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In a recent feature article in this journal, coauthored by Gert van der Heijden, I described the
static-dynamic analogy and its role in understanding the localized post-buckling of shell-like
structures, looking exclusively at integrable systems. We showed the true significance of the
Maxwell energy criterion load in predicting the sudden onset of “shock sensitivity” to lateral
disturbances. The present paper extends the survey to cover nonintegrable systems, such as thin
compressed shells. These exhibit spatial chaos, generating a multiplicity of localized paths (and
escape routes) with complex snaking and laddering phenomena. The final theoretical contribu-
tion shows how these concepts relate to the response and energy barriers of an axially compressed
cylindrical shell.

After surveying NASA’s current shell-testing programme, a new nondestructive technique is
proposed to estimate the “shock sensitivity” of a laboratory specimen that is in a compressed
metastable state before buckling. A probe is used to measure the nonlinear load-deflection char-
acteristic under a rigidly applied lateral displacement. Sensing the passive resisting force, it can
be plotted in real time against the displacement, displaying an equilibrium path along which the
force rises to a maximum and then decreases to zero: having reached the free state of the shell
that forms a mountain-pass in the potential energy. The area under this graph gives the energy
barrier against lateral shocks. The test is repeated at different levels of the overall compression.
If a symmetry-breaking bifurcation is encountered on the path, computer simulations show how
this can be suppressed by a controlled secondary probe tuned to deliver zero force on the shell.

Keywords : Maxwell load; shell buckling theory; shell buckling experiments; shock sensitivity;
localization; imperfection sensitivity; stability; rods.

1. Introduction

Early in the 20th century the pioneering use of
thin metal shells as load-carrying components in
aircraft and rockets stimulated engineers to look
in detail at two well-defined archetypal problems
of elastic buckling. These were the complete spher-
ical shell subjected to uniform external pressure,
and the cylindrical shell subjected to uniform axial
compression. In careful laboratory tests, both of
these were found to be collapsing violently at about

one quarter of the classical buckling loads, PC , pre-
dicted by small-deflection linear theory. In response
to this discrepancy, von Karman and Tsien [1939,
1941] made approximate Rayleigh–Ritz analyzes to
demonstrate that, for both problems, there exists
a very unstable, subcritical post-buckling path of
periodic equilibrium states. This falls rapidly from
PC and eventually stabilizes at a fold (limit point)
at what they termed the lower buckling load, PL.
They suggested that this load might be a useful

∗Based on the opening lecture at the IDEAS Workshop, “Investigating Dynamics in Engineering and Applied Science”,
celebrating Gábor Stépán’s 60th birthday, July 3–5, 2014, Budapest.
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empirical “lower bound” for the collapse load of real
shells which would certainly have inevitable imper-
fections and finite disturbances.

Subsequently Tsien [1942] focused attention on
a result of Friedrichs [1941] who showed that just
above PL there was a load, PM , at which the grossly
deformed but stabilized path first had a total poten-
tial energy less than that of the trivial unbuckled
state. Akin to Maxwell’s criterion that a thermo-
dynamic state is likely to be found in the state of
minimum energy, Tsien seized on PM as the energy
criterion load. Uncritically, and without any real
evidence, he decided that this would be a logical
failure load due to dynamic disturbances. Given
that the experiments were performed in careful lab-
oratory tests where disturbances were minimal, this
explanation could not be true, since it would imply
that near PM the shell would be constantly jumping
in and out of its buckled state. Tsien later retracted
his view [Tsien, 1947], though many researchers
probably never noticed this paper, and the relevance
of PM was still being discussed (and convincingly
disproved) 20 years later by Babcock [1967].

It is a new understanding of the energy crite-
rion load (now called the Maxwell load), as signify-
ing the onset of “shock sensitivity” that I present
in this paper following Thompson and van der Hei-
jden [2014]. Also presented is a proposal for a novel
nondestructive experimental approach to assess this
sensitivity, sketched in Fig. 1.

This “shock sensitivity” is important in its own
right, but it is not seen as explaining the low

Fig. 1. A sketch of the proposed experimental procedure, described more fully in Sec. 9. The displayed shell-like structure is
the result of a preliminary computational study by Jan Sieber, and shows the main probe on the left, and a supplementary
probe on the right which was needed to suppress a pitchfork bifurcation in the lateral load-deflection response, Q(q).

experimental failure loads. These are largely due
to the imperfection-sensitivity of the shells to ini-
tial geometrical imperfections in the shape of the
middle-surface, as described in the ground-breaking
thesis of Koiter [1945]. Meanwhile, some different
approaches and points of view are given by Croll
and Batista [1981], Yamada and Croll [1999], Zhu
et al. [2002] and Elishakoff [2012].

A full literature review relevant to the material
presented here, and running from von Karman and
Tsien [1939, 1941] to the present day is given in
[Thompson & van der Heijden, 2014]. Meanwhile an
excellent overview of the wider shell buckling field
is given in the web-page of Bushnell [2014].

1.1. New theoretical concepts

In an earlier feature article published in the Interna-
tional Journal of Bifurcation and Chaos, we gave an
introduction to the static-dynamic analogy and its
role in understanding the post-buckling responses
of shell-like structures [Thompson & van der Heij-
den, 2014]: this looked exclusively at the behavior
of integrable systems. In particular, it showed a
true consequence of the energy criterion load (now
called the Maxwell load) in predicting the onset
of “shock sensitivity”. The present paper can be
seen as a continuation of this earlier one, extend-
ing it to cover nonintegrable systems (such as the
compressed cylindrical shell), which exhibit spatial
chaos, manifesting itself as snaking and laddering of
the post-buckling path. To make the current paper
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reasonably self-contained, I present in Secs. 2 and 3
a brief summary of this earlier contribution before
tackling the new material. In Sec. 4, we describe
the spatial chaos and multiplicity of localized paths
that accompany nonintegrability, before giving in
Sec. 5 an outline of snaking restabilization in non-
integrable systems. In Sec. 6, we look at bifurcations
on the snaking paths which give rise to short (asym-
metric) linking paths, akin to the rungs of ladders.
The final theoretical survey is to see how these new
concepts relate to the post-buckling response of a
long axially compressed cylindrical shell.

All of these theoretical advances draw on the
wonderful progress that has been achieved in recent
years by the Bath and Bristol groups, [Hunt et al.,
1989; Hunt & Lucena Neto, 1993; Champneys et al.,
1999; Hunt et al., 2000, 2003; Budd et al., 2001;
Horak et al., 2006].

1.2. NASA tests and controlled
experiments

The second half of this paper is devoted to labora-
tory testing of shells, starting with a brief review
of the historical data on the premature scatter of
experimental buckling loads for the axially com-
pressed cylinder in Sec. 8.1. This is followed in
Sec. 8.2 by a quick look at the current NASA pro-
gramme of full scale tests on unwanted shells left
over from the space shuttle era.

The main experimental feature, in Sec. 9, is
then an outline of a proposed new testing technique
to estimate the shock sensitivity uncovered in the
latest theoretical work. The aim is to develop a non-
destructive experimental testing procedure to deter-
mine the shock-sensitivity of a thin elastic shell to
(static or dynamic) lateral side-loads. Shells of any
shape can be tested, and are presumed to be signif-
icantly loaded in a fixed membrane compression so
that they are in a metastable state (stable for small
disturbances, unstable for large).

Using a probe, we aim to measure the nonlin-
ear load-deflection characteristic of the shell under
a rigidly applied lateral displacement. Sensing the
passive resisting force of the shell, we can in
real time plot the encountered load-deflection dia-
gram. This will in general show an equilibrium
path that rises to a maximum of the force and
then decreases to a state in which the force has
dropped to zero. This means that we have located
an unstable equilibrium state of the free shell that

forms a mountain-pass in the total potential energy
functional of the shell. The area under the load-
deflection curve gives us the energy barrier that
must be overcome by any static or dynamic lateral
disturbances that impinge on the shell at the point
of the probe. The test can finally be repeated at
different levels of membrane compression.

Our proposed experimental work (still in the
planning stage) will look first at the axially com-
pressed cylindrical shell for which a lot of back-
ground data and concepts are available, especially
if the shell is unstiffened and long. But the experi-
mental technique is not restricted in any such way.
Possible complications such as a bifurcation in the
lateral response are examined in some detail, and
computations by Jan Sieber show how these can
be overcome by the addition of an extra control
probe to stabilize the shell under test. The analogy
with a deep elastic arch is explored, and it is shown
how a mountain pass in the potential energy of a
shell with the shape of a small dimple could allow
a dynamic jump to bypass the large energy barrier
associated with the unstable overall post-buckling
pattern. No such experiment has yet been made,
but some equipment is currently being assembled
by Lawrence Virgin at Duke University.

Experimentalists who wish to learn about this
suggested approach might care to jump ahead to
Sec. 7 or even Sec. 8 since a detailed understanding
of the theory is not essential, certainly on a first
reading.

2. The Static-Dynamic Analogy

2.1. Localization as a homoclinic
orbit

The twisted isotropic rod (namely a rod with equal
bending stiffness in each direction) gives the sim-
plest localization scenario [Thompson & Champ-
neys, 1996; van der Heijden & Thompson, 2000],
and it has a real analogy with the symmetric
top. Being an integrable system, it gives a use-
fully simplified introduction to the underlying ideas.
Meanwhile, the strut on a nonlinear, quadratic
foundation has a virtual dynamic analogy: it is non-
integrable, but a double-scale perturbation renders
it integrable, close to the buckling bifurcation. We
use these two problems to show how the localized
solutions offer an order-of-magnitude lower energy
barrier than is offered by the periodic states.
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2.2. Twisted rod and spinning top

The analogy between twisted rods and spinning
tops, first pointed out by Kirchhoff, holds for sym-
metric and nonsymmetric systems, but it is the
integrable symmetric cases that concern us in this
section.

The behavior of a circular twisted rod, made
of an elastic material, compares precisely with the
spinning of a symmetric top. The long elastic rod
(deemed theoretically to be infinite in length) is
loaded at its ends by a tension, T , and a twist-
ing moment, M . Its behavior is governed by the
composite moment parameter, m := M/

√
(BT ),

where B is the bending stiffness about any axis.
Meanwhile, the symmetric spinning top has a corre-
sponding momentum parameter, m := α/

√
(INgl),

which is defined in terms of the angular momen-
tum about the fixed vertical axis, α, the moment of
inertia of the top about its spin axis, I, the mass,
N , the gravitational constant, g, and the standing
height of its center of gravity l.

On identifying the independent axial coordi-
nate of the rod, x, with the time, t, of the top,
it is well-known that the equations governing the
static spatial deformation of the rod are identical to
those governing the dynamic motions of the top. For
arbitrarily large displacements, both sets of equa-
tions can be solved exactly in terms of an equiv-
alent one-degree-of-freedom mechanical oscillator.
This oscillator varies with the parameter m, and
Fig. 2 shows in white two typical phase portraits
on a plot of the Euler angle, θ against its (space or
time) derivative θ′.

The portraits change their form at the critical
value of m = mC = 2, at which there is (in the
terminology of nonlinear dynamics) a supercritical
Hamiltonian Hopf bifurcation. Note that it is indeed
supercritical for the top, but for the rod appears as
a subcritical event.

Under increasing load parameter, m, the ini-
tially straight rod loses its stability at mC , where
linear theory would predict a uniform helical (peri-
odic) deformation. A number of unstable, subcrit-
ical equilibrium paths are generated at mC as we
shall illustrate more fully in Fig. 3. Conversely,
the top is stable for m > mC , and under a slow
decrease of its rate of spin (implying a decrease of α
and therefore m) its vertical spinning state becomes
unstable at mC .

2.3. Equivalent oscillator for a
circular twisted rod

Figure 3 is drawn specifically for the circular twisted
rod (meaning a rod of circular cross-section, or
more generally any rod with equal bending stiffness
in every direction, which includes a square cross-
section).

Details of the deflected equilibrium states of the
rod are shown, relating in particular to the lower
white phase portrait of the equivalent oscillator at
a load parameter, m < mC . This lower portrait cor-
responds to a ball rolling on the potential energy of
the equivalent oscillator shown in purple. Note care-
fully that this energy is an artefact of the analysis,
and is NOT the potential energy of the physical

Fig. 2. Illustration of the static-dynamic analogy for a symmetric spinning top and a twisted rod of circular cross-section,
showing phase portraits of the equivalent oscillator at two values of the control parameter, m.
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Fig. 3. Response of the stretched and twisted circular rod, showing the total potential energy of the equivalent oscillator and
examples of the helical and localized forms.

system. It varies with m, such that at m > mC it
has just a central minimum. The equivalent oscilla-
tor thus displays the response of a pitchfork bifur-
cation. These phase portraits effectively hide the
intrinsic helical response, and it is useful to think
of θ as representing a modulation of the intrinsic
helix. Thus the curve in blue, which corresponds
to fixed points in the phase portraits, represents
just a straight-forward helical response of the rod
(with fixed θ and no modulation). The homoclinic
orbits of the portraits can be thought of as leav-
ing the red trivial solution in infinite time, making
a fast loop and then returning infinitely slowly to
the same solution (hence the use of the adjective
homoclinic). Descriptions of homoclinic orbits, and
the heteroclinic orbits that we shall encounter later,
can be found in [Thompson & Stewart, 1986]. This
homoclinic orbit corresponds to an undamped ball
rolling on the equivalent potential after being given
a minute nudge from the central hill-top. Adding in
the intrinsic helical behavior, these then correspond
to the localized solutions shown on the right-hand
side. Finally the closed phase orbits around the non-
trivial fixed points correspond to equilibrium states
in the form of a modulated helix, as drawn.

2.4. Energy barriers against lateral
disturbances

Many long structures with unstable shell-like post-
buckling characteristics exhibit a large number of
falling post-buckling paths, like those we have just

described for the twisted rod. We will concentrate
here on dead loading, in which (for example) M and
T are prescribed, rather than rigid loading in which
their corresponding displacements are prescribed.
All these falling paths are then certainly unstable,
and we must therefore enquire about their physical
relevance.

To answer this, we consider a general shell-
like structure under load P . Note in passing that
when we are speaking more generally than about
a twisted rod, we write the load parameter as P
(rather than m) and use the wider adjective “peri-
odic” rather than “helical”. Below the critical buck-
ling load, P < PC , the trivial state is (meta-) stable
and the falling equilibrium paths define mountain
passes in the total potential energy. Under static
or dynamic lateral disturbances, a structure in its
trivial state would have to surmount one or other
of these passes if it were to buckle and fail. So the
height of these passes, relative to the local mini-
mum in which the unbuckled system rests, is of
key importance in ensuring the integrity of the
structure.

This is illustrated schematically in Fig. 4, where
the total potential energy, V , is sketched as a func-
tion of the generalized coordinates (mode ampli-
tudes, say), qi, at a value of P1 < PC .

We can imagine a small ball resting on this sur-
face at the trivial undeflected state, and subjected
to small disturbances. Escape of the ball, corre-
sponding to buckling of the structure, will depend
on surmounting various mountain passes, generated
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Fig. 4. Schematic of the total potential energy at a fixed
value of the load less than the critical, showing the energy
passes, of differing heights, corresponding to periodic and
localized unstable paths.

by falling equilibrium paths. Several passes are
shown, with two emphasized by the addition of their
equilibrium paths. Following what we shall next
describe for the twisted rod, we have labeled one
as a periodic path and one as a localized path.

2.5. Barriers for two integrable
systems

Having seen the significance of the energy barriers
generated by the unstable falling equilibrium paths,
we now look at the calculated values for the twisted
circular rod, displayed in Fig. 5.

The graph on the left shows the variation of
the energy barrier, E, at different values of the load
parameter m. For each value of m, the barrier is
measured from the energy datum of the correspond-
ing (same m) trivial undeflected state.

The aim is to compare the values of E offered by
the localized and helical solutions, which are illus-
trated on the right-hand diagrams. Plotting m ver-
sus E for the localized solution is straightforward,
and gives the curve λ. However, when we turn to
the helical solutions we must address the fact that
the helices extend along the whole length of the
supposedly infinite rod. The E for this continuous
helix is therefore technically infinite. To overcome
this, we have plotted curve α using the energy of a
single helical wave, curve α2 for two helical waves
(multiplying the E value by two), and α3 for three
waves (multiplying the E value by three). As we
might expect, curve λ is quite close to curve α1,
but we must remember that these finite length heli-
cal waves do not represent kinematically admissible
displacements of the rod.

Now anything treated as “long” must clearly
contain at the very least five complete periodic waves
(we use the adjective periodic when generalizing

Fig. 5. Calculated energy barriers for the circular twisted rod, comparing the localized and helical barriers. The localized
barrier is seen to be roughly equal to the barrier of a single helical wave, which is however a kinematically inadmissible
deformation.
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the discussion beyond, but still including the helix).
So we can conclude that the localized solution offers
a barrier that is at least five times lower than that
offered by the periodic solution: and will indeed
usually offer something even lower. To describe
this dramatic reduction in the energy barrier trig-
gered by the localized states we recently coined the
expression “shock sensitivity”.

A second parallel demonstration of this phe-
nomenon is given by the strut on a nonlinear
(quadratic) elastic foundation, within a perturba-
tion analysis as discussed in some detail in [Thomp-
son & van der Heijden, 2014]. In this, the first-order
perturbation equation gives the first-order solution
as u = A(X) cos x where u is the displacement at
distance x along the strut. Here A, a function of the
“slow” independent variable, X, can be thought of
as a slow modulation of the buckling displacement
cos x. Then, the third-order equation is that of a
one-degree-of-freedom nonlinear oscillator in A(X),
remembering that in the static dynamic analogy we
constantly jump between viewing x (and hence X)
as a space or time variable. The results, given in
[Thompson & van der Heijden, 2014], fully confirm
the form of curves derived from the twisted rod,
displayed in Fig. 5.

3. Restabilization in Integrable
Systems

3.1. Lower buckling load of von
Karman and Tsien

Our major objective in this paper is to examine sys-
tems that have the restabilization characterized by
the buckling of elastic shells, and the post-buckling
response of an axially loaded cylindrical shell was
shown by von Karman and Tsien [1939, 1941] to
have the form as in Fig. 6.

Here, on the right-hand side, we show the load
versus end-shortening response of the shell. The
red line is the uniform contraction before buckling,
and the blue curve represents the periodic solu-
tions obtained by von Karman and Tsien. They
suggested, as a useful approximation or bound to
the premature experimental buckling values (some-
times as low as PC/4), the lower buckling load PL.
Then, in a follow-up paper, Tsien [1942] stressed the
importance (and even the logic) of what he called
the energy criterion buckling load at PM where the
total potential energy in the trivial state is equal
to the total potential energy in the restabilized

Fig. 6. The classical post-buckling scenario for an axially
compressed cylindrical shell, showing the lower buckling load,
PL, and the Tsien/Maxwell load, PM . The periodic state at
the Maxwell load has the same energy as the trivial solution,
corresponding to the two equal gray areas. The energy of the
localized solution at the Maxwell load is discussed more fully
in Fig. 8. Note that in the above heuristic sketch, the shell
post-buckling is drawn as if it were for an integrable system:
see Fig. 16 for the real thing.

periodic solution. Tsien [1947] later admitted his
error about the logic of PM , but many researchers
(perhaps not having seen the admission) contin-
ued to use it for quite a number of years. It was
solidly repudiated by Babcock [1967], who showed
that, contrary to the predictions of Tsien’s crite-
rion, there was no observable difference in exper-
imental buckling loads between tests under dead
and rigid loading conditions. Unknown at the time,
was the localized post-buckling curve sketched, as
in [Hunt & Lucena Neto, 1993], in green. Note that
this green curve is displayed here as if the shell
were an integrable system, as it would be within
an approximate energy analysis. We show later that
the true significance of PM (now called the Maxwell
load) is that it represents the end of the falling local-
ized path.

There is an apparent anomaly in Fig. 6(b),
because by areas we can prove that the energy at M
is zero (by following the periodic circuit) or nonzero
(by the localized circuit). The answer is (at least
for an integrable system) that point M really rep-
resents two distinct states, the continuous periodic
state and the discontinuous localized state which
has a transition point from being trivial (straight)
to being periodic. This subtle point is clarified later
in Fig. 8 in Sec. 3.3.

The definition of the Maxwell load that we use
throughout the present paper is based on equating
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Fig. 7. Schematic of the response of an integrable system with restabilization of the periodic post-buckling path. A heteroclinic
saddle connection in the response of the equivalent oscillator at PM destroys the falling localized path.

the total potential energy (strain energy, plus load
energy) of the loaded trivial to that of the loaded
stable periodic state. This ties in with some remarks
by Mark Peletier (in a personal communication).
For the infinitely long cylindrical shell he defines
the Maxwell load in two ways which give the same
answer. It is the minimum load with negative total
potential energy relative to the trivial: over all equi-
libria; or alternatively over all periodic equilibria.
Additionally, depending on our particular inter-
est, we can apply these definitions to a cylindrical
shell either globally, over all circumferential wave
numbers, or specifically within a prescribed wave
number.

3.2. Restabilization of rod in a tube

So heading towards our goal of better understand-
ing shell post-buckling, we look now at restabiliza-
tion, but first for an integrable system. The twisted
isotropic rod constrained to deform on a cylinder is
a good example [van der Heijden, 2001]. For sim-
plicity, we will call this a rod in a cylinder or tube
(choosing the latter to avoid confusion with the
shell), but depending on the direction of the con-
straining pressure it might apply alternatively to a
rod on the outside of the cylinder or tube.

We shall see how the falling localized post-
buckling solution is destroyed at a heteroclinic con-
nection between two different saddles [Thompson &

Stewart, 1986] at the Maxwell load. This means that
shock-sensitivity starts at the Maxwell load, giving
now a correct logical foundation to Tsien’s energy
criterion load.

The diagram of Fig. 7 illustrates the behavior
of the elastic circular rod in a cylinder or tube [van
der Heijden et al., 2002]. The most dramatic lib-
erty that we have taken in drawing this schematic
picture is that for the cylindrically constrained rod
the critical load PC is actually infinite. We have
sketched it at finite P for convenience in compar-
ing the rest of the picture with what we want to
understand about restabilization. Once again this
integrable system has an equivalent nonlinear oscil-
lator with one-degree-of-freedom, and its phase por-
traits are sketched for different values of the load
P . We now have a periodic path which falls to PL

where it restabilizes at L before falling again after
the local maximum, N . A localized path is appar-
ent from the homoclinic orbits of the oscillator, and
we see that this localized path vanishes on collision
with the restabilized periodic path at M , at the
Maxwell load, PM . This corresponds to a hetero-
clinic connection of the oscillator, at which a slightly
perturbed solution close to the trivial state moves
in “infinite” time to a point close to the unstable
periodic solution.

The diagrams on the right-hand side showing
the shape of the localizing solutions illustrate what
we have called the pinch and stretch phenomenon
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Fig. 8. The onset of shock-sensitivity at the Maxwell load for an isotropic rod in a tube, placed alongside the classic shell
buckling picture (the latter being drawn here schematically as if it were an integrable system, in contrast to Fig. 16).

[van der Heijden et al., 2002]. Close to PC , the local-
ized path is a very slow modulation of the helical
buckling mode, while as the path approaches PM

it becomes essentially a straight undeflected line
which enlarges suddenly to the periodic helix [as
we shall see in Fig. 8(d)].

3.3. Sudden onset of
shock-sensitivity

We can use the results for the isotropic rod in a
tube [van der Heijden, 2001] to show the onset of
shock-sensitivity at the Maxwell load [Thompson &
van der Heijden, 2014]. In Fig. 8(a) we show the
two falling equilibrium paths, while Fig. 8(b) shows
the variation of the energy barrier, E, with m, for
both the localized and helical paths. We can see that
the energy barrier for escape, highlighted in red,
changes suddenly at the Maxwell load, PM , from
the high-value associated with the periodic solution
(α5, for five wavelengths) to a much lower value
governed by the localized curve λ. Figure 8(c) shows
to the same vertical scale the known diagram for the
cylindrical shell.

It is interesting to observe that the λ barrier
is equal to E∗ at the point of collision. The reason
for this “residual” barrier is illustrated in Fig. 8(d).
This shows that E∗ is in fact the energy of the

transition between the zero-energy-density straight
solution and the zero-energy-density helical solu-
tion. This explains the “anomaly” mentioned in
Sec. 3.1.

4. Chaos and Multiplicity in
Nonintegrable Systems

The elastic strut on a quadratic foundation has
been discussed earlier within an integrable pertur-
bation scheme. The complete behavior is however
nonintegrable, and the full solution (with no resta-
bilization) exhibits spatial chaos. Multiple localized
paths offer multiple escape routes: a second exam-
ple, again without any restabilization, is provided
by the free, unconstrained, twisted anisotropic rod
(namely a rod with differing principal bending
stiffnesses).

4.1. Spatial chaos in a strut on a
nonlinear foundation

A schematic bifurcation diagram showing a repre-
sentative sample of periodic and homoclinic solu-
tions for the long strut on a quadratic foundation,
is shown in Fig. 9, following [Buffoni et al., 1996].

The spatial chaos is associated with homoclinic
orbits of an equivalent four-dimensional dynamical
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Fig. 9. A sketch, based on the results of [Buffoni et al., 1996], showing details of the multiplicity of localized homoclinic
post-buckling solutions exhibited by the strut on a nonlinear quadratic foundation.

Fig. 10. On the left are shown sample homoclinic solutions calculated for a long pulled and twisted anisotropic rod by
Champneys and Thompson [1996]. On the right, we sketch how these localized homoclinic solutions could offer an infinity of
escape routes from the trivial solution when subjected to lateral disturbances.
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system. The buckling load is at P = PC = 2, and
there are four complex eigenvalues for −2 < P < 2.
Emerging from the trivial solution at the buckling
load are two paths of spatially-symmetric homo-
clinics, a primary path with a single hump, and a
bimodal with two humps. Over the range of the
complex eigenvalues there is an infinite number
of homoclinic paths, an infinite number of which
approach arbitrarily close to PC . For P < −2,
we are left with just a single unique primary solu-
tion. The symmetric multimodal orbits exhibit limit
points (folds) under increasing P . There also exist
asymmetric multimodal paths, and some of these
bifurcate from the symmetric modes immediately
before the folds. The diagram also shows a number
of significant periodic orbits bifurcating at higher
values of P .

4.2. An infinite number of escape
routes

On the right-hand side of Fig. 10 we sketch how
these homoclinic solutions can offer an infinity of
escape routes from the trivial solution for P <
PC . Meanwhile, on the left are two sample solu-
tions derived for the long twisted anisotropic rod
[Champneys & Thompson, 1996].

The displayed total potential energy surface is a
notional schematic graph of V (qi) where the qi are n
generalized coordinates describing the deformation
of the structure. This surface relates to a fixed value
of the load, P < PC .

5. Restabilization in Nonintegrable
Systems

We now arrive at our goal of looking at the restabi-
lization phenomena in nonintegrable systems, after
which we are in a position to turn our full attention
to shell buckling, which has both of these features.

5.1. Heteroclinic tangling and
snaking paths

We have seen that the end-point of a falling local-
izing path in an integrable system is governed by
a heteroclinic saddle connection in an equivalent
oscillator. Now it is well known that when an inte-
grable system is somehow driven into a noninte-
grable condition (by the addition of extra terms,
driving, etc.) a heteroclinic connection is smeared
out in parameter space into a heteroclinic tangle.

This creates chaos, and in particular, a snaking of
the primary localized paths. We look first at the
form of this tangling, and then examine how it influ-
ences post-buckling curves for a restabilizing strut
model and for an anisotropic rod in a tube.

To understand a heteroclinic tangle, we must
examine the equivalent dynamics in a Poincaré sec-
tion, and we do this in Fig. 11, as illustrated in
the paper by Woods and Champneys [1999]. Here
we show a series of sections as the primary control
parameter is slowly varying through the tangle: for
the integrable system, all of these pictures would
be squeezed to one particular value of the control.
We must remember, also, that a manifold drawn in
a Poincaré section corresponds to points mapping
(effectively jumping) along the curve. This allows
curves to cross (as cannot happen in the flow of a
phase portrait): and if two curves cross once they
must cross an infinite number of times, since for-
ward and backward iterates of the mapping remain
on each manifold. The pictures show the first and
last tangencies, and then the crossings of the red
outsets (unstable manifolds) with the green insets
(stable manifolds) of the two fixed points, corre-
sponding to the trivial and periodic states.

5.2. Snaking in a strut on a
polynomial foundation

The tangling that we have just described gives rise
to the snaking of the localized post-buckling path
about the Maxwell load, as illustrated in Fig. 12
for a strut on a restabilizing polynomial foundation,
based on results of Budd et al. [2001].

We see that as the end-shortening increases, the
snaking path oscillates about the Maxwell (energy
criterion) line. Energy changes on the snaking path
are easily monitored by the green areas on this plot
of load against the corresponding deflection. The
strut is assumed to be very long (effectively infinite),
so the end-shortening can and does increase “indef-
initely”. As it increases, we can see how the snaking
fits increasing well between a pair of horizontal red
lines which correspond to the first and last tangen-
cies of the heteroclinic tangle illustrated in Fig. 11.

5.3. Snaking for an anisotropic
rod in a tube

Our second illustration of heteroclinic snaking is for
a twisted anisotropic rod in a cylinder or tube [van
der Heijden et al., 2002], as shown in Fig. 13.
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Fig. 11. The smeared-out heteroclinic tangle of a nonintegrable system that replaces the heteroclinic saddle connection of an
integrable system. Adapted from the paper by Woods and Champneys [1999].

Fig. 12. The subcritical localized post-buckling curve of a
strut on a nonlinear (polynomial) foundation, showing the
snaking about the Maxwell line. This snaking can continue to
infinity because the strut is assumed to have infinite length.
Adapted from [Budd et al., 2001].

The main graph shows a plot of the moment
parameter, m, against the central Euler angle, θ0.
The helical path shown in blue is drawn for the
isotropic rod (falling from infinite m as we have
described earlier), but the path for the anisotropic
rod is very close to this. The Maxwell point for the
isotropic rod is denoted by M . Two localized homo-
clinic paths are drawn for the anisotropic rod, one
in red and one in green. Thumbnail enlargements
show the details of how the localized anisotropic
paths terminate. The first is on a plot of m against
θ0, and we see that the path is essentially winding
to a halt. The second thumbnail shows m against
the end-shortening of the rod, d. This, as we have
just described for the strut model, can snake to
infinity because the rod is assumed to be infinite in
length. The two localized paths, green and red, are
seen to oscillate (out of phase) about the Maxwell
load of the anisotropic system, mM . Meanwhile, the
third thumbnail shows the termination of the large
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Fig. 13. The end of one (two in the second thumbnail) localized post-buckling path for the nonintegrable anisotropic rod in
a tube, adapted from [van der Heijden et al., 2002]. Also shown, for comparison, is the equivalent behavior of the integrable
isotropic rod. Notice that unlike the infinitely-long snaking on an end-shortening plot, m(d), the snaking winds to a halt on
the central angle plot, m(θ0).

amplitude homoclinic, which is beyond the scope of
our present discussion.

6. Snakes and Ladders

As every child knows, where there are snakes there
are usually ladders: and this is the case here in our
nonintegrable restabilizations.

6.1. Asymmetric localization in
Swift–Hohenberg equation

To illustrate these ladders we draw on results
[Burke & Knobloch, 2007; Beck et al., 2009] derived
for the Swift–Hohenberg equation, shown in Fig. 14.
This is a basic archetypal equation much used
by applied mathematicians studying fundamental
problems of pattern formation and Turing instabil-
ities: in the form written here it is relevant to the
study of nonlinear optics.

Once again, we focus on the snaking of a local-
ized homoclinic equilibrium path, now in the space
of the control parameter, µ and a measure of the
deflection ‖U‖. This is related to the three (com-
plete) Poincaré sections in which the progression

of the heteroclinic tangling is illustrated. The
enlargement on the right, shows details of the fully
developed tangle. In the latter we can identify a
symmetric localization shown is red, and two nearby
asymmetric localizations are shown in brown.

Fig. 14. A diagram relating the heteroclinic tangling to the
parameter-deflection plot for the Swift–Hohenberg equation
in nonlinear optics. Adapted from [Beck et al., 2009].
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Fig. 15. An illustration of the ladder rungs that connect
two snakes in the Swift–Hohenberg equation. These are paths
of asymmetric solutions that bifurcate from the symmetric
solutions, allowing a transition between the one- and two-
peak curves. Adapted from [Beck et al., 2009]. Similar rungs
might be expected in other snaking solutions, in, for example,
the strut on a polynomial foundation.

6.2. Ladder rungs connecting
symmetric snakes

The grouping of localizations that we have just seen
hints at the presence of the asymmetric ladders that
we show in Fig. 15.

Here, for the same equation, we show the cal-
culated paths [Beck et al., 2009] of two symmetric
homoclinics, one with a single peak, and the other
with two peaks. Finally the paths of asymmetric
homoclinics form the transitional rungs of a ladder,
bifurcating from the symmetric solutions. Note that
the bifurcations are close to, but not at, the folds
of the snakes, as we could deduce from the enlarged
Poincaré section in the previous figure.

7. Theoretical Phenomena in
Compressed Cylindrical Shells

When discussing or analyzing localization phenom-
ena in the long axially compressed cylindrical shell,
the localization is usually taken to be in the axial
direction only, as in Fig. 16 adapted from [Hunt,
2011]. Meanwhile there is assumed to be a fixed
number of circumferential waves (n = 11 in the
figure).

Note also that most of the work described
here is based on the von Karman–Donnell shell
equations. These are only valid for relatively small
nonlinear deflections, and probably will not give

accurate results for the snaking phenomena. After
emphasizing this caveat, it must be remembered
that what I say in this theoretical section about
the “behavior of a cylindrical shell” is more accu-
rately described by the phrase “the behavior of the
von Karman–Donnell equations”.

7.1. Snaking and progressive
localization

A long cylindrical shell under axial compression
is a nonintegrable problem and as such exhibits
the aforementioned snaking phenomena. Results by
Giles Hunt and his coworkers [Lord et al., 1997;
Hunt et al., 1999; Hunt, 2011] are summarized in
Fig. 16. This displays the snaking of a localized
homoclinic solution, due to the chaotic heteroclinic
tangling that occurs at the Maxwell load, PM .

The circumferential wave number (the number
of full waves in the circumference) is fixed at n = 11,
while the radius to thickness ratio of 405 corre-
sponds to one of Yamaki’s experiments [Yamaki,
1984]. The localized curve which has fallen sharply
from the linear bifurcation value of PC is seen to
snake about the Maxwell load, and the deforma-
tion patterns corresponding to points A, B and C
on the curve are illustrated on the left-hand side
of the figure (these three points were chosen only
for illustration purposes, and have no other signifi-
cance). These patterns show how the extent of the
axial localization increases as we travel along the
snaking path.

The first insert shows a magnified region of the
post-buckling curve for low d. Here, we see an inter-
esting event at point D, where the two blue areas
are equal: this corresponds to what we might call
a secondary Maxwell point relating to the local-
ized path. The apparent tangency between the post-
buckling curve and the Maxwell line, at point T, is a
coincidence for this particular shell, with no general
significance.

The second insert shows a magnification of the
curve for high d. Under the dead load, P , the stabil-
ity of the snaking path changes at the marked folds,
but there may well be (so-far undetected) bifurca-
tions, like those in the Swift–Hohenberg equation.
As d increases towards infinity, the behavior settles
into a fixed pattern (though the tilt of the waves
continues to increase), and this is reinforced by the
physical behavior in which the localized cells spread
outwards as reflected in the shapes at A, B and C.
In this final steady progression, the total potential
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Fig. 16. A localized subcritical post-buckling solution for the axially compressed cylindrical shell, exhibiting snaking about
the Maxwell load. Notice that the trivial contribution has been subtracted from the plotted end-shortening. Pictures of the
three computed cylindrical deformations correspond to points A, B and C on the equilibrium path. Adapted from the references
given in the main text.

energy (strain energy minus Pd) of the stable states,
S, can be expected to tend towards that of the triv-
ial state at PM . If this were the case, adjacent areas
such as those in green, would become equal in the
infinite limit.

Notice that when we are in the smeared-out
heteroclinic regime of P , the (static-dynamic)
analysis picks out from the tangle at every P
a homoclinic orbit with special features (such as
one-hump). In this way we extract a continuous
snaking path corresponding to these special features
from the chaos of the tangle. Prescribing different
“special features” we would get different paths (akin
to all the paths of Fig. 9 uncovered by Buffoni et al.
[1996]).

7.2. Lowest mountain-pass against
buckling

We have seen in a number of examples that a local-
ized equilibrium path falling from the linear crit-
ical buckling load, PC , yields a lower energy pass
than the falling periodic solutions. In a very signif-
icant direct attack on the problem of the minimum
energy barrier Horak et al. [2006] used sophisticated

algorithms of mathematical analysis (including the
mountain pass theorem of Ambrosetti and Rabi-
nowitz [1973]) to determine the lowest energy bar-
rier against disturbance-induced buckling for a long
cylindrical shell under axial compression. This cor-
responds to a precise localized state, and their
results are shown in Fig. 17. Here the main graph
shows how the energy barrier of this state varies
with the axial load on the cylinder. The same path
of states is shown in the green thumbnail on a
plot of P/PC against a measure of the deflection.
Meanwhile two views of the determined shape of
the unstable localized state are shown on the right-
hand side of the figure, this shape depending on the
thickness to radius ratio of the shell. This is a very
significant result, which will form the basis of our
later suggestions for new experimental work on shell
buckling.

We note, finally, that in this study the shell is
constrained to an average end-shortening, meaning
that the ends of the cylinder are free to tilt, thereby
accommodating a circumferentially localized dim-
ple. This is quite different from conventional shell
testing, where the rigid platens supporting the
ends of the shell would normally be constrained to
remain perpendicular to the axis of the cylinder.
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Fig. 17. Results of Horak et al. [2006] who determined the localized solution that gives the lowest mountain-pass escape
barrier for a compressed cylindrical shell. Notice that unlike the pictures of Fig. 16, the displayed displacement is localized
not only axially, but also circumferentially. It is, moreover, symmetric in both of these directions.

8. Cylinder Experiments Old
and New

8.1. Historical scatter of
experimental results

As a background to the following ideas about new
experiments on shells, it is useful to take a quick
look at the historical collapse loads, many of which
were obtained in the first half of the 20th century.
The points shown in Fig. 18 are taken from the
paper by Seide et al. [1960]. They show the variation

Fig. 18. Historical scatter of experimental buckling loads for
an axially compressed cylindrical shell, adapted from [Seide
et al., 1960]. The blue curve represents the NASA knock-
down factor displayed in the box.

of the experimental collapse loads, PEXP, as a frac-
tion of the classical linear theoretical values, PC ,
against the radius to thickness ratio of the test spec-
imens, R/t. This graph also shows a curve based on
the old empirical knock-down factor recommended
by NASA for design purposes.

Similar (often the same) results taken from
Brush and Almroth [1975] are displayed in a log–log
plot introduced by Chris Calladine and his cowork-
ers [Calladine & Barber, 1970; Mandal & Calladine,
2000; Zhu et al., 2002] in Fig. 19(a). This shows,
very convincingly, that the best fit for these exper-
imental results has the log–log slope of −1.48. In a
series of papers, they give a number of convincing
reasons for this slope of approximately −1.5, based
on careful experiments on the self-weight buckling
of a standing cylinder, with a free unloaded top;
together with some supporting theoretical results.

Results of Calladine’s extended experimen-
tal studies of the self-weight buckling of free-
standing open-topped cylindrical shells are shown in
Fig. 19(b). They show remarkable consistency, and
lie almost exactly on the best-fit line of Fig. 19(a)
with slope approximately −1.5. Together with some
theoretical arguments, Calladine uses these and
other experiments to argue that the wide scatter of
the axially compressed shells is due to their “stat-
ical indeterminacy” (which contrasts with the free
shells under self-weight loading). His argument uses
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Fig. 19. (a) The experimental buckling loads for an axially compressed cylindrical shell, on a log–log plot. (b) An identical
log–log plot showing self-weight buckling tests conducted by Barber and Mandel. Adapted from the studies of Chris Calladine
and his associates [Mandal & Calladine, 2000; Zhu et al., 2002].

the analytical “concept” of an inextensional dimple
with an elastically strained boundary, which pro-
vides a satisfactory explanation of the self-weight
data. Moreover, he recorded [Lancaster et al., 2000]
a particularly high experimental buckling load with
a cylinder (R/t = 2000) by introducing bound-
ary conditions (end discs fastened with frictional
clamps) that significantly reduced self-stress.

8.2. NASA’s current research
programme

It is interesting to observe that, some 70 years after
the key papers of von Karman and Tsien [1939,
1941], shell buckling and post-buckling are still of
major concern to NASA in their design of deep-
space rockets. Indeed, shell buckling is the primary
factor in the design of thin-walled launch-vehicle
structures that must carry compressive loading.
The core stage design of the current Space Launch
System (SLS) is, for example, completely driven
by buckling, so unduly conservative design factors
which increase structural mass must be avoided.
This is emphasized by the fact that the space shut-
tle LH2 tank was tested to a load greater than 140%
of its design load.

It is hardly surprising, then, that NASA is cur-
rently running a programme of full-scale tests on
stiffened shells under mixed loading as illustrated
in Fig. 20. This programme seeks a rational way to
replace the existing reliance on knock-down factors
based on historical experimental data. The pedi-
gree of this data (often from the period 1920–1960)
is difficult to assess, and many of the tests are not
relevant to modern launch vehicle constructions. In
particular, most NASA shells are stiffened, and so
are less sensitive to imperfections than their unstiff-
ened counterparts.

Experiments are being made on full-scale shells,
left over from the Space Shuttle, but we should note
that these are relatively short (compared to the
diameter), they are stiffened, and the applied load-
ing is complex, rather than just uniform compres-
sion. One fact that NASA hopes to establish from
this programme is that modern computer codes
can accurately predict the correct experimental fail-
ure loads of their full-scale experimental shells once
they are given the known measured imperfections.
With advances in computations and testing tech-
niques, the principal investigator, Mark Hilburger,
says that weight reductions of about 20% are now
confidently expected in the design of the projected
Space Launch System (SLS) which is due to fly
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(a) (b) (c)

Fig. 20. (a) and (b) Illustrate NASA’s full-scale test in 2013 of an unused aluminium–lithium shell left over from the Space
Shuttle programme. At 8.3 m diameter, it parallels the fuel tank (namely the structural skin) of the SLS. The stiffened and
pressurized shell was compressed to an explosive buckling failure in a rigid loading device. Dots on the cylinder allowed 20
high-speed cameras to record minute deflections under a load of circa 106 pounds force. Shown in (c) is an artist’s impression
of NASA’s Space Launch System, a new heavy-lift vehicle standing 61 m tall with an 8.5 m diameter. Reproductions courtesy
of NASA.

in 2017. More information about this work can be
found in [Hilburger, 2013].

9. New Experimental Approach to
Shock-Sensitivity

The shape of the lowest energy barrier determined
by Horak et al. [2006] for an axially loaded cylindri-
cal shell (Fig. 17) looks remarkably like the small
dimple that might be pressed into the cylinder by a
researcher’s finger. This immediately suggests a new
form of experimental test on a compressed shell (of
any shape) in which a lateral point load is applied
by a rigid loading device. This would seem to be a
useful type of nondestructive and noninvasive test
for a shell to determine its shock-sensitivity.

9.1. Rigid lateral probe

The type of test configuration that we have in mind
is illustrated, for a cylindrical shell, in Fig. 21 where
the lateral “probe” moves slowly forward along a
fixed line driven by a screw mechanism.

Here we have the controlled displacement, q,
producing a passive reactive force from the shell,
Q, which is sensed by the device, giving finally the
plot of Q(q). This is all to be done at a prescribed
value of the axial compressive load, P , which might
itself be applied in either a dead or rigid manner.
In the simplest scenario, the Q(q) graphs might be
expected to look like those sketched on the right-
hand side, the top for P greater than the Maxwell
load and the lower one for P < PM .

When the test reaches the point T, where Q =
0, we have located a free equilibrium state of the
shell, hopefully, the desired lowest mountain pass.
It is interesting to note, here, that Takei et al.
[2014] used an imposed lateral displacement in their
computations to find the unstable Maxwell state
of a thin film. The shapes drawn as thumbnails in
the figure are purely notional, and the shape that
we would hope to find is that of Horak, shown in
Fig. 17. The latter shape depends on the thickness
to radius ratio, t/R, and it gives us some intu-
itive feeling for whether the deformation will be
within the elastic range of a given shell. If we finally
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Fig. 21. An impression of the proposed experimental procedure in which a rigid probe is used to construct a lateral-load
versus lateral-displacement graph, Q(q). This graph ends with Q = 0 at a free equilibrium state of the shell, and the area
under the curve gives the corresponding energy barrier. Note that at Q = 0 the rigid probe is stabilizing a state that would
otherwise be unstable for the free shell.

evaluate the area under the Q(q) curve, this will
give us the energy barrier that has to be overcome
to cause the shell to collapse at the prescribed value
of P .

Notice that if the curves have the forms drawn
(with no folds or bifurcations), we can be sure that
the shell will remain stable up to T under the con-
trolled q. If the probe is glued (welded or fastened)
to the shell, we will be able to pass point T, with
the probe then carrying a negative Q: if however the
probe is just resting against the shell, a dynamic
jump from T will be observed, probably damaging
the shell due to large bending strains. Clearly gluing
is preferred, to prevent this jump, but other factors
must be considered. On the negative side, fixing the
probe to the shell may itself cause damage, and may
restrict the free deformation that we are seeking to
find. In particular, it might also restrict the shell
by preventing a rotational instability. Perhaps the
ideal solution would be to have an “equal and oppo-
site” second probe inside the shell at the same point,
moving at the same rate as the probe outside.

9.2. Bifurcations and the need for
control

Now under the lateral point load, the initial deflec-
tion will be symmetric in both the axial and cir-
cumferential directions, and we should note that all
of Horak’s lowest mountain passes (localized saddle

solutions) have both these symmetries. However,
the story might not be as simple as we have so far
suggested. Three features that could be encountered
in the Q(q) curves are as follows. The first possi-
bility is a vertical fold, at which dQ/dq = infinity,
from which the combined system could jump at con-
stant q, with unknown outcome. The second and
third are symmetry-breaking pitchfork bifurcations
that could break one (or subsequently both) of the
initial symmetries. A bifurcation that is subcritical
(involving asymmetric equilibrium states at a lower
value of the controlled displacement, q) would give
a jump to an unknown state: this is akin to the elas-
tic arch under dead loading that we shall examine
in Sec. 9.3. Meanwhile a supercritical event would
give a new path which could possibly be followed in
the test. Note that these symmetry-breaking bifur-
cations would generate a new mode of deformation
in the shell.

To overcome any such instabilities, it would be
necessary (as we shall demonstrate in Fig. 25) to
supplement the main probe by one or more probes
that are systematically adjusted until all their reac-
tive forces are simultaneously zero. Jan Sieber has,
for example, developed noninvasive control meth-
ods which can follow an experimental system as it
is loaded into what would otherwise be an unstable
regime. He has applied these methods successfully
to a number of systems at Bristol University [Bar-
ton & Sieber, 2013].
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9.3. Analogy with a deep elastic
arch

The symmetry-breaking that we have discussed
is indeed well-known in the response of a deep
(as opposed to a shallow) elastic arch under dead
loading [Thompson, 1975; Thompson & Hunt,
1973, 1983]. This bifurcation allows the arch to
woggle-through to a large-deflection symmetric
state avoiding the high energy penalty of remaining
symmetric throughout, as is illustrated in Fig. 22.
An exactly similar figure arises in the tensile insta-
bility of the atomic lattice of a close-packed crys-
tal, governed by Lennard–Jones potentials, where
the bifurcation triggers a symmetry-breaking shear-
ing mode of deformation [Thompson, 1975; Thomp-
son & Shorrock, 1975].

9.4. Localized saddle allows escape
past a mountain

This response of a deep arch answers another ques-
tion that comes to mind when thinking about the
mountain pass of Horak et al. [2006]. How can
it be that escape over a spatially-localized energy
pass can allow the shell to collapse to very large
amplitudes, seemingly getting past the high peri-
odic barrier? Well this is very similar indeed to what
happens in the deep arch. If we sketch the contours
of the total potential energy of the arch, V (A,S) at
a value of the load, P , just less than the bifurca-
tion load, PC , we get a diagram similar to that of
Fig. 23.

Here we see that as P approaches PC the two
asymmetric saddles, λ, move towards and collide
with the symmetric state τ . The arch can then
escape along one of the falling blue “channels”, the
one chosen depending on small disturbances and
imperfections. In this way the system gets around
the high potential energy barrier represented by the
symmetric hilltop, α.

9.5. Successful simulation with a
single probe

To examine, in a theoretical context, the use of our
proposed experimental procedure my colleague Jan
Sieber has just completed a feasibility study sum-
marized in Fig. 24. In this work, he has constructed
a computer model of a shell-like structure made of
connected links and springs shown on the left-hand
side in its deformed state under a dead axial load P .
We can see that there is considerable overall Euler
buckling of the structure, but this does not detract
from its value in establishing the methodology.

It should be emphasized that the shell-like
model structure is only a very rough approxima-
tion to a continuous shell: just close enough to check
out the feasibility of the proposed technique, but no
more. It is a dynamic model of a system of parti-
cles (with mass and inertia) and springs forming
a rectangular mesh which has been bent around
to form a cylinder. There are 24 particles on each
horizontal ring and 35 rings. So far, in this very
preliminary study, there has been no attempt to

Fig. 22. The buckling and snap-through of a relatively deep arch under a dead load, P , shows how a bifurcation into an
asymmetric mode allows the arch to woggle through, avoiding the large energy penalty of remaining symmetric. Notice the
schematic curved dynamic jump at the constant load, PC , that carries the arch to its restabilized symmetric state. The
associated energy contours are shown in Fig. 23.
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Fig. 23. A sketch of the total potential energy contours of the deep arch at a value of the load just less than PC (shown in
Fig. 22). At the subcritical bifurcation, when the saddles, λ, collide with the symmetric unbuckled state, τ , the arch can jump
dynamically along the falling blue valley to β, avoiding the high energy peak, α.

Fig. 24. Results of a computer simulation on a shell-like structure showing a case in which a single rigid probe can generate
the full Q(q) response, leading to the required relationship between the dead axial compressive load, P , and the energy barrier,
E. The coloring of the shell shows contours of the strain energy density. Results supplied by Jan Sieber (Exeter University)
in a private communication.
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fit the rotational and extensional spring constants
to match those of a continuum shell. However, the
model does show all the features of a compressed
cylindrical shell in a convincing way.

In the simulations the structure is loaded by
a rigid displacement q, and the passive force Q is
recorded. The first result, from a test at axial load
P = 15.2 (in arbitrary units), is shown in the top
graph of Q(q). This has the expected parabola-like
shape, and Q drops continuously to zero at the end
of the test, where the shell is essentially free at
q = qF . During the simulation, for each recorded
equilibrium state, the (real) eigenvalues of the Jaco-
bian are evaluated, and if any one becomes positive
an instability has been encountered. To monitor
this possibility the maximal eigenvalue is plotted
(in red on the top graph) in what will usually be a
curve with crossover points, whenever a new mode
becomes the “softest”.

We see that the maximal eigenvalue remains
less than zero throughout the first test, but it can
be seen to increase rapidly towards the end. This,
then, is an example in which the Q(q) test can be

performed in a stable manner up to qF , allowing the
area under the curve to be evaluated as the required
energy barrier.

Tests under a set of P values are summarized
in the red box. On the right-hand side we show the
Q(q) curves for the full range of P values, with the
black curve identifying the one at P = 15.2. On
the left we show the results as P against qF and
finally as P against the energy barrier denoted by E.
The sharp and rapid fall of the energy barrier as we
reduce the load P from its critical value PC is our
expected result.

9.6. Shell simulation with a
controlled bifurcation

In simulated tests on this shell-like structure with
different stiffness characteristics, Jan Sieber has
produced the results shown in Fig. 25.

Here the eigenvalues showed that the Q(q) dia-
gram had reached a symmetry-breaking pitchfork
bifurcation (whether super- or sub-critical is not
known) which required the introduction of a second

Fig. 25. Control of a symmetry-breaking pitchfork bifurcation. An example of a simulation in which, under a single probe, the
Q(q) path would become unstable at a symmetry-breaking pitchfork bifurcation. This requires the introduction of a second
controlled probe, B, placed where the eigen-deflection of the pitchfork is large. With the second probe, the test has been
successfully completed. For the shell on the left, the coloring shows contours of the strain energy density; on the right, it
represents contours of (one component of) the eigen-displacement. Results supplied by Jan Sieber (Exeter University) in a
private communication.
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control probe. This was placed where the critical
eigenvector of the pitchfork bifurcation has a par-
ticularly large deflection. The red dots on the Q(q)
diagram indicate those states that could only be
observed with the use of the extra probe, B. This
probe is tuned to provide no force, as we might,
for example, demonstrate the second buckling mode
of a pin-ended strut by lightly holding the center
between two fingers. One such controlled state is
illustrated by the left-hand cylinder. Meanwhile, on
the right, is a view of the symmetric state at the
pitchfork with the addition of the suitably magni-
fied eigenvector. This shows that the pitchfork has
violated the up–down symmetry (but not the cir-
cumferential symmetry). Notice that the deflection
curve has been continued past the Q = 0, q = qF

free state condition. Albeit conducted on a com-
puter, this is an excellent and encouraging “proof
of concept” for our proposed experiments.

10. Concluding Remarks

The characteristics of post-bifurcation equilibria
that we have described in the theoretical sections
of this paper have wide applications in localization
studies in solid and fluid mechanics, and in pat-
tern formation by Turing instabilities in chemical
and biological kinetics [Dawes, 2010]. Meanwhile,
the Maxwell load is appearing in many guises, in for
example, the recent study by Cao and Hutchinson
[2012] of the surface wrinkling of a compressed half-
space which is extremely imperfection-sensitive,
with close parallels to the behavior of the cylindrical
shell.

The theory has revealed a sudden onset of
“shock-sensitivity” in the buckling of compressed
shells and shell-like structures, which is an impor-
tant design consideration for real structures in noisy
operational environments. To detect this experimen-
tally in a model or prototype structure, we have
proposed a novel technique of controlled nonde-
structive testing, which looks particularly promis-
ing. No such experiment has been conducted so far,
but Jan Sieber’s simulations are a very promising
“proof of concept”. His work also demonstrates the
need for extra control points, a single one of which
successfully inhibited a pitchfork instability. Look-
ing to the future, it may be that the theoretical
techniques employed by Horak et al. [2006] can be
adapted to work in an experimental environment
under multiple controls
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