
Bifuration sequenes in the interation of resonanes in amodel deriving from nonlinear rotordynamis: the zipperG.H.M. van der Heijden∗November 1, 1999AbstratUsing numerial ontinuation we show a new bifuration senario involving resonantperiodi orbits in a parametrised four-dimensional autonomous system deriving from non-linear rotordynamis. The senario onsists of a arefully orhestrated sequene of tran-sritial bifurations in whih branhes of periodi solutions are exhanged. Colletively,the bifurations resemble the ation of a zipper. An underlying governing mehanism learlyexists but still has to be unovered.For a range of parameter values the sequene of bifurations forms a global onnetionbetween a �Sil'nikov bifuration and (partial) mode-loking. The homolini bifuration isintrodued into the system by a Takens-Bogdanov bifuration. The system also features aninteration between two haoti �Sil'nikov bifurations.1 Introdution
Mode-locking is a common phenomenon in nonlinear dynamics occurring, for instance, in forced
systems of coupled oscillators. In the simplest case of a single driven oscillator one then ob-
serves resonance tongues in parameter space, inside which a pair of periodic orbits exist with
a frequency which is a rational multiple of the driving frequency. The boundaries of the res-
onance regions are curves of saddle-node bifurcations of these periodic orbits. For sufficiently
small forcing the periodic orbits lie on invariant tori, and the situation is adequately described
by circle maps [3, 23].

More generally, in the case of more than one oscillator we can have multiply-periodic (tor-
oidal) motion. Different levels of mode-locking are then possible depending on the number of
rational relations between the frequencies involved. Fully mode-locked periodic motion is ob-
tained if between k frequencies k − 1 independent relations are present. If fewer relations exist
one speaks of partial mode-locking. This multiple-frequency resonance requires a description in
terms of torus maps [4], and much more complicated behaviour is possible than in the simple
case of a single oscillator.

As another example, in autonomous systems mode-locking is often associated with a second-
ary Hopf bifurcation at which an invariant torus bifurcates from a periodic orbit [2]. Motion
on the torus will in general be mode-locked.
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Unless the system has a special symmetry, in all these cases one generally has infinitely
many resonance tongues. For a suitable small parameter (in driven systems, typically, forcing
amplitude) the tongues are disjoint, but as the parameter is increased they may start to overlap.
For the corresponding parameters we then have coexisting periodic solutions. It is well-known
that very complicated bifurcation sequences may occur in the regions of overlap [3].

Another well-known mechanism for the creation of (infinite) families of periodic solutions
is provided by homoclinic orbits. For instance, near a homoclinic orbit to a saddle-focus-type
fixed point, often called a Šil’nikov-type homoclinic orbit, we have, under some conditions on
the eigenvalues of the fixed point, the existence of horseshoes [24]. In particular, this implies
the existence of a countable infinity of periodic orbits with arbitrarily high period.

Both mechanisms, mode-locking and homoclinic bifurcation, can successfully be studied ana-
lytically locally (for instance, near a secondary Hopf or Šil’nikov bifurcation, respectively). The
periodic orbits, however, are often very robust and keep existing for parameters well away from
the regions where these analytical studies are valid, indeed where the source of the multitude
of periodic orbits (an invaiant torus or a homoclinic orbit) may long have ceased to exist. It
is therefore conceivable that families of periodic solutions of both mechanism are globally con-
nected, i.e., that by varying parameters, periodic orbits involved in mode-locking can gradually
evolve into periodic orbits associated with a homoclinic bifurcation (of Šil’nikov type, say).

Connections between resonances and homoclinic orbits have been known for quite some
time. For instance, they occur in time-periodically perturbed planar oscillators which, in the
unperturbed system, have a one-parameter family of periodic orbits inside a homoclinic con-
nection. To such systems a subharmonic and homoclinic Melnikov analysis [24] can be applied,
showing the accumulation of resonance tongues onto lines of homoclinic tangencies bounding
a homoclinic wedge. For an early reference see [15]. This behaviour is consistent with the
work of Gavrilov and Šil’nikov (see [16, 24] for summaries, and [19] for more recent work in
this direction). An accumulation of resonance tongues onto lines of homoclinic or heteroclinic
tangencies should also be expected when a line of secondary Hopf bifurcations and an appro-
priate line of homoclinic or heteroclinic bifurcations meet. For instance, Kirk [21, 22] studied
a parametrised family of three-dimensional vector fields containing the truncated normal form
of the saddle-node/Hopf bifurcation (one zero eigenvalue and two imaginary ones). Resonance
tongues were found to emerge from a curve of secondary Hopf bifurcations and to accumulate
on heteroclinic tangencies. Other cases have been reported in [18, 19].

In this paper we study a strongly nonlinear four-dimensional system with a different, more
global, connection between resonances and homoclinic bifurcations. Our system will not have
a secondary Hopf bifurcation. Rather, the organising centre of the dynamics will turn out to be
a Takens-Bogdanov bifurcation. The system we consider is:

ẋ1 = x2 + ωx3

ẋ2 = ωx4 − γx2 −
(

1 − δ√
x2

1
+x2

3

)

x1 + ǫω2

ẋ3 = −ωx1 + x4

ẋ4 = −ωx2 − γx4 −
(

1 − δ√
x2

1
+x2

3

)

x3.

(1)

In [17] this system was arrived at by (trivially) reducing a driven system of two coupled oscil-
lators that was studied as a model for nonlinear rotordynamics. Specifically, the original rotor
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system was given by

ÿ + γẏ +

(

1 − δ

|y|

)

y = ǫω2eiωt, (2)

where y = y1 + iy2 is a complex co-ordinate measuring the rotor’s deflection from its rest
position. The parameter ω is the driving frequency, ǫ is the mass eccentricity of the rotor, γ
is a linear damping coefficient, and δ is the bearing clearance, the only source of nonlinearity
in the system. Note that (2) has rotational symmetry. Indeed, (1) is obtained from (2) by
passing to a co-rotating co-ordinate system z = ye−iωt, changing to a first-order system and
additionally performing a simple linear transformation. We refer to [17] and references therein
for the relevance of (2) and similar models in nonlinear rotordynamics.

In fact, (2) is not a complete model of the lateral deflections of a rotor with bearing clearance,

as is evidenced by the singularity for zero radial deflection r :=
√

y2
1 + y2

2 =
√

x2
1 + x2

3. Normally,
one would specify a different set of equations for motion inside the bearings, i.e., when r < δ.
In this paper, however, this will not concern us and we will treat (1) mainly as an abstract
dynamical system providing an interesting case study in nonlinear dynamics (although we do
have something to say about experiments on rotor systems in Section 5). It will turn out that in
practice, e.g., in numerical experiments on (1), the singularity at the origin poses no problems.

We should emphasise that the system could be simplified further by scaling out the para-
meter ǫ. We leave it in mainly for ‘historical’ reasons. The parameter is however not used as
an independent parameter but fixed to 0.1 throughout the main part of this paper, so numer-
ical results of a further scaled system can simply be found by appropriate multiplication by a
constant. The damping coefficient γ will also not be used as a bifurcation parameter, although
we will contrast the cases of strong and moderate damping. System (1) is thus treated as a
two-parameter family of four-dimensional vector fields. Homoclinic orbits will be introduced
into the system by a Takens-Bogdanov bifurcation.

Locally, the Takens-Bogdanov bifurcation can be studied in a two-dimensional centre man-
ifold. More complicated, non-planar, dynamics, however, is found as we move away from this
codimension-two singularity, and the homoclinic bifurcation becomes of Šil’nikov type. In these
regions of parameter space we have to resort to numerical techniques in order to trace out
different types of solutions. We use the continuation and bifurcation package AUTO [9, 10] in
conjunction with direct integration of the differential equations to follow the periodic solutions
away from the Šil’nikov bifurcation.

It turns out that through a masterly orchestrated sequence of bifurcations, resembling the
action of a zipper, these periodic solutions (n-loops) become involved in mode-locking phenom-
ena. This mode-locking aspect of the n-loops was studied in detail in [17] by taking δ to be
a small parameter (see Section 4 for a brief summary). There, it proved useful to adopt the
viewpoint of the unreduced driven system (2) with phase space IR× S1. The periodic solutions
then correspond to partially mode-locked 2-tori in three-frequency resonance. In this paper we
establish the connection with homoclinic orbits by treating (1) as a strongly nonlinear system,
i.e., by taking δ ‘large’.

The outline of the rest of this paper is as follows. In Section 2 we analyse bifurcations of
fixed points of (1). In Section 3 we numerically investigate the global dynamics concentrating on
the many periodic solutions of the system. First the relatively simple case of strong damping is
treated. Then the considerably more complicated case of moderate damping is considered. Here
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we encounter the zipper mediating between homoclinic orbits and mode-locking. Mode-locking
is not central to the present discussion, but, for completeness, in Section 4 the relevant results
from [17] are briefly reviewed. In Section 5, finally, we point to some related results in the
literature, discuss some experimental work reported and make some concluding remarks.2 Bifurations of �xed points
Fixed points of (1) are given by

x1 =
(1 − ω2)r2 − δr

ǫω2
, x2 = −ωx3, x3 =

−γr2

ǫω
, x4 = ωx1, (3)

where r solves
[γ2ω2 + (ω2 − 1)2]r2 + 2(ω2 − 1)δr + δ2 − ǫ2ω4 = 0. (4)

Typical frequency-response curves are given in Fig. 1. There are two cases which are separated
by a codimension-two bifurcation at δ = δTC which we will shortly discuss in more detail.

The characteristic polynomial of the Jacobian matrix at a fixed point is

P (λ) = λ4 + a3λ
3 + a2λ

2 + a1λ + a0, (5)

where

a0 =
δ

r
(ω2 − 1) + γ2ω2 + (ω2 − 1)2,

a1 = −γ

(

δ

r
− 2(ω2 + 1)

)

,

(a) (b)

Figure 1: Curves of fixed points in the dissipative case. Solid lines represent stable equilibria,
dashed lines unstable or non-physical ones. (a) δ < δTC: δ = 0.0, 0.04, 0.09, (b) δ > δTC: δ =
0.11 (p), 0.2 (q), 0.4 (r). HB denotes a Hopf bifurcation. (ǫ = 0.1, γ = 0.05.)
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a2 = −δ

r
+ 2(ω2 + 1) + γ2,

a3 = 2γ.

Several local bifurcations of codimension one and two are possible which we will now discuss.2.1 Codimension-one bifurations
Saddle-node bifurcation: For a simple zero eigenvalue (all other eigenvalues having non-zero
real parts) we need:

a0 = 0, a1 6= 0. (6)

Hopf bifurcation: Substituting λ = iν, ν ∈ IR, ν 6= 0, into (5) we derive the conditions

a1

a3

(

a1

a3

− a2

)

+ a0 = 0, ν2 =
a1

a3

· (7)

Because a3 > 0 it follows that a1 > 0, or

δ

r
< 2(ω2 + 1). (8)

The four eigenvalues are given by

λ1,2 = ±iΩ, λ3,4 = −γ ± iΩ, whith Ω =

√

ω2 + 1 − δ

2r
,

where r is a solution of (4) and the other parameters are such that the first equation in (7) is
satisfied.

We shall treat ǫ and γ as constants and study bifurcation curves in the ω-δ plane. Close to a
Hopf bifurcation the eigenvalues are α1(µ)± iω1(µ), α2(µ)± iω2(µ), with α1(µc) = 0, α2(µc) =
−γ and ω1(µc) = ω2(µc) = Ω, where µ is a bifurcation parameter (either ω or δ). If the
transversality condition

α′

1(µc) 6= 0 (9)

is satisfied then the Hopf bifurcation is characterised by the normal form at the critical value µc.
After a centre-manifold reduction this normal form (in polar co-ordinates) is given by (cf. [16])

ṙ = cr3,

θ̇ = Ω + dr2,
(10)

provided c is non-zero. The coefficient c determines the stability of the emerging periodic orbit.
Although in principle it is clear how to obtain α′

1(µc) and the normal form coefficients in (10),
the computations become rather tedious, involving finding roots of the fourth-degree polynomial
P (λ) in (5), so in checking the transversality condition (9) we shall content ourselves with a
numerical computation, using Maple’s arbitrary-precision arithmetic.

Note that if a1/a3 = a2 then δ/r = 2(ω2 + 1) + 2γ2, violating (8). In that case we would
not have a Hopf bifurcation. In view of (7) this means that we cannot have a combined saddle-
node/Hopf bifurcation. In particular, the conditions in (6) are necessary and sufficient for a
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nondegenerate saddle-node bifurcation. The only degeneracy occurs if a0 = a1 = 0, in which
case δ/r = 2(ω2 + 1) and hence a2 = γ2 6= 0. This case corresponds to a nondegenerate
Takens-Bogdanov bifurcation as will be demonstrated below.

It can be verified that in the limit ω → ∞ we have δHopf = 2ǫ, independent of γ, and the
eigenvalues become λ1,2 = ±iω, λ3,4 = −γ±iω. So, there is no Hopf bifurcation for δ ≥ 2ǫ. Note
that this is consistent with the data for ǫ = 0.1 presented in Fig. 1 showing only a (supercritical)
Hopf bifurcation for δ = 0.11.2.2 Codimension-two bifurations
Takens-Bogdanov bifurcation: If both a0 and a1 are zero in (5) then the eigenvalues are 0, 0,
−γ, −γ and the Jordan normal form of the Jacobian matrix is given by











0 1 0 0
0 0 0 0
0 0 −γ 1
0 0 0 −γ











· (11)

This means that at the codimension-two bifurcation the fixed point has an attracting two-
dimensional centre manifold which, in normal co-ordinates, is tangential to the generalised
eigenspace of the matrix

(

0 1
0 0

)

·

Some algebra yields that the codimension-two singularity has the critical parameter values

ω2
TB =

1

6

(

2 − γ2 +
√

16 − 4γ2 + γ4

)

, δ2
TB =

2ǫ2ω4
TB(ω2

TB + 1)
2

3ω4
TB + 4ω2

TB + 1
, (12)

while for the radius we have

rTB =
δTB

2(1 + ω2
TB)

· (13)

A tedious normal form calculation of the centre-manifold-reduced vector field gives to second
order the Bogdanov normal form [16]

ẋ = y,

ẏ = ax2 + bxy,

with coefficients

a = −2
9z6 + 6z5 − 17z4 − 12z3 + 7z2 + 6z + 1

ǫγ5z2
,

(14)

b = −4
9z7 + 15z6 − 11z5 − 29z4 − 5z3 + 13z2 + 7z + 1

ǫγ6z3
,

where
z = ω2

TB.
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Thus we identify the codimension-two bifurcation as a Takens-Bogdanov bifurcation.
An interesting feature of the above normal form is that in the conservative limit the coeffi-

cients a and b both diverge, viz.,

a =
1

ǫ

(

−8

γ
+ 2γ − 1

4
γ3 + O(γ5)

)

, b =
1

ǫ

(

−32

γ2
+ 4 − 3

4
γ2 + O(γ4)

)

(γ → 0).

This behaviour will induce very small-scale dynamics near the Takens-Bogdanov bifurcation for
small γ, as we will see in the next section. At the other extreme, for large damping, we have

a =
1

ǫ

(

−2

γ
− 4

γ3
+ O

(

1

γ5

))

, b =
1

ǫ

(

−4 − 4

γ2
+ O

(

1

γ4

))

(γ → ∞).

The unfolding theory of the Takens-Bogdanov bifurcation [16] tells us that in the Takens-
Bogdanov singularity three codimension-one bifurcation curves meet in a quadratic tangency.
Apart from the saddle-node and Hopf curves we already identified, this includes a curve of
homoclinic bifurcations. We will encounter these homoclinic bifurcations in the next section.

Transcritical bifurcation: A second local codimension-two bifurcation occurs in our system when
two saddle-node bifurcations coalesce. This transcritical bifurcation separates the two types of
frequency-response curves shown in Figs. 1(a) and (b). The critical parameter values can be
computed to be given by

ω2
TC =

1

3

(

2 − γ2 +
√

1 − 4γ2 + γ4

)

, δ2
TC =

ǫ2

γ2

(

ω6
TC + (γ2 − 2)ω4

TC + ω2
TC

)

, (15)

while for the radius we have

rTC =
2δTC

1 + ω2
TC

· (16)

One may verify that ωTC < 1 and δTC < ǫ for all γ and ǫ, while the radius of the corresponding
fixed point satisfies rTC > ǫ > δTC.

The eigenvalues at the transcritical bifurcation are

λ1 = 0, λ2 = −γ, λ3,4 = −1

2
γ ± i

1

2

√

10 − 3γ2 + 2
√

1 − 4γ2 + γ4.

The centre-manifold-reduced vector field (up to second order) reads

ẋ = ex2, (17)

where

e =
−3z7 + 16z6 − 11z5 − 40z4 + 23z3 + 24z2 − 9z

48ǫγ2ωTCz2(z + 1)(z − 3)2
, (18)

with
z = ω2

TC.

For small γ the coefficient e has the expansion

e =
1

ǫ

(

1

12
+

1

96
γ4 +

1

48
γ6 + O(γ8)

)

.

7



(a) (b)

TB

Figure 2: (a) Saddle-node lines for various values of γ; γ = 0.02 (p), 0.05 (q), 0.1 (r), 0.2 (s),
0.3 (t), 0.4 (u), 0.5 (v), 0.6 (w). (b) Parameter plane with bifurcation lines and eigenvalue con-
figurations; LP: saddle-node bifurcations, HB: Hopf bifurcations, HC: homoclinic bifurcations.
(ǫ = 0.1, γ = 0.05.)

The square-root in (15) becomes zero for γ = γ0 :=
√

2 −
√

3 = 0.5176.... The corresponding
codimension-three phenomenon is illustrated in Fig. 2(a) showing lines of saddle-node bifurca-
tions for several values of γ. The transcritical bifurcations are represented by local minima of
these saddle-node lines. For γ > γ0 local minima do not occur anymore, so we no longer have
a transcritical bifurcation (the closed curve of fixed points for δ > δTC (cf. Fig. 1) has simply
ceased to exist). The maxima of the saddle-node curves represent isola centres where closed
curves of equilibria shrink to a point.

It can be checked that all curves in Fig. 2(a) pass through the point ω = 1, δ = ǫ. For these
parameters r = 0 is a solution of (4) and (x1, x2, x3, x4) = (0, 0, 0, 0) a, what could be called,
‘generalised solution’ of (1). The saddle-nodes for ω > 1 in Fig. 2(a) occur for negative r and
are, hence, non-physical.

Summarising the bifurcation analysis of this section, Fig. 2(b) shows a typical ω-δ para-
meter plane for not too large damping, with lines of codimension-one bifurcations meeting in
codimension-two points, although the scale is such that the precise interaction of curves near
TB is not clear. It is interesting to note that as γ → 0 we have ωTB, ωTC → 1 and δTB, δTC → ǫ.
So, both codimension-two bifurcations in the dissipative system can be regarded to spring from
the principal singularity at (ω, δ) = (1, ǫ) of the conservative system.

For later reference the line of homoclinic bifurcations associated with the Takens-Bogdanov
bifurcation has already been included in Fig. 2(b). The complicated dynamics near it will be
the subject of the next section. There, we will also resolve the exact location of bifurcation lines
near the Takens-Bogdanov bifurcation.
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3 Global analysis3.1 The ase of large damping
We take γ = 2 and show the sequence of bifurcations occurring near the Takens-Bogdanov
bifurcation, the organising centre of the system’s dynamics. Recall that for this value of γ there
is no closed curve of fixed points. The Takens-Bogdanov bifurcation occurs at ωTB = 0.577350,
δTB = 0.0384900, and the normal form coefficients are

a = −160/9 = −17.777778, b = −640/9 = −71.111111. (19)

For δ = 0.04 we have two branches of periodic solutions emanating from the fixed point
curve, as shown in Fig. 3(b). In this figure, and in many figures to come, ‘L2-norm’ denotes

the quantity
1√
T

(

∫ T

0

4
∑

i=1

x2
i (t) dt

)1/2

, where T is the period of the periodic orbit. Note that for

fixed T > 0 this defines a genuine norm which reduces to the familiar (x2
1 + x2

2 + x2
3 + x2

4)
1/2 in

the case of a fixed point.
A short curve of periodic orbits runs from HB to HC on the lower, unstable branch of fixed

points. Another one starts in a second HC point and runs off to small ω. The Hopf bifurcation is
subcritical, in agreement with the normal form analysis. Figs. 3(a)-(e) illustrate what happens
to the curves of periodic orbits if the parameter δ is increased. For δ somewhere between 0.047
and 0.0471 the two curves meet and exchange branches. In the process an HC-HC connection
is created which turns out to be too subtle to be detected. For slightly larger δ the two HCs
annihilate.

The above scenario is confirmed by the bifurcation curves in the ω-δ diagram of Fig. 4, in
which the HC curve was obtained by continuing very-high-period periodic solutions (T ≈ 10000).
The maximum of the HC curve corresponds to the annihilation of the two HC bifurcations. At
some point along the HC curve the homoclinic orbit changes from being repelling to being
attracting, consistent with the series of plots in Fig. 3.3.2 The ase of moderate damping
The bifurcation picture in the large-damping case was rather simple. In particular, no complic-
ated homoclinic phenomena and no chaotic motion was found. The moderate-damping case will
prove to be much more complicated. To illustrate this we shall take γ = 0.05, the value which
was used in [17]. The Takens-Bogdanov bifurcation has now moved to ωTB = 0.9996875000,
δTB = 0.09994531952. For the present γ value we also have a transcritical bifurcation, very close
to the Takens-Bogdanov bifurcation, located at ωTC = 0.9987476454, δTC = 0.09987492158. As-
sociated with it is a closed curve of fixed points for values of ω smaller than this critical value
(cf. Fig. 1). The normal form coefficients for the Takens-Bogdanov bifurcation (14) have grown
to

a = −1599.0003, b = −127960.02, (20)

while the coefficient (18) for the transcritical bifurcation is a modest

e = 0.83333399.
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Figure 3: Bifurcation diagrams in the case of large damping showing curves of periodic solutions
emanating from Hopf (HB) and homoclinic (HC) bifurcations of fixed points: (a) δ = 0.035, (b)
δ = 0.04, (c) δ = 0.047, (d) δ = 0.0471, (e) δ = 0.05 (ǫ = 0.1, γ = 2).
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Figure 4: Bifurcation curves in the ω-δ plane near the Takens-Bogdanov bifurcation, which is
indicated by the black triangle (ǫ = 0.1, γ = 2).

Although locally near TB we have to anticipate the same bifurcation phenomena as for the
large-damping case, due to the large values of a and b, the bifurcation behaviour is rather more
subtle. So subtle in fact that we had to hack the continuation code AUTO to give full 15-digit
output in order to resolve the bifurcation structure. It is then seen that the HC curve in Fig. 2(b)
makes a very small-scale fold just as it did for the large-damping case in Fig. 4. In a series of
‘snapshots’, i.e., for a number of values of the secondary bifurcation parameter δ, we will now
map out the global bifurcation structure of our system.

Because the Takens-Bogdanov bifurcation acts as the organising centre of the dynamics, we
start with δ close to δTB. For δ = 0.0999453198, which is slightly larger than δTB, we find the
situation depicted in Fig. 5(a), showing a curve of periodic solutions running from a subcritical
Hopf bifurcation to a homoclinic bifurcation, analogous to the situation in Fig. 3(b). Note the
ridiculously small scale on which phenomena take place: the parameter ω varies only in the
14th digit! (We should remark that in the bifurcation diagrams among the Figs. 5-10 we have
temporarily departed from our convention to signify branches of unstable solutions by broken
lines.)

For slightly larger δ, at δ = 0.0999455, the situation is as shown in Fig. 5(b). The Hopf bi-
furcation has become supercritical, i.e., the coefficient c in (10) has changed sign, as is confirmed
by the numerically obtained values listed in Table 1. At the change of stability, the transvers-
ality condition (9) was found to be satisfied with α′

1(ωHopf) = −6.21060878 × 108. We observe
that the emanating branch of periodic solutions is developing a wiggly ‘tower’. Period-doubling
and subsequent reverse period-doubling bifurcations occur along the wiggles. At δ = 0.09995
(see Fig. 6(a)) the tower has grown to a considerable height but the curve of periodic solutions
still ends in a homoclinic bifurcation on the lower branch of fixed points.

For the same parameter values there is a second homoclinic bifurcation on this branch, as
there was in Figs. 3(b) and (c), from which a second branch of periodic solutions emanates.
This branch connects to another homoclinic bifurcation located on the closed curve of fixed
points at smaller ω-values, see Fig. 6(b) (recall that for large damping, there not being this
closed curve of fixed points, the curve of periodic solutions extends all the way down to ω = 0;
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Figure 5: Bifurcation diagrams for δ = 0.0999453198 (a) and δ = 0.0999455 (b) (ǫ = 0.1, γ =
0.05).

δHB ωHB c
0.09994532 0.9996875032057 2.767820318× 1013

0.0999453272 0.9996875512202 9.858869311× 108

0.099945327488 0.9996875531409 5.519530491× 105

0.099945327488138 0.99968755314179140 3.299493631× 102

0.099945327488138566 0.999687553141795176490 3.657390931× 100

0.099945327488138567 0.999687553141795183159 −3.261661252× 10−1

0.099945327488139 0.99968755314179807 −2.520554713× 102

0.099945327489 0.9996875531475 −3.432965759× 106

0.099945328 0.9996875565554 −2.497274757× 109

0.09994533 0.9996875698937 −1.75053129× 1010

Table 1: Parameters δ and ω and the normal form coefficient c at Hopf bifurcation, signalling a
very rapid transition from a subcritical to a supercritical bifurcation (ǫ = 0.1, γ = 0.05).
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Figure 6: Bifurcation diagrams for δ = 0.09995 (ǫ = 0.1, γ = 0.05).
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Figure 7: (Approximations to) homoclinic orbits for δ = 0.09995: (a) ω = 0.99777903 (T =
10000), (b) ω = 0.99971898 (T = 772), (c) ω = 0.99971901 (T = 10000) (ǫ = 0.1, γ = 0.05.)

cf. Fig. 3). Note the difference in scale of both curves of periodic solutions: the tower of
Fig. 6(a) is included in Fig. 6(b) but is barely visible. Approximations of the three homoclinic
orbits present in Fig. 6(b) (in fact, periodic orbits of very high period) are shown in Fig. 7.
The orbit in Fig. 7(a) is associated with a saddle-focus-type fixed point on the low-frequency
branch. The eigenvalues are

ρ ± iω = −0.02500 ± i 1.8503, λ = −0.05007, ν = 0.00007303, (21)

where ν is very small owing to the fact that we are very close to a saddle-node bifurcation. As
a result, near the fixed point the ratio between attraction in one direction and repulsion in the
other, as expressed by Šil’nikov’s number σ := −ρ/ν, is larger than 1 and we generically have a
so-called ‘tame’ Šil’nikov bifurcation [6]. The corresponding homoclinic orbit is attracting. The
fixed points associated with the homoclinic orbits of Figs. 7(b) and (c) have real eigenvalues.
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Figure 8: Bifurcation diagrams for δ = 0.09995 (a) and δ = 0.1002 (b) (ǫ = 0.1, γ = 0.05).

There is yet another structure of periodic solutions present at δ = 0.09995. It is given
in Fig. 8(a) along with the previous two (although now the tower is not visible anymore). It
consists of two connected wiggly curves of alternatingly stable and unstable solutions lying
next to each other. On each of the stable branches there are period-doubling and subsequent
reverse period-doubling bifurcations. The behaviour of this structure upon decrease of δ bears a
striking resemblance to the action of a zipper: opposite strands of solutions line up, connect and
exchange branches in transcritical bifurcations, thus shedding a closed curve (isola) of periodic
orbits. Solutions on a particular isola all look similar when plotted in x1-x3 diagrams, even
though different parts of the curve originate from different strands of the zipper. Clearly, there
must be an underlying mechanism responsible for this synchronisation.
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Figure 9: Periodic solutions on isolae present in Fig. 8(a): (a) 8-loop at ω = 1.07 (T =
29.406859), (b) 45-loop at ω = 1.003978 (T = 157) (ǫ = 0.1, γ = 0.05, δ = 0.09995).
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Figure 10: Bifurcation diagram for δ = 0.101 (ǫ = 0.1, γ = 0.05).

Specifically, the periodic orbits are of a type called n-loops in [17], because their x1-x3

projections form a number, n, of small loops before closing up. For instance, the just detached
closed curve of periodic solutions in Fig. 8(a) consists of 8-loops (see Fig. 9). To the right of it
we have a 7-loop isola also shown in Fig. 8(a). Isolae of n-loops with 1 ≤ n ≤ 6 exist for larger
values of ω but are not shown in Fig. 8(a) (but see Fig. 11).

A similar process of n-loop isolation occurs at the small-ω end of the bi-wiggly structure. A
small closed curve of periodic solutions can be seen in Fig. 8(a). It actually consists of 45-loops
an example of which is given in Fig. 9. We would expect the bi-wiggly structure to form a
closed curve itself, but towards the small-ω end convergence problems were experienced during
the numerical continuation (look ahead, though, to Fig. 17, where such problems do not occur).
We should remark that for periodic orbits with a large number of loops the number n may be
slightly ambiguous. In [17] it was shown, however, that in the limit δ → 0 the labelling can be
made rigorous.

Upon further increase of δ the tower rises very rapidly until it collides with the zipper. At
about the same instant the homoclinic arc hits the zipper from the left. Thus at δ = 0.1002 we
have the bifurcation diagram depicted in Fig. 8(b) showing a curve of periodic orbits emerging
from the Hopf bifurcation and terminating in the homoclinic bifurcation on the left-hand branch
of fixed points. Additionally, we still have a number of closed curves of solutions. Increasing δ
these isolae are opened up upon contact with the zipper. In Fig. 8(b) the 8-loop isola is about
to be split and made part of the wiggly structure.

At δ = 0.101 (Fig. 10) this has happened. At the same time we observe that the lower strand
of the zipper loses its wiggles through interaction with the lower wiggly curve that previously
formed the tower. This process of repeating exchanges of solution branches is not unlike the
action of the zipper and also involves the formation of isolae of periodic orbits. These seem
to be very ‘short-lived’, however, quickly shrinking down to zero upon variation of δ. When
the lower strand has lost all its wiggles the former tower takes over to interact with the upper
strand of the zipper to ‘catch’ the remaining n-loop isolae. As an example, Fig. 11, in a series
of snapshots, shows how the last closed curve of 1-loops gets included in the wiggly structure.

The next stop on our journey is at δ = 0.2, the central value in our earlier work [17]. The
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Figure 11: Bifurcation diagrams for four values of δ illustrating the inclusion of the last isola of
periodic orbits (1-loops) in the wiggly curve (ǫ = 0.1, γ = 0.05).

bifurcation diagram is given in Fig. 12. The Hopf bifurcation has moved to infinity (recall that
δHopf → 2ǫ as ω → ∞) and there are no isolae of periodic solutions left. The homoclinic bifurc-
ation, in the meantime, has become of chaotic Šil’nikov type, as confirmed by the eigenvalues
of the corresponding fixed point which are

ρ ± iω = −0.02500 ± i 1.7537, λ = −0.1362, ν = 0.08621, (22)

yielding σ = −ρ/ν < 1. Indeed, the wiggly curve has all the characteristics of the usual curve
of periodic solutions associated with a chaotic Šil’nikov bifurcation [24]. Specifically, we have
alternating stable and unstable branches with on each of the stable branches period-doubling and
subsequent reverse period-doubling bifurcations. Also, the period of the periodic orbits diverges
upon approaching the homoclinic bifurcation, as illustrated by the period curve in Fig. 12(b).
Fig. 13 shows (projections of) the fundamental periodic solution and solutions along the first
three wiggles (counted from the right) in Fig. 12. The closer ω is to the homoclinic bifurcation
value the more loops occur.

Quantitative evidence for a chaotic Šil’nikov bifurcation can be obtained from an inspection
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(a) (b)

Figure 12: (a) Wiggly curve of periodic solutions ending in a chaotic Šil’nikov bifurcation; ‘a’,
‘b’ and ‘c’ denote 1-loop, 2-loop and 3-loop branches, respectively. (b) Period curve. (δ =
0.2, ǫ = 0.1, γ = 0.05.)

Figure 13: Stable period solutions – the fundamental solution and the first three n-loops – along
the wiggly curve in Fig. 12; T denotes their period (δ = 0.2, ǫ = 0.1, γ = 0.05).
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of the asymptotic properties of the wiggly curve in Fig. 12. The asymptotic ratio of parameters
at which saddle-node bifurcations occur is completely determined by the complex eigenvalues
of the fixed point (cf. [24]):

lim
i→∞

µi+1

µi

= − exp
ρπ

ω
= −0.9562, (23)

where we have used (22). A direct calculation of this ratio, using the numerically determined
parameter values at which saddle-node bifurcations occur, gives a limiting value of −0.956 ±
0.002, in agreement with (23). This relatively large value (due to the low damping in the system)
explains why the wiggles damp out so slowly in Fig. 12, and why so many bifurcations along
the curve can be detected numerically.

The transition from a tame (σ > 1) to a chaotic (σ < 1) Šil’nikov bifurcation occurs at a
codimension-two homoclinic bifurcation along the line HC in Fig. 2(b) (see also Fig. 18). In a
three-dimensional setting this bifurcation has been studied by Belyakov [5] (see [6] for a review).

Period-doubling cascades. From the period-doubling bifurcation points on the curve in
Fig. 12(a) branches of periodic solutions emanate which undergo further period-doubling bi-
furcations. Numerical work suggests full period-doubling cascades, followed by reverse cas-
cades which restabilise the initial periodic solutions. For example, by checking the Floquet
multipliers, the first seven period-doublings on the 1-loop branch in Fig. 12(a) are found to
occur at ω1=1.458128, ω2=1.441673, ω3=1.438840, ω4=1.438322, ω5=1.438219, ω6=1.438196,
ω7=1.438192. Defining δi = (ωi−1 − ωi−2)/(ωi − ωi−1) we have the following sequence

δ3 = 5.808 ± 0.002
δ4 = 5.469 ± 0.012
δ5 = 5.03 ± 0.06
δ6 = 4.5 ± 0.2,

showing good agreement with the theory of one-dimensional mappings [8, 13] which predicts that
the δi converge geometrically to the universal Feigenbaum constant δF = 4.6692... as i → ∞.

Extrapolating the sequence, one expects the accumulation point to be located at ω∞ =
1.438191. For slightly smaller ω a chaotic attractor is found (see the phase-space plot in Fig. 14).
The ω-window where this attractor exists seems to be very narrow as already for ω=1.4380 we
are left with only transient chaos, the system eventually relaxing to a stable once-period-doubled
solution.

Other Šil’nikov-type chaotic attractors are found after other period-doubling cascades along
the wiggly curve of Fig. 12(a).

Homoclinic collision. For δ = 0.2 there is a second chaotic Šil’nikov bifurcation at ω = 0.4676.
The associated wiggly curve is visible for small frequencies in Fig. 12(a). Note that the existence
of two homoclinic bifurcations for δ = 0.2 is consistent with the HC-curve in Fig. 2(b) which has
a local maximum for (ω, δ) = (0.6642, 0.2476). If δ is decreased the second Šil’nikov bifurcation
quickly recedes to small ω and the associated periodic solutions soon become undetectable.

Increasing δ beyond the current value of 0.2 both homoclinic bifurcations on the fixed point
curve move towards each other, their associated wiggly curves first clashing at δ ≃ 0.219. In
Fig. 15 solution curves are shown just before and just after this collision. In the latter case a
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Figure 14: Phase-space projection of a chaotic attractor along the 1-loop branch (ǫ = 0.1, γ =
0.05, δ = 0.2, ω = 1.43805).

bi-wiggly curve of periodic solutions connects the two homoclinic bifurcation points. There is
also an isola of periodic solutions formed by the interaction of branches of the wiggly curves.
Presumably, a few more of such closed curves exist as there seems to be a gap between the
bi-wiggly curve and the lower solution branches.

The homoclinic bifurcations eventually disappear at δ = 0.2476. What is left is a branch of
periodic solutions for all frequencies. Further increasing δ the wiggles with different coexisting
periodic solutions (cf. Fig. 13) gradually disappear in cusp bifurcations in which two saddle-
nodes coalesce. Fig. 16 shows the situation for δ = 1.5. Only the primary wiggle with 1-loop
solutions has survived. Eventually, this branch will also disappear in a cusp at δ ≃ 8.0. What
remains is a ‘background’ curve of nearly-circular fundamental periodic solutions (compare the

(a) (b)

Figure 15: Homoclinic collision: (a) δ = 0.218, (b) δ = 0.22 (ǫ = 0.1, γ = 0.05).
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Figure 16: The last surviving wiggle of 1-loops (ǫ = 0.1, γ = 0.05, δ = 1.5).

orbit drawn in Fig. 13(a)).

As a final stage of our journey let us decrease δ below δTB. Then there is no Hopf bifurcation and
no tower of periodic solutions. The arc of periodic solutions running between two homoclinic
bifurcations, as in Fig. 6(b), at first still exists but upon further decrease of δ disappears as
the two homoclinic bifurcations annihilate. For this to happen the two homoclinic bifurcations
must be on the same branch of fixed points, so we must have δ < δTC. For even lower δ we
no longer have homoclinic bifurcations and the zipper constitutes the only source of periodic
solutions. As an example, Fig. 17 shows the situation for δ = 0.099. We observe a central
structure comprising the eight n-loops with 13 ≤ n ≤ 20, while all other n-loops with either
larger or smaller n have already detached (two flanking examples are included in Fig. 17).

Further reducing δ, all n-loops detach and continue living on closed bifurcation curves. Here,
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Figure 17: Bifurcation diagram for δ = 0.099 showing 8 n-loops (13 ≤ n ≤ 20) still zipped up
while all others (of which two are shown) have been freed. (ǫ = 0.1, γ = 0.05).
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we enter the mode-locking regime studied in [17] and summarised in the next section. In the
ω-δ diagram the n-loops now exist between two saddle-node lines forming the boundaries of
resonance tongues.4 Mode-loking
Continuation of saddle-node bifurcations of the first six n-loops yields the resonance tongues of
Fig. 18. Note that the tongues do not actually emerge from the ω axis. This depends on how
we scale the parameters of the system. If we were to take γ = γ̄δ, i.e., if we let the damping go
to zero with the nonlinearity δ, then we would find that for n = 1, 2 and 3 the tongues would
touch the horizontal axis in Fig. 18 (see Fig. 19). Taking the quadratic scaling γ = γ̄δ2 would
also connect the tongues for n = 4, 5 and 6, etc.

The combined curves of saddle-node bifurcations summarise many of the bifurcations seen
in the bifurcation diagrams of the previous section. In particular, note the pair of cusp points
(one for relatively high, the other for relatively low δ) for each of the n-loops, where wiggles of
periodic solutions disappear (cf. (16)). (Recall from the previous section that the 1-loop tongue
has a cusp well outside the present plot at δ ≃ 8.0.) We should remark, however, that Fig. 18
does not give a complete account of the bifurcation structure associated with the n-loops. For
instance, (cascades of) period-doubling lines are known to exist in each of the resonance regions
but have not been drawn in. At the end points of the curves of saddle-nodes just beyond the
lower cusps the numerical continuation breaks down due to convergence problems whose cause
remains unclear.

It was shown in [17] that for a better understanding of the resonance nature of the n-loops it is
useful to return to the unreduced system (2). The unperturbed version (δ = 0) of it represents a
driven pair of linear oscillators and the resonances can be described in terms of three-frequency
mode-locking, one of the frequencies being the forcing frequency ω. In the unreduced system, the
n-loops correspond to quasi-periodic motions (on 2-tori) in partial mode-locking, i.e., with one
rational relation present between the three frequencies. This situation is only structurally stable
within the class of rotationally symmetric vector fields. As was shown in [17], a perturbation
destroying this symmetry might result in a second resonance relation being established between
the frequencies, leading to fully mode-locked periodic motion (i.e., a further mode-locking on
the already mode-locked invariant 2-tori).

The three-frequency mode-locking viewpoint in [17] allowed us to derive, by semi-analytical
means, that the n-loop resonance tongues emerge from the frequency axis at

ω0,n = 1 +
2

n
(n = 1, 2, 3, . . .), (24)

A further result was that the emerging n-loop has period

T0,n = nπ. (25)

Note that unlike in the case of circle maps, different orders of resonance can evolve into each
other. Indeed, the zipper structure of the previous section constitutes a global connection
between different n-loops.
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Figure 18: Resonance tongues for (1). Tongue boundaries are formed by saddle-node curves for
the n-loop periodic orbits. Also shown are lines of Hopf (HB) and homoclinic (HC) bifurcations
of the fixed point. The solid triangle indicates the codimension-two homoclinic bifurcation point
(ω, δ) = (0.981, 0.117), where the Šil’nikov number σ becomes 1. (ǫ = 0.1, γ = 0.05.)
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Figure 19: Resonance tongues for (1) taking γ = γ̄δ. Tongue boundaries are formed by saddle-
node curves for the n-loop periodic orbits. (ǫ = 0.1, γ̄ = 0.5.)
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5 Disussion
This paper has presented new sequences of transcritical bifurcations of periodoc solutions in the
interaction of resonances in an autonomous four-dimensional system. The system is a reduced
version of a rotationally symmetric driven system of two coupled oscillators. The resonances
of the system are best understood on the level of the original unreduced system in which the
periodic orbits correspond to invariant tori.

Although our results have been obtained for a particular equation, we conjecture that the
same type of behaviour occurs in a more general class of systems. The synchronised action of the
zipper (see, e.g., Fig. 8), in particular, suggests an underlying governing mechanism. It would be
useful to try and write down an abstract mathematical model of this behaviour. In this respect
we remark that the zipping up of resonance tongues found in our system is reminiscent of the
‘merging of resonance tongues’ reported in [21], where also Šil’nikov bifurcations are involved.
In [21] the system is an autonomous three-dimensional system which is an unfolding of the
truncated normal form of a saddle-node/Hopf bifurcation (see also [22]). Similar behaviour has
also been observed in an unfolding of the pitchfork/Hopf bifurcation [18]. The origin of the
resonances in both these systems is different from that in our system, being associated with a
secondary Hopf bifurcation.

It is worth mentioning here that recent work by Champneys & Rodŕıguez-Luis [7] shows
how a collision of two Šil’nikov-type homoclinic orbits can lead to the destruction of wiggly
curves by the formation of isolae of periodic solutions. This scenario would seem to apply to
our homoclinic collision occurring at relatively large δ (see Fig. 15). Our zipper, however, occurs
at smaller δ (cf. Fig. 8) where it cannot be related to a degenerate Šil’nikov bifurcation, and
hence a different mechanism must be responsible.

In the previous sections we have used ω and δ as bifurcation parameters. In order to explore
possible higher-order bifurcation phenomena we will now introduce the damping coefficient γ
as a third bifurcation parameter. First note that in the conservative limit (γ → 0) the two
codimension-two points discussed in Section 2 (cf. Fig. 2(b)) merge at (ω, δ) = (1, ǫ). The
corresponding fixed points, however, remain different: from (12) and (13) we see that for the
Takens-Bogdanov point we have r → ǫ/4, while for the transcritical bifurcation point Eqs. (15)
and (16) give r → ǫ.

Indeed, for (ω, δ, γ) = (1, ǫ, 0) system (1) has a degenerate one-parameter set of fixed points
given by

x1 = −r, x2 = 0, x3 = 0, x4 = −r, (r ∈ IR+). (26)

The linearised vector field at these fixed points (26) reads

Ar =











0 1 1 0
−1 0 0 1
−1 0 0 1
0 −1 (ǫ − r)/r 0











· (27)

The Jordan canonical form of Ar is

Jr =











0 1 0 0
0 0 0 0
0 0 α 0
0 0 0 α











, where α =

√

ǫ

r
− 4. (28)
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We conclude that for r > ǫ/4 we have a (degenerate) codimension-three Takens-Bogdanov/Hopf
bifurcation, while for r < ǫ/4 we have just a Takens-Bogdanov bifurcation. For r = ǫ/4, the
end point of our line of Takens-Bogdanov bifurcations when continued in γ, we have the Jordan
form

J =











0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0











, (29)

which represents a singularity of codimension four.

A full unfolding of the codimension-four singularity (29) can, of course, not be accomplished
in a three-parameter family of vector fields. Indeed, it is because of the one-parameter family
of fixed points (26), effectively giving us a fourth bifurcation parameter r, that we are able to
arrive at the codimension-four singularity in the first place. Nevertheless, complicated dynamics
can be anticipated near the singularity (29). Note in this respect that the wiggles of periodic
solutions (as for instance in Fig. 12) damp out ever more slowly as γ is decreased (cf. Fig. 23).

We also observe from (24) that we have an accumulation of resonance tongues in Fig. 18
with limiting frequency ω = 1.

It is interesting to note that the divergence of the Takens-Bogdanov normal form coefficients
a and b (14) as the codimension-four singularity is approached, has also been observed for
reversible Takens-Bogdanov normal form coefficients in the approach of the same singularity
(29) within the class of reversible vector fields (in which case (29) is of codimension two) [20].
In the reversible case the divergences could be suppressed by carefully rescaling the equations.

Finally, we make some comments which serve to relate the results of this paper to ex-
perimental work on rotor systems with clearances as reported in the literature. Complicated
dynamics in such systems has been discussed by several authors. Ehrich [11] describes experi-
ments on a high-speed turbomachine with bearing clearance, observing subharmonic vibrations
with frequencies 1/n times the forcing frequency (up to n = 8), and transitions between them
via period-doubling cascades and chaotic motion. Similar transitions have been reported in
[12, 1, 14]. Qualitatively, this is exactly the type of behaviour to be expected in a system with
mode-locking as studied in the present paper.

In Adiletta et al. [1] complicated motion is observed for intermediate values of the clearance
parameter (δ = 0.3 − 0.5), with smaller and larger δ predominantly giving rise to periodic
responses. This is broadly consistent with our results. For a more quantitative comparison
the paper by Gonsalves et al. [14] is especially useful since it describes experiments on a basic
two-degrees-of-freedom rotor system concentrating on the effects of bearing clearance only, and
also because it quotes all the relevant parameters. It reports complicated resonance behaviour,
including chaotic motion, for a rotor with a linear damping coefficient γ = 0.17, a clearance
equal to the eccentricity (i.e., δ = ǫ), and a dimensionless driving frequency ω ≃ 2.5. These
parameters are right in our region of complicated dynamics.

Although many of the dynamical features discussed in this paper are likely to be too subtle
to be observed experimentally, it would be interesting to perform some careful experiments on
a rotor system with bearing clearance with a particular focus on observing features associated
with homoclinic behaviour, such as diverging periods of periodic solutions.
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