. The explosive bifurcations are less common phenomena
lying intermediate between the safe and dangerous types: we simply note here that, like the safe bifur-
cations, they do not generate any hysteresis. The dangerous bifurcations are typified by the simple fold
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(saddle-noddifurcation) at which a stable path increasing with a control parameter becomes unstable
as it curves back towards lower values of the control and by the subcritical bifurcations. They exhibit
the sudden disappearance of the current attractor, with a consequential sudden jump to a new attractor
(of any type). They can be indeterminate in outcome, depending on the topology of the phase space, and
they always generate hysteresis with the original path not reinstated on control reversal.

Any of these three bifurcation types could in principle underlie a climate tipping point. But it is
the dangerous bifurcations that will be of major concern, giving as they do a sudden jump to a different
steady state with hysteresis, so that the original steady state will not be re-instated even if the controlling
cause is itself reversed. So any future climatic tipping to a warmer steady state may be irreversible: a
subsequent reduction in G@oncentratiowill not (immediately or perhaps ever) restore the system to
its pre-tipping condition.

3.2 Time series analysis of incipient bifurcations

Most of the bifurcations in dissipative systems, including the static and cyclic folds that are the most
likely to be encountered in climate studies, have the following useful precursoff feepson &
Stewarf 2002 for more details). The stability and attracting strength of the current steady state is be-
coming steadily weaker and weaker in one mode as the bifurcation point is approached. This implies
that under inevitable noisy disturbances, transient motions returning to the attractor will become slower
and slower: in the limit, the rate of decay of the transients decreases linearly to zero along the path.
Held & Kleinen (2004) andLivina & Lenton (2007) have recently presented algorithms that are
able to detect incipient saddle-node bifurcations from time series of dynamical systems. Both methods
estimate the linear decay rate (LDR) towards a quasistationary equilibrium that is assumed to exist
and to drift towards a saddle-node bifurcation. Typical test data for the algorithms come either from
geological records or from output of climate models. Both algorithdegénerate fingerprintingy
Held & Kleinen 2004 and detrended fluctuation analys{®FA) by Livina & Lenton, 2007) have to
make assumptions about the process underlying the recorded time series that are generally believed to be
sensible for the tipping elements listed lbgntonet al. (2008). First, one has to assume that the process
is a dynamical system close to a stable equilibrium that drifts only slowly but is perturbed by (random)
disturbances. The second assumption is that the system is effectively 1D, that is, the equilibrium of the
undisturbed system is strongly stable in all directions except a single critical one. Quantitatively, this
means that one assumes the presence of three well-separated time scales, expressed as rates:

Kdrift <K Kcrit <K Kstab
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Here, kqrift iS the average drift rate of those quantities that the algorithm treats as a parameter, e.g.
freshwater forcing in studies of the THC (the global heat- and salinity-driven conveyor belt of oceanic
water). The ratei; is the rate with which a small disturbance in state space relaxes back to equilibrium.
The ratexsiapis the decay rate of all otheron-critical modes. We note that the drift ratgix becomes
larger thanxcit oncethe drifting parameter is very close to its bifurcation value. Third, one assumes
that the disturbances are small in the sense that the relaxation to equilibrium is governed mostly by the
LDRs (this implies, for example, that the potential well in which the dynamical system can be imagined
to be sitting is approximately symmetric in the critical direction).

The basic procedure proposedbgld & Kleinen (2004) consists of three steps, given a time series
(tk, z«) of measurementz at possibly unevenly spaced time poitts
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1. Interpolation. Choose a stepsizi¢ satisfying
Kerit <K i K Kstab
At
andinterpolate such that the spacing in time is uniform. Now, one has a new time series
Zx naw = Z(k 41),

evenly spaced in time.

2. Detrending. Remove the slow drift of the equilibrium by subtracting a slowly moving average.
For example, choose a Gaussian kernel

1 1(t —kdat)?
Gk() = meﬂ)(—éT)

of bandwidthd satisfying
1
Kdrift < = << Kcrit

d
andsubtract the average

ZiN::L G (i 4t)z;

SN G 4t)
of zx over the kernel. The result of this is a time series
Yk = Zx — Z(k4t),

Z(KAt) =
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SAIU

which fluctuates around zero and can be considered as stationary on time scales shorter tha
1/Kdrift.-

3. Fit LDR in sliding window. One assumes that the remaining time seyiegan be modelled by
a stable scalar linear mapping disturbed by noise, a so-called AR(1) model

Yk+1 = CkYk + 07k, (3.1)

wherefry is the instance of a random disturbance of amplitddat time k At and ck is the
propagator related tocgit attime k 4t via

Ck = eXp(—xcrit k 4t).

If one assumes that the disturbangebave a normal distribution and are independent from each
other and thaty is nearly constant on time scales shorter thagydst, one can choose a sliding
window sizew = 2m+ 1 satisfying
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1
Kdrift << m

and determine the propagat@rby an ordinary least-squares fit of

Yi+1 = CYj

over the set of indice§ = k — m, ...,k + m. An estimate for the noise amplitudecan be
obtained from the standard deviation of the residual of the linear least-squares fit:

O = stdey ([yj - ckyj]jztfm).


http://imamat.oxfordjournals.org/

32 J. M. T. THOMPSON AND J. SIEBER

Sliding Window in Time-Series Analysis
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FiG. 1. lllustration of sliding windows used in degenerate fingerprinting proposedeby & Kleinen (2004). The extracted
autocorrelation coefficierdy is an estimate for the propagator at the mid-time of the sliding windows. Extrapolation is required
for prediction.

This process will stop when the front end of the last window hits the last data point. Note that when
using paleodata, the end of the analysed time series should be chosen before the tipping point that is
the object of the investigation. This choice is essential to prevent data, spurious to our predictions of
the pre-tipping behaviour, entering the analysis: it also makes a complete analogy with any attempt to
predict future tipping points from data terminating today. Figliiéustrates this requirement on the
sliding windows (with a time series of length = 20 for illustration). It also shows a simple linear
extrapolation that one might make in order to predict where tipping occurs. In this maieldr&

Kleinen (2004) obtain the so-called propagator graph of the estimategtrsus its central time as
illustrated in Fig.1. On this graphg is expected to head towardsl at any incipient bifurcation. In

other words, the slowing down of the relaxation from disturbances along the times series can serve as
an early warning signal for an imminent bifurcatiobakoset al.,2008). We should finally note that
having used a first-order mapping i8.1) and employed autocorrelation techniques, the propagator

is often called the first-order autoregressive coefficient and written as ARC(1). The prediction based on
DFA, as proposed biivina & Lenton (2007), also reconstructs the propagatdout does so via the
scaling exponent of the variance of the (detrended) time series. For a more complete description of the
time series techniques employed see the recent revietihbynpson & Siebe(2010). Also, se€orsi

& Taranto(2007) for a discussion of similar problems in power systems engineering (the prediction of
fold bifurcations leading to voltage collapse in energy networks).

4. Review of recent work
4.1 First prediction of an ancient tipping

The first prediction of an ancient climate tipping event using preceding geological data isdvinadc
Lenton(2007) who tested their DFA on the rapid warming of the earth that occurred about 11,500 years
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FiG. 2. Results oLivina & Lenton (2007): (a) Greenland ice-core (GISP2) paleotemperature with an unevenly spaced record,
visible in the varying density of symbols on the curve. The total number of data poiNts=s1586. (b) the DFAL propagator

is calculated in sliding windows of length = 500 points and mapped into the middle points of the windows. A typical sliding
window ending near the tipping is shown.

ago at the end of the so-called Younger Dryas event (analysing Greenland ice-core paleotemperatu
data, which is available from 50,000 years ago to the present).

This Younger Dryas eventdoughton,2004) was a curious cooling just as the Earth was warming
up after the last ice age, as is clearly visible, e.g. in records of the oxygen igBfgpan Greenland ice.
It ended in a dramatic tipping point, 11,500 years ago, when the Arctic warmetbin's0 years. Its
behaviour is thought to be linked to changes in the THC. This ‘conveyor belt’ is driven by the sinking of €
cold salty water in the North and can be stopped if too much fresh-melt makes the water less salty and;
so less dense. At the end of the ice age when the ice sheet over North America began to melt, the Wat%’c
first drained down the Mississippi basin into the Gulf of Mexico. Then, suddenly, it cut a new channel 2
near the St. Lawrence river to the North Atlantic. This sudden influx of fresh water cut off part of the ;
ocean conveyor belt, the warm Atlantic water stopped flowing North, and the Younger Dryas cooling §
was started. It was the ‘re-start’ of the circulation that could have ended the Younger Dryas at its rapidZ,
tipping point, propelling the Earth into the warmer Pre-Boreal era. B

The results otivina & Lenton (2007) are shown in Fi®, where their propagator (based on DFA) B
is seen heading towards its critical valuedat at about the correct time. Note, though, that from a pre-
diction point of view, the propagator graph should end at point A when the estimation window reaches
the tipping point. In this example, extracting the propagator is particularly challenging because the data
set was comparatively small (1586 points) and unevenly spaced.
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4.2 Systematic study of eight ancient tippings

In a more recent papeBDakoset al. (2008) systematically estimated a propagator stability coefficient
from reconstructed time series of real paleodata preceding eight ancient tipping events. These are
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(a) the end of the greenhouse Earth about 34 million years ago when the climate tipped from a
tropical state (which had existed for hundreds of millions of years) into an icehouse state with
ice caps, using data from tropical Pacific sediment cores;

(b) the end of the last glaciation, and the ends of three earlier glaciations, drawing data from the
Antarctica Vostok ice core;

(c) the Bglling—Allebd transition that was dated about 14,000 years ago, using data from the Green-
land GISP2 ice core;

(d) the end of the Younger Dryas event about 11,500 years ago, as discussed in &d4gcthort
drawing not on the Greenland ice core, but rather on data from the sediment of the Cariaco basin
in Venezuela and

(e) the desertification of North Africa when there was a sudden shift from a savanna-like state with

scattered lakes to a desert about 5,000 years ago, using the sediment core from ODP Hole 658C,
off the west coast of Africa.

In all the cases studied Hyakoset al. (2008), the propagata asextracted by degenerate finger-
printing was shown to exhibit a statistically significant increase (corresponding to a slowing down of
the relaxation) prior to the tipping transitioDakoset al. (2008) also demonstrated that their principal
result, the statistically significant increasecgfis robust with respect to variations in smoothing kernel
bandwidthd, sliding window lengtho and the interpolation procedure.

5. Noise-induced systematic bias of extrapolated prediction

The intention behind the development of the time series analysis algorithms goes beyond statistical
evidence of an increasing LDR: the goal of both algorithms iprelict the time(or probability) of

the tipping event from the observational data before the event takes place. This is more challenging
and suffers from additional uncertainties. Apart from the dependence of the vatweonfalgorithm
parameters (e.g. the sliding window lengif, for a prediction of the time of tipping, we have to ex-
trapolate. This implies that we have to assume that the underlying control parameter drifts with nearly
constant speed during the recorded time series. This is often not the case in the study of sub-systems of
the climate when the control parameter is determined by the dynamics of another, coupled, sub-system.
Even if the control parameter drifts with constant speed, for prediction, we have to assume in addition
transversality, that is, the control parameter has to vary the unfolding parameter of the normal form of
the saddle-node bifurcation nearly linearly.

Figure 3 shows two time series (a and c) and the corresponding time series of extracted estimates
for the propagatocy (b and d). Time series (a) is the output of a model simulation for a transition to an
icehouse Earth and is taken frdbakoset al. (2008). The model as presented bgkoset al. (2008)
is a scalar stochastic ordinary differential equation where a control parameter is varied linearly in time
and the system is known to encounter a saddle-node bifurcation (originally, the model was developed
by Fraedrich,1978; see supplement &fakoset al, 2008). Time series (b) shows the propagaier
extracted from time series (a) using degenerate fingerprinting. Time series (c) is a snapshot of tempera-
tures before the end of the last glaciation, 20,000 years ago. The data are také&efitanal. (1999);
the window of the snapshot is identical to Fig. 1(I)iakoset al. (2008). The estimated propagatqr
for time series (c) is shown in diagram (d). The graphs in diagrams (b) and (d) are qualitatively the same
as inDakoset al. (2008) but differ slightly quantitatively. This is likely due to minor variations between
the algorithm parameters that we used and the algorithm parameters uBedkdet al. (2008). To
provide a visual clue about the level of uncertainty in the time serieg,dhe diagrams (b) and (d)
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Stochastic model output Ice-core record — end of glaciation
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FiG. 3. LDR estimates for the output of a model of transition to icehouse earth (a and b) and for an geological tempera- 2
ture record of the end of the recent glaciation (c and d). Bet# et al. (1999) and main text for description. Data source: ‘;,:
ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/vostok/deutnat.txt S
8
<
show estimates extracted using two different window size parameteldespite the uncertainty, two %
features of the time series of propagatofsare discernible: first, as studied in detailDakoset al. Q
(2008),cy is increasing. Second, linear extrapolation does not match if we expect the tipping to occur 5
. . ae >
at the extrapolated time far= 1 (which would correspond to the critical value of the propagator). In &

both cases, the tipping occurs earlier, and at least for the model output (which is known to drift through 2
a saddle-node bifurcation), the bias of the linear extrapolation is systematic. There are two competé
ing effects that might determine the systematic bias. On the one hand, the equilibrium starts to drift%
rapidly (square-root like) when the drifting parameter approaches the saddle-node bifurcation; on theﬁJ
other hand, random disturbances may kick the dynamical system out of the shrinking basin of attracnorg
prematurely. The numerical study in the following sections quantifies these two effects. e

5.1 Rate of noise-induced escape from basin near saddle-node

We take the normal form of a saddle-node bifurcation, perturb it by adding Gaussian white noise and
let the control parametex drift with speede (the climate model oFraedrich(1978) is exactly of this

type):
dx = [a — x?]dt + o dW, (5.1)
da = —edt. (5.2)


ftp://ftp.ncdc.noaa.gov/pub/data/paleo/icecore/antarctica/vostok/deutnat.txt
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TheperturbationV; (sometimeswritten W (t) to avoid double subscripts) is a Wiener process, which is
defined by two properties:

1. Wp =0and
2. for every sequence of time pointsQt; < tp < --- < t, all incrementsV (tj+1) — W(t;) are

independentandom variables with Gaussian distribution of zero mean and vartapce- t;
(and,thus, standard deviatiogtj ;1 — tj).

Thecoefficients controls the amplitude of the noise variance added to the slowly drifting equilibrium.
If we freeze the drifting (set = 0) and set the noise amplitude to zeso=£ 0), then the dynamics of
(5.1) corresponds to the dynamics of an overdamped particle in a potential well of the shape

U(x) = —ax+ x°/3.

This dynamics of §.1) with a fixeda and no noise has a stable equilibrifg at ./a andan unstable
equilibrium X, at —./a. Correspondingly, the potential well has a (local) minimum aXs = /a and
a hilltop (local maximum) atX, = —./a. For x going to—oo, the potential falls off to —oo, and
for x going to+o0, it increases te-oo. The differential equations(2) fora governs the drifting of the
control and has the solutiat(t) = a(0) — et.

We say that a trajectony(t) ‘escapes’ if it reaches oo (typically in finite time). In numerical tests,
one can detect if the trajectory crosses a fixed negative thregfadidm which it is unlikely to return
to the well (for example, sety, at some fixed distance belovw,). We are interested in finding the
cumulative escape probabilifyesda) for a trajectory to escape before the drifting control parameter
has reached the val@e If the stochastic process.(1)—(5.2) starts with a sufficiently largg0) and if
€ is sufficiently small, then this probabilitfesc dependonly weakly on the initial distribution ok as
long as this initial distribution is concentrated inside the potential well.

The perturbation; is a random disturbance (noise) axifs the position of a particle that has a
temperature. If the modulus of the noise is orders of magnitude smaller than the height of the barrier
(the potential difference betweéy and Xy, which is 43/2/3), then the escape rate formulas developed
for chemical reaction rates (Kramers’ escape rate Higggiet al., 1990) can be applied. As we are
interested in the transition efthrough zero, the standard reaction rate theory is not applicable. Analyti-
cal formulas for jumping times in periodic potentials from one period to the next and arbitrary noise are
given inMalakhov & Pankrato{1996). See alsbischer & Imkeller(2006) for an analysis of stochastic
resonance between two slowly varying potential wells.

5.1.1 Re-scaling of parameters.In the noise-perturbed drifting normal form (5.1)—(5.2), we can re-
scale timet, x, a ande such that the noise amplitudeis equal to 1. Exploiting thatW,s = /pdW,
andsetting

2/3 _

toldo “’ = thew, o=%

3%old = Xnews 0 V380id = @nev  and o 2cold = €new, (5.3)

we obtain a stochastic process for the re-scaled quantities that is of the same form as the original noise-
perturbed normal form (5.1)—(5.2) (except that the parameteas been absorbed as a unit):

dx = [a — x2]dt + dW, (5.4)
da = —edt. (5.5)
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In the rescaled coordinates, the node (the local minimum of the well) and the saddle (the barrier) are at
Xunew = U_z/gxu,old and Xsnew = 0_2/3Xs,o|d,

respectely.

5.1.2 Escape rates for the saddle-node normal form with noigeor sufficiently small drift speeds
¢ of the control paramete, we can approximate the escape probabifity(a) in the drifting system
(5.4)—(5.5) using quantities of the frozen system (drift speed 0). A useful quantity is the ‘escape
rate’ ko. For fixeda > 0O in the noise-perturbed normal form (5.4), the escapekg® canbe defined
as follows:

1. set alarge ensemble (sikb of initial valuesx inside the potential well (e.cx = Xs);

2. evolve the noise-perturbed normal for4) and measure the fractioft) of instances that have
reached-oo during the previous unit time interval:

im 1 numberof instances reachingoo during [t, t + h]

N—oo h numberof instances still finite at timée

rt) = Ilim and
© = m,

3. after a transient this fractiar(t) converges to a constaky.

This convergence is achieved only in the limlit— oo due to depletion for finite ensembles. In numer-
ical calculations, one can replaeex with a finite threshold, <« Xy. One can avoid depletion of the
finite ensemble by re-initializing the escaped instance to an initial value that is randomly selected from¢
the remaining (non-escaped) ensemble (‘putting the particle back into the well’).

Figure4 shows this escape rdtg asa function ofa as a grey curve with circles. Note that thaxis
corresponds to the re-scaladafter transformation (5.3). An escape rite~ 0.1 atac %3 = 04
meanghat approximately 10% of the realizations cross the threskgle: —5 to escape per unit time
interval during the solution of the saddle-node normal form (5.1) @éth*/® = 0.4.
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5.1.3 Quasistaticapproximation of the cumulative escape probabilitising the escape ratg(a)

for the frozen problem (e 0 in (5.4)—(5.5)), we can approximate the cumulative probabHity. of
escapdor a trajectory of the saddle-node normal form with drifting control parameter. If we assume
that escape is irreversible and denotefgy) the probability that the trajectory has not escaped until
timet, then we have the relation

p(t +h) = [1 — (ko(a(t)) + O(e))h] p(t) (5.6)

for small time stepé > 0. The factor - kg(a(t))h is the probability that the trajectory escapes during
the time interval [tt + h] if we approximate the slowly changing varialdeby its left-end valuea(t)

in this interval. Relation (5.6) expresses that a trajectory will not escape untilt timk if it has not
escaped until timeand it does not escape during the intervat ft h]. Letting h go to zero and ignoring
the slow drift ofa during the time intervalt] t + h] of order Q(¢), we obtain the differential equation
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d
p p(t) = —ko(a(t)) p(t),
which has the solution

t
p(t) =exp( /O —ko(a(S))dS) (5.7)
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Escape rate k(@) and cumulative probability Peg:(a) —
quasistatic approximation (¢ = 0) and simulation with drifting a (¢ > 0)

1

T T
: quasistatic

dynamic

0.9

e —— “““ o ............... ................ .................
. T, T — — —
os . R T T
FEELY, YRS, S, ¢ I | - To— .................
0.4
- 75 VU SU— .................

02 ': e N ...... ................ .................

escape rate, cumulative escape probability

0.1 ........... ,:, ................ -----------------

25 3

FIG. 4. Escape ratlky from potential well for fixedh (in the original parameters 05(1)—(5.2)). The functioKg(a) is the integral

of kg, as defined ing.8), integrated frona to 3. The curveg = 0.1, ¢ = 0.01 ande = 0.001 are the cumulative probabilities

for escape from the potential well for dynamically decreasing depth of the potential well lzefsneached. The quantity

indicates the rate of change of the potential in the unscaled parameters. For comparison the quasistatic estimate for the cumulative
probability of escape is indicated using grey curves (see als®Fig.

if we start with an initial distribution concentrated in the potential wpllQ) = 1). We want to find the
approximate cumulative probabilif§esa) of escape before the control has drifted to a certain vajue
so we substituta = a(0) — et into expression (5.7) fop(t):

a(

0)
Pesd@) = 1 — exp(—Ko(a)/e) whereKg(a) = / ko(a')da'. (5.8)

a

This approximation (5.8) for the escape probability assumeg tisamall, that the escape is irreversible
(which is accurate if the thresholg,, is sufficiently negative), and that(0) > 1 (which makesPesc
nearly independent of the initial distribution xf.

Figure 4 shows the quasistatic approximation of the cumulative escape probaRilifyor ¢ =
0.1, 001 and 0001 as grey curves. Superimposed are numerical observations of the cumulative escape
probability Pescfor the normal form with drifting parameter(5.4)—(5.5) as black curves. In a simulation
of (5.4)—(5.5), one can approximate the cumulative escape probaBilityntil time stept, with the
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Escape plrobability ptlercentiles: 1|0% -90%

static
—dynamic
= =10~
L ¢g/o?
= =107
1 ice-core record N NNNNNNN- N - oo -
Fig. 3(c) 3
+— time -3
T T T 10
0 0.5 1 1.5 2
a 0—4 /3

FiG. 5. Percentiles of the probability of escape for dynamically vargirion black) in the original parameters d&.0)—(5.2). For
fixed e the x% curve shows at which x% of the realizations have escaped. For comparison, the grey curves show the estimate
obtained using the quasistatic approximation. The depth of the potential well (andh)tkdesreases in time.

helpof a recursion for the probability + Pesc0f not escaping

N — Nesdtn)

1- Pesc(tn+1) = N

(1 — Pesdtn)),

whereNesdth) is the number of realizations that escape at time stegnd N is the overall ensemble
size. We keep the overall ensemble dizéof non-escaped realizations) constant by re-initializing every
escaped realization to a random non-escaped instance.

One can see that if the control parametetrifts slowly (€ « 1), the cumulative escape probability
increases sharply from nearly 0 to 1 in a ranga of about length 1 (e.g. between= 1 anda = 2 for
€ = 0.001).

Figure5 shows the percentiles of the cumulative escape probabilities systematicadlydnging
between @01 and 6. Again, we superimpose black curves showing the percentiles of the cumulative
probability observed during a simulation of the normal form with drifting control paramei@y{(5.5).

We draw two conclusions from the results shown in Figsd5:
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1. the quasistatic approximation (5.8) of the cumulative escape probability is quantitatively accurate
to ordere. For largee (~ 0.1), the effect of the dynamic drifting of the control parameter delays
the escape slightly. Naturally, this effect is much weaker than the delay in exchange of stability
observed in slow passages through Hopf or Pitchfork bifurcationsk(sslee,1999;Baeret al,,
1989;Suet al.,2004for studies that quantify also the effect of noise).

2. Random disturbances make early escape probable as soon as the ratio of drift @peedri-
ance of the disturbanee? becomesmall in the original parameters of saddle-node normal form
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with drift and noise %.1)—(5.2). The percentiles in Fi§.quantify this effect after the axes have
been scaled using transformatidn3):e — eo ~2, a > ac %/

5.1.4 Contmol of accuracy in stochastic simulationsThe ensemble size for the numerical simulation
wasN = 400, and the integration was performed with the Euler—Maruyama scheme (which is of order 1
for this problem) using stepsize= 0.01. Control calculations using different method parameters give
results that are visually indistinguishable from Fg.For control, we varied (one-by-one) the stepsize
(h = 0.05), the threshold for a realization to count as escapgd-£ —10) and the ensemble size
(N = 800). We also varied the re-initialization strategy: alternatively, we chose the new position of a
particle after escape according to a Gaussian distribution with igan ./a (the bottom of the well)
and variancer?/,/a. This would be the stationary distribution obtained for the linearization of the re-
scaled normal form5.4) in its equilibriumXs. This alternative re-initialization works by construction
only fora > 0.

Figures4 and5 both show either long-time limits (such kg@a) in Fig. 4) or cumulative quantities:
Ko(a) and Pess; These quantities can be approximated more accurately with relatively small ensemble
sizes and simple ensemble integration than probability densities. The density of the escape probability is
the time derivative 0Pgss Which would be a much ‘noisier’ function of time (aj for finite randomly
drawn ensembles thaResc unlessone applies more sophisticated numerical methods and uses larger
ensemble sizes (Kusk&999,2000).

For largea numerical simulations of the stochastic differential equat®d)(become inefficient
because escape events become extremely rare. However, this case is covered analytically by classical
chemical reaction rate theorlénggiet al., 1990):

ko(a) ~ %ﬁ exp(—2va) fora> 1, (5.9)
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wherethe expression on the right-hand side contains the dominant termghahe pre-factor and in
the exponent. Thus, replacing the upper limit of integrat¢® by +oo in the approximation (5.8) of
Pescgives only a small change.

5.2 Extraction of noise-induced escape probability from time series

In order to estimate if noise-induced early escape plays a role, one needs to assume that the time series
Zx is generated by a system with a parameter that drifts and approaches a saddle-node bifurcation. We
denote the drifting parameter lyin a manner that the saddle-node bifurcation s &t 0 and equilibria

of the deterministic system with fixedexist fora > 0. We introduce the parametgg asthe z-value of

the equilibrium at the saddle-node paramates 0. If we assume that the underlying process is subject

to an additive (Gaussian) perturbation of amplitudethenz, canbe written as the measurements of

the system
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(z— Zp)?
q

dz = [qa(t) - +0((z—- 20)3)} dt + o, dW; (5.10)

attimesk 4t. The parameteq in (5.10) measures the width of the paraba(a) of equilibria of (5.10)
for zero noise amplitudes¢ = 0) and ignoring third-order powers af— Zo:
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If g is negative, then the stable side of the parabola is bé&lgandif q is positive, then the stable side
is aboveZgy. From the general form5(10) of a system near a saddle-node, one can obtain the normal
form

dx = [a(t) — x?] dt + o dW, (5.11)

by ignoring third-order powers of — Zg andintroducing the re-scaled variable

_z— Zo
T
Thenoise amplitude scales correspondingly:
Oz
o=—. (5.12)
q

We demonstrate how to extract a (crude) estimate of the state and the parameiei8)dfgm a time
serieszx asshown for the model output in Fig(a,b). As long as(t) is large, the potential well is
deep such that the Gaussian perturbatigdW,; is unlikely to kick z(t) out of the well of the stable
equilibrium. Choosingdt (the time spacing of the measuremengsas our time unit, we first revert the
estimatesy andék obtainedfrom the degenerate fingerprinting into estimates of the parameters
and o (t) appearing in the Ornstein—~Uhlenbeck process obtained from linearizing (5.10) in its stable
equilibrium atq./a:

dz = —x(t)zdt + o, (t)dW;.
Theestimatesy for x (k At) andok for o (k At) are
kk = — logck, (5.13)

wherethe estimatey is calculated using the fitting procedure in Sect®bfand

2xx
o7k =6k | — (5.14)
1-¢cd

(seeGillespie, 1992),wheredy is the standard deviation of the detrended time series from the AR(1)
estimate. The estimaig is an approximation of the LDR

xk(kAt) = 2/a(k At) (5.15)

aslong the time serieg is near the bottom of the potential well. Thus, we can estiraéiteft) for the
timesk 4t asay:
2
Ky

A = 1
Consequentlyestimates of the parameter@ndo, arebyproducts of the AR(1) estimate to obtain
Theonly remaining unknown quantity that one needs to convert to the normal fodrh)(is the scaling
factorg. If we drop third-order terms of — Zg, fix a at ax, and consider only the deterministic part

(o7 = 0), then the equilibriuniZy of (5.10) satisfies/axq — Zx + Zo = 0, which is equivalent to

K—qu +Z0= Zk (5.16)
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We see that] is the ratio between the slope of/2 (for which we have an estimate) and the slope
of the equilibrium state that the time serigsfluctuatesaround. An estimate foZy hasalso been
obtained during the degenerate fingerprinting procedure as the kernel avemgalsbnamedZy in
Section3.2).Thus, an estimate far is the ratio between the mean slopeZpfandthe mean slope ad.

In our analysis of the normal form with drift and noise, we considered the case where the parameter
a drifts with a uniform (small) speed. This is unrealistic for paleoclimate records and in models
whenever the parametatis driven by the output of another sub-system, for exampkejsffreshwater
forcing as inRahmstorf(2000). In order to predict how the paramegecontinues to drift beyond the
final sliding window, we assume that the process driang stationary. So,

t
a() =a(0) —/0 €(s)ds, (5.17)

wheree is not constant but a random variable with a stationary probability distribution. The distribution
has been estimated for the period of time wherg availableey arethe increments between successive

a estimates:

& — k41

€
K At

Thesecy form an empirical sample of the distribution ©fs) from which we can draw to calculaégt)
using (5.17) without estimating any further parameters. If the meareafsts and is bigger than zero,
thena(t) will reach 0 almost surely, resulting in a probability distribution

Pa(t) =1— P(a(s) > Oforalls < t),

which is the probability that the random varialaleeaches its critical valua = 0 before timet. The
probability Pes(t) of a trajectory escaping before tihean now be estimated using a direct numerical
simulation of

dx = [a — x?] dt + o dW,
da = —e(t)dt.

Alternatively, if the mean o is sufficiently small, one can use the quasistatic approximation

t
Pesd) = 1— E [exp ( /0 ko<a(s))ds)] ,

wherethe escape rate)(a) (which exists only for positivea) is given in Fig.4 andE[x] is the mean of
the random variabl.

Figure6(b) and (c) show the quantitieg, ax ando k for the time seriegy of the stochastic model
output in Fig.6(a) (the same serieg asin Fig. 3(a)). Figures(b) also shows the cumulative probabil-
ity function P4(t) for a crossingthe critical value 0 beforé (dashed curve) and its quartiles (dashed
threshold lines), and the probabiliBes(t) for escape before time(solid curve) and its quartiles (solid
threshold lines). The threshold for a trajectory counting as escaped wasxgetat-5. Tablel lists
the values ofy as determined by relation (5.16) and= 0,/q. Also, the table lists the empirical mean
value of the random variableand its empirical standard deviation (the distributiore a§ only mod-
erately skewed). The mean ofo 2 indicatesif the parameter drift is rapid or slow in rescaled normal
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FiG. 6. Prediction of saddle-node bifurcation and early escape for two time series sh@eakadset al. (2008). Diagram (a)
shows the stochastic model output also shown in 8g). All quantities have been obtained only from data prior to the cut-off
time indicated by the grey vertical line in diagram (a). Diagram (b) shows the linear decay, r@e extracted by degenerate
fingerprinting with window sizeo, compare to Fig3(b)) and the corresponding normal form paramaetelt also contains the
cumulative probability functions for reaching the critical value- 0 and for escapeRa and Pescon the right axis. The graph in
diagram (c) is the estimated noise amplitudextracted from the time series. The diagrams (d—f) discuss the time series shown in
Fig. 3(c), which is a snapshot from the paleoclimate recoréetftet al. (1999) at the end of the last glaciation using the identical
procedure to the one applied to the time series in diagram (a).

form coordinates. Figuré(e) and (f) show the quantitias a, Pess Pa andas; for the ice-core record in
Fig. 6(d) (the same serieg as in Fig.3(c)).

We observe that the parameter drift in the model output (seesHig) is fast compared to the noise
level such that early escape plays no role. Talaéso shows that the ratio between drift and variance is
large, which confirms the visual impression that drift dominates the noise. The probability distribution
for escape is even shifted to the right such that trajectories are expected to escape ‘later’ than the driftin
system parameterreaches its critical value.

We note that the actual escape of the observed instance fronb@goccurs relatively late (at
the 90% percentile). This shifts down (to below 75%) for shorter sliding windows in the degenerate
fingerprinting procedure. Both probability distributions are relatively symmetric and concentrated in a
range of approximately 1000 model years.

In contrast, the time series of the ice-core record, shown inad), has a slowly drifting parame-
ter compared to the noise level (note that one cannot be certain that the underlying mechanism for the
apparent tipping is indeed a passage through a saddle-node). Consequently, trajectories of the estimated
saddle-node normal form system escape significantly earlierah@aches its critical value: the cu-
mulative probabilityPescis shifted to the left ofP,. For example, the median (50%) time for escape is
1.1 x 10* years before the median time for reaching the critical value 0. We note that both dis-
tributions, Py and Pescare highly skewed, having a long tail at the right end. This makes the expected
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TABLE 1 Numericalvalues of estimates of parameters that are not visible in

Fig. 6
Parameter Model output Fig(a—c) Ice-core record Fig(d—f)
Meane 22x10°* 52 x 1076
Standarddeviatione 11x10°3 59 x 10°°
q 621 135
o 14 x 1073 30x 1072
Meaneo —2 105 59 x 1073

escapdime (mean escape time) as a point estimate sensitive to small perturbations such as measure-
ment uncertainty or a different choice of method parameters in the degenerate fingerprinting procedure,

whereas the median times are comparatively robust. A systematic analysis, including the dependence on
the cut-off time (the grey vertical line in all panels of F&), is a topic for future work.

6. Conclusion

Methods to identify incipient climate tipping using time series analysis have recently been developed by
Held & Kleinen(2004) and_ivina & Lenton (2007). These methods have been tested on model outputs
and paleoclimate data thyvina & Lenton (2007) andDakoset al.(2008). Time series analysis should be

seen as a complement to the huge modelling efforts that are invested into the analysis and prediction of
climate changes. WhilBakoset al. (2008) could demonstrate that the characteristic quantity extracted
from the time series, the propagator, indeed increases (as it should according to bifurcation theory) using
this quantity for prediction is much more challenging. The extraction of the propagator from a time series
makes assumptions that are, for geological records, difficult to check: separation of time scales between
parameter drift, decay of critical mode and decay of stable modes or the nearly constant-speed approach
of the underlying control parameter towards its critical value.

We studied another source of uncertainty, which exists even if the underlying deterministic dynamics
is drifting with constant speed close to a saddle-node bifurcation and the estimated LDR is accurate.
Namely, the escape of the dynamics from the potential well around the stable equilibrium can be either
premature or delayed, depending on the ratio between parameter drift speed and the amplitude of the
random disturbances. We derived an approximate (semi-analytic) formula that is valid in the quasistatic
limit (that is, the parameter drifts sufficiently slowly compared to the noise amplitude). We found that
the early escape effect vanishes if the drift is more rapid (drift speed.3 in normal form scaling).

We also demonstrated how one can estimate this effect from time series data, using what we might
call a *fold for incipient tipping’ method. This was tested for two examples, the output of a stochastic
model (a case of rapid drift) and an ice-core record (a case of slow drift or large noise amplitude). We
plan to study the consistency of the proposed escape prediction for time series more systematically in
the future. This should be done by generating time series instances from saddle-node normal forms with
drifting parameter and noise, predicting escape distributions from these time series, and then comparing
the predictions to the original distributions shown in Fag.

Our estimates for early escape from a potential well are all stated in probabilistic terms, which is
appropriate if one treats the disturbances as random. Normal form based estimates such as ours may also
be useful when studying tipping in climate models because running simulations for large ensembles of
realizations in sophisticated climate models is expensive. If the modelled scenario is close to tipping and
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deterministiccalculations reveal the presence of a saddle-node bifurcation, then the diagrams4n Figs
and>5 help to give estimates for the escape probability depending on the speed of parameter drift and the
amplitude of the disturbances.

Finally, we note that our scenario corresponds to the escape from a potential well of an overdamped
particle (this appears to be the relevant case, for example, in ocean circulation modelgksieseet al.,
2004). The weakly damped case,

d’x  dx
e e —UX) +0ol(1),

wherey is a small coefficient determining the amount of damping<(®y <« 1), U is the potential
and¢ is the disturbance (for example, a random Gaussian noise) has also been covered by reactio
rate theory (the classical theory treats the case where the noise amplitadeuch smaller than the
potential barrier, seelanggiet al.,1990for a review).
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