
ENOC-2005, Eindhoven, Netherlands, 7-12 August 2005

INSTABILITY OF A WHIRLING CONDUCTING ROD IN
THE PRESENCE OF A MAGNETIC FIELD

G.H.M. van der Heijden
Centre for Nonlinear Dynamics

University College London
London WC1E 6BT, UK

g.heijden@ucl.ac.uk

J. Valverde
Department of Mechanical Engineering

University of Seville
41092 Seville, Spain

jvalverde@us.es

Abstract
We study the effect of a magnetic field on the be-

haviour of a slender conducting elastic structure sub-
ject to end forces. Both statical (buckling) and dy-
namical (whirling) instability are considered and we
also compute post-buckling configurations. The the-
ory used is the geometrically exact Cosserat rod theory.
We consider two types of boundary conditions: the tra-
ditional welded boundary conditions and a novel set of
boundary conditions that give rise to exact helical post-
buckling solutions. Our results are relevant for current
designs of electrodynamic space tethers and potentially
for future applications in nano- and molecular wires.
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1 Introduction
A straight current-carrying wire held in tension be-

tween pole faces of a magnet is well known to buckle
into a (roughly) helical configuration at a critical cur-
rent (see Figure 1). A photograph of this phenomenon
is shown in Section 10.4.3 of [Woodson and Melcher,
1968], where a linear stability analysis is carried out
for a simple string model. (A string is here meant to
be a perfectly flexible elastic wire.) The problem was
studied in [Wolfe, 1983] by means of a rigorous bi-
furcation analysis for a (nonlinearly elastic) string sus-
pended between fixed supports and placed in a uniform
magnetic field directed parallel to the undeformed wire.
He found that an infinite number of solution branches
bifurcate from the trivial straight solution, much like
in the Euler elastica under compressive load. In this
case the non-trivial solutions are exact helices. That
this should be so, is easily explained by the fact that
the (Lorentz) body force is everywhere normal to the
deformed configuration and hence the wire necessarily
in a uniform state of tension. Some (statical) stability
results (i.e., minimisation of the potential energy) could

be obtained as well, indicating that the first branch of
solutions is stable while the others are unstable.
In a subsequent paper [Wolfe, 1985] Wolfe extends

the analysis to a uniformly rotating (whirling) string
and shows again the existence of bifurcating branches
of whirling non-trivial solutions. Due to centrifugal
effects no closed-form solutions could be obtained in
this case. This result was further extended in [Healey,
1990] using equivariant bifurcation theory in order to
deal with the symmetries of the problem in the case of
an isotropic rod.
Wolfe also considered a conducting rod in a uniform

magnetic field [Wolfe, 1988]. In addition to extension
a rod can undergo flexure, torsion and shear, and for
the case of welded boundary conditions it was found
that in certain cases bifurcation occurs, with the usual
infinity of non-trivial equilibrium states. All the works
cited above were content with showing the existence
of bifurcating solutions and did not study their post-
buckling behaviour.
The study of strings and rods in a magnetic field is of

great interest to space tethers. Although space tethers
in the last 20 years or so have become a well estab-

Figure 1. Experimental setup for a conducting wire.



lished concept in astrodynamics [Beletsky, 1993], new
designs continue to be proposed that hold great poten-
tial for future space applications. A space tether is a
long cable used to connect spacecraft to each other or
to other orbiting bodies such as space stations, boost-
ers, payload, etc. in order to transfer energy and mo-
mentum thus providing space propulsion without con-
suming propellant. These tethers have been studied as
elastic strings (e.g., [Krupa et al., 2000]) and as dumb-
bell systems (e.g., [Ziegler and Cartmell, 2001]). An
important class of space tethers is formed by the so-
called electrodynamic tethers (ETs). These employ the
earth’s magnetic field and ionospheric plasma to gen-
erate a current, according to Faraday’s Law, and hence
thrust or drag forces without expending chemical fuel.
An example is the Short Electrodynamic Tether (SET)
prototype of the European Space Agency [Valverde et
al., 2003]. This tether system, which comprises a cen-
tral module from which two tethers each about a hun-
dred metres long extend, is designed to operate at high
inclination and in low orbit. Due to the shape of the
earth’s magnetic field this means that the desirable ori-
entation of the tether is the horizontal one (i.e., with the
axis of smallest moment of inertia normal to the orbit
plane). The gravity gradient ordinarily causes a tether
to drift to the stable radial position. Therefore, in or-
der to keep the system in the horizontal position, an
axial spin velocity is applied for gyroscopic stability.
This requires significant torsional and bending rigidity
of the tether which therefore has to be modelled as a
rod, not a string. The applied spin causes large defor-
mations that present stability issues similar to those in
an unbalanced rotor system, which have been studied
in previous work [Valverde et al., 2005; Valverde et
al., 2005].

In this paper we apply large-deformation rod theory
to study the effect of a magnetic field on the behaviour
of a slender conducting elastic structure possibly sub-
ject to end forces. Both statical (buckling) and dynam-
ical (whirling) instability are considered and we also
compute post-buckling configurations. The work ex-
tends the stability analysis of the SET in [Valverde et
al., 2005] by including the effect of the magnetic field.
This effect was considered small for the SET but that
need not be true for other tether designs. For instance,
very long and flexible tethers subject to boundary con-
ditions that are not too restraining (e.g., no big end
masses) might well operate in the region of the first
magnetic buckling instability (we comment on this in
Section 5).

We consider two types of boundary conditions. First
the traditional welded boundary conditions. These are
appropriate for tethers with sufficiently large attached
end masses (see Figure 2). Wolfe considered welded
boundary conditions in [Wolfe, 1988], where he also
reports numerical evidence of helical post-buckling so-
lutions. However, exact helical solutions cannot be
supported by (coaxial) welded boundary conditions.
Therefore we formulate novel ‘coat hanger’ boundary

conditions that do support exact helical solutions, and
show numerically that subject to these boundary condi-
tions the rod does indeed buckle into a helix, or more
precisely, that there is a (presumably infinite) series of
helical modes bifurcating at increasing load, each suc-
cessive mode having one more (half) helical turn. Un-
like in string buckling the rod does not require a ten-
sile force in the trivial state, but we allow for such an
applied force as well. The pertinent dimensionless pa-
rameter that governs buckling measures the product of
current and magnetic field against the bending force.
We also study steady whirling solutions for which we

introduce a rotating co-ordinate system. This extends
Wolfe’s analysis of whirling strings to whirling rods.
The results are important for the stability of spinning
tether configurations. An interesting feature of helical
solutions is that since all points on a helix have equal
distance to the whirling axis, and are therefore equally
affected by centrifugal forces, solutions remain helices
when spun.
The paper is organised as follows. First, in Section 2,

we give more details about the tether application and
discuss the effect of the earth’s magnetic field on an
electrodynamic tether. Then we present our rod me-
chanics formulation in which the magnetic field enters
the force balance equation through the Lorentz body
force. For the study of whirling solutions the equilib-
rium equations are transformed to a co-ordinate sys-
tem rotating at constant angular velocity. We use nu-
merical bifurcation and continuation methods to find
the buckling loads and to compute post-buckling solu-
tions paths, both for the statical and dynamical case.
These results are presented in the form of bifurcation
diagrams in Section 5, first for welded and then for coat
hanger boundary conditions. In Section 6, finally, we
draw some conclusions and speculate on the relevance
of our results for nano- and molecular wires.

2 Electrodynamic tethers and the earth’s mag-
netic field

Electrodynamic tethers are electrical conductors that
interact with the geomagnetic field in such a way that
an electromotive force (e.m.f.) is generated along the
tether due to Faraday’s Law [Cosmo and Lorenzini,
1997]. The electrical circuit is closed by means of two
contactors attached to the ends of the tether which inter-
act with the surrounding ionospheric plasma and allow
a current to flow.
Figure 2 shows an electrodynamic tether connecting

two satellites. Let {i, j, k} be the orbital frame, which
may be assumed to be inertial (since the angular veloc-
ity of the tether around the earth is much smaller than
the typical spin velocity about its axis). The tether trav-
els with a velocity v in the direction of k. The e.m.f.
between the ends induced by this motion is given by

E =

∫

l

(v × B0) · dl, (1)



Figure 2. An electrodynamic tether in the earth’s magnetic field.

where B0 is the magnetic field and dl is a differential
along the length of the tether. Because the tether is part
of a closed circuit a current I will flow in the direction
of increasing E and the system functions as a generator.
This current in turn gives rise to a Lorentz force F L

through

dF L = dI × B0. (2)

This force can be used to drag the system without ex-
pending chemical fuel [Cosmo and Lorenzini, 1997;
Beletsky, 1993]. Alternatively, if a current is forced
against the e.m.f. the system becomes a motor boost-
ing itself to a higher orbit.
If we denote the position co-ordinates of the tether’s

central axis relative to {i, j, k} by (X, Y, Z), then the
current vector, which is directed along the tangent of
the tether, can be expressed as

dI = Idl = I

(

∂X

∂s
,
∂Y

∂s
,
∂Z

∂s

)T

ds. (3)

The maximum force is generated when I and B0 are
perpendicular. In the ET operation conditions both vec-
tors will in general not be perpendicular because the
tether is not perfectly straight and the magnetic field
lines will not be perpendicular to the tether over its en-
tire length. In order to represent this imperfection let
us therefore assume that the magnetic field has an extra
component in the Y direction

B0 = (B1, B2, 0)T , (4)

where B1 � B2. Introducing (3) and (4) into (2), the
differential of the Lorentz force is found to be

dF L = I

(

−
∂Z

∂s
B2,

∂Z

∂s
B1,

∂X

∂s
B2 −

∂Y

∂s
B1

)T

ds.

(5)

The term −∂Y
∂s

B1Ids in the Z component opposes the
motion and drags the ET system, as intended. How-
ever, the B2 terms in the X and Z components (due
to the imperfection B2) will tend to coil the tether.
This undesirable effect has been reported in some tether
flights [Cosmo and Lorenzini, 1997; Beletsky, 1993].
In this paper we study the interaction of elastic and

electromagnetic forces in a conducting rod and the ten-
dency to generate three-dimensional coiled configura-
tions (for instance as a result of buckling at critical
loads).

3 The rod mechanics model
We describe the elastic behaviour of a conducting ca-

ble by the Kirchhoff equations for the dynamics of
thin rods. The rod is assumed to be uniform, inex-
tensible, unshearable and intrinsically straight and pris-
matic. For the background of the Kirchhoff equations
the reader is referred to [Antman, 1995; Coleman et al.,
1993]. These equations were also used in [Valverde et
al., 2005] to analyse the dynamics of the SET. To these
equations will be added the Lorentz force to account
for the electromagnetic interaction.
Let x denote the position of the rod’s centreline and

let {d1, d2, d3} be a right-handed orthonormal frame
of directors (the Cosserat triad) defined at each point
along the centreline. Since the centreline is assumed to
be inextensible we can take d3 in the direction of the
local tangent:

x′(s, t) = d3(s, t), (6)

where the prime denotes differentiation with respect to
arclength s measured along the centreline, and t is time.
The directors d1 and d2 will be taken to point along
the principal bending axes of the cross-section (see Fig-
ure 3). The unstressed rod is taken to lie along the basis
vector k of a fixed inertial frame {i, j, k}.
Looking at Figure 3 we note that the position vector

of an arbitrary point of the rod can be expressed as

X(s, x1, x2, t) = x(s, t) + x1d1(s, t) + x2d2(s, t)

= x(s, t) + r(s, x1, x2, t), (7)

where (x1, x2) are the components of r in the cross-
section relative to {d1(s), d2(s)}. The rod is thus

Figure 3. Cosserat model of a rod.



viewed as a set of infinitesimal slices centred at all s. A
one-dimensional description will be obtained by aver-
aging of forces and moments over each cross-section.
The internal traction, which is the projection of the
stress tensor onto the cross-sectional plane, is given by
a force which we denote by f = f (s, x1, x2, t) (see
Figure 3). The resultant elastic force exerted in a sec-
tion S(s) is given by

F (s, t) =

∫

S(s)

f (s, x1, x2, t) dS, (8)

where dS is an infinitesimal area element. This
force can be expressed in the director basis as F =
∑3

i=1 Fi di. The resultant moment in the section S(s)
is given by

M(s, t) =

∫

S(s)

r(s, x1, x2, t) × f(s, x1, x2, t) dS,

(9)
and will be expressed as M =

∑3
i=1 Midi.

The rod is assumed to carry an electric current for
which we can write

I = Ix′ = Id3. (10)

Here we have assumed the current to have the same
direction as the rod, which is consistent with a one-
dimensional rod theory. It amounts to the assumption
that the cross-section of the conducting wire is small
enough to make currents within the cross-section (eddy
currents) induced by the motion negligible. The current
I interacts with the magnetic field B0 to generate a
(Lorentz) body force given by

F L = Id3 × B0. (11)

Following [Wolfe, 1983] we assume the magnetic field
to be uniform and directed along the unstressed rod,
i.e.,

B0 = B0k. (12)

The balancing of forces and moments across an in-
finitesimal rod element then yields the following set of
partial differential equations:

F ′ + IB0d3 × k = ρAẍ, (13)

M ′ + d3 × F = ρ(I1d1 × d̈1 + I2d2 × d̈2), (14)

where ρ is the (volumetric) mass density, A the cross-
sectional area, I1 and I2 the second moment of area of

the cross-section about d2 and d1 respectively, and (̇)
denotes differentiation with respect to time.
For a closed system of equations these balance equa-

tions need to be supplemented by constitutive relations
that characterise the material behaviour of the rod. We
assume the rod to be made of homogeneous isotropic
material and take the usual linear stress-strain relations
(Hooke’s law)

M1 = EI1κ1,

M2 = EI2κ2,

M3 = GJκ3,

(15)

where κ1 and κ2 are the curvatures about d1 and d2, re-
spectively, while κ3 is the twist about d3. E is Young’s
modulus, G is the shear modulus and J is the second
moment of area of the section about d3. We shall as-
sume that the section is symmetric with respect to the
principal axes, in which case J = I1 + I2.
The κi are the components of the curvature vector

κ =

3
∑

i=1

κi di, (16)

which governs the evolution in space of the frame of
directors as one moves along the centreline:

d′

i = κ × di (i = 1, 2, 3). (17)

The constitutive relations (15) can be used to replace
the κi in (17) by moments, after which the equations
(6), (13), (14) and (17) form a system of 18 differential
equations for the 18 unknowns (x, F , M , d1, d2, d3).

Remark: In general when a conducting wire moves
in a magnetic field an additional electromagnetic in-
duction effect occurs which opposes the motion. The
electromotive force as a result of this effect is propor-
tional to the rate of change of the enclosed magnetic
flux [Jackson, 1975]. However, in the case of a steadily
whirling wire in a uniform magnetic field the enclosed
magnetic flux does not change and the effect is zero.

3.1 Equations of motion in the moving frame
Since we are interested in steadily rotating solutions

we transform the equilibrium equations (13) and (14) to
a co-ordinate frame {e1, e2, e3} that rotates with con-
stant angular velocity ω = ωk about the k axis (and
the axis of the rod in its trivial unstressed state). Noting
that the derivative with respect to time of an arbitrary
vector V (s, t) is given by

dV (s, t)

dt

∣

∣

∣

∣

i

=
dV (s, t)

dt

∣

∣

∣

∣

m

+ ω × V (s, t), (18)



where d
dt

∣

∣

i
means derivative with respect to time in the

inertial frame and d
dt

∣

∣

m
expresses the derivative with

respect to time in the moving frame, the equations (13)
and (14) expressed relative to {e1, e2, e3} become

F ′ + IB0d3 ×e3 = ρA(ẍ +2ω× ẋ + ω× (ω×x)),
(19)

M ′ + d3 × F = ρI1(d1 × d̈1 + 2d1 × (ω × ḋ1)

+(ω · d1)(d1 × ω)) + ρI2(d2 × d̈2 +

2d2 × (ω × ḋ2) + (ω · d2)(d2 × ω)). (20)

Steadily rotating (whirling) solutions satisfy the equa-
tions (13) and (14) with the dotted variables set to zero:

F ′ + IB0d3 × e3 = ρAω × (ω × x), (21)

M ′ + d3 × F = ρI1(ω · d1)(d1 × ω) +

ρI2(ω · d2)(d2 × ω). (22)

The other equations (6) and (17) do not change their
form, but all vectors are now to be considered as ex-
pressed relative to the rotating frame {e1, e2, e3}. Stat-
ical solutions are simply obtained by setting ω equal to
zero.
For a well-posed problem the final 18 ODEs require

18 boundary conditions to be specified. In the next two
subsections we consider two cases.

3.2 Welded boundary conditions
We follow [Wolfe, 1988] and consider welded bound-

ary conditions. These conditions also describe an elec-
trodynamic tether that is welded to the end contactors
or modules if these bodies are sufficiently massive (see
Figure 2). We assume the rod to be fixed at s = L and
to be able to slide along e3 = k at s = 0 where a con-
trolled force T is applied (positive for tension). L is
the length of the rod. Writing x = xe1 + ye2 + ze3 a
consistent set of boundary conditions is thus given by

x(0) = 0, (23)

y(0) = 0, (24)

F (0) · e3 = −T, (25)

d3(0) · e1 = 0, (26)

d3(0) · e2 = 0, (27)

d1(0) · e2 = 0, (28)

at s = 0 and

x(L) = 0, (29)

y(L) = 0, (30)

z(L) = L, (31)

d3(L) · e1 = 0, (32)

d3(L) · e2 = 0, (33)

d1(L) · e2 = 0, (34)

at s = L. To these conditions we have to add con-
ditions that ensure the orthonormality of the director
basis, for which we can take

d1(0) · d1(0) = 1,

d2(0) · d2(0) = 1,

d3(0) · d3(0) = 1,

d1(0) · d2(0) = 0,

d1(0) · d3(0) = 0,

d2(0) · d3(0) = 0,

(35)

for a total of 18 boundary conditions, as required.
Note that these conditions imply that at s = 0 and
s = L the director frame {d1, d2, d3} is aligned with
{e1, e2, e3}.

3.3 Coat hanger boundary conditions
Helical solutions in rods are usually studied in in-

finitely long rods, which avoids the need for impos-
ing boundary conditions. Indeed, it is not immedi-
ately clear how an exact helix can be supported: the
boundary conditions cannot be simply welded as no
two points on a helix have coaxial tangents, nor can
they be simply pinned because a helix has curvature
and therefore carries a bending moment. Here we for-
mulate a set of boundary conditions that support exact
helical solutions. We call them coat hanger boundary
conditions, for obvious reasons.
Consider Figure 4 where a rod is suspended between

two axes v0 (at s = 0) and v1 (at s = 1) lying in two
parallel planes normal to e3. v1 is taken to be fixed in
space, while v0 is free to move along e3. We assume
the axes to have a fixed relative rotation φ, i.e., v0 ·
v1 = cosφ. The rod is free to hinge about and slide
along both v0 and v1. This situation is described by

Figure 4. Coat hanger boundary conditions.



the following boundary conditions:

d1(0) · v0 = 0, (36)

d3(0) · v0 = 0, (37)

M(0) · v0 = 0, (38)

F (0) · v0 = 0, (39)

F (0) · e3 = −T, (40)

x(0) · (v0 × e3) = 0, (41)

at s = 0, and

d1(L) · v1 = 0, (42)

d3(L) · v1 = 0, (43)

M (L) · v1 = 0, (44)

x(L) · (v1 × e3) = 0, (45)

x(L) · v1 = r, (46)

z(L) = L, (47)

at s = 1. T is an applied end force (positive for ten-
sion). To ensure orthonormality of the director basis
we again add

d1(0) · d1(0) = 1,

d2(0) · d2(0) = 1,

d3(0) · d3(0) = 1,

d1(0) · d2(0) = 0,

d1(0) · d3(0) = 0,

d2(0) · d3(0) = 0,

(48)

completing the set of boundary conditions.
These conditions describe a rod that is hinged about

d2 at both ends. Conditions (41) and (45) restrict
the movement of the ends of the rod to the planes
spanned by (v0, e3) and (v1, e3), respectively. Con-
dition (46) requires some explanation. A helix is a
curve of constant axial radius r and (total) curvature
κ =

√

κ2
1 + κ2

2. The two are related according to
κr = sin2 θ, where θ is the helical angle defined by
d3 · e3 = cos θ if e3 is along the axis of the helix (the
angle π

2 −θ is usually called the pitch angle). Since the
rod is hinged about d2, we have κ2 = 0. So, in order to
support helical solutions we can take for r in (46) the
expression

r =
1 − (d3 · e3)

2

κ1
. (49)

Note that here κ1 can be taken with its sign, so that
(46) also specifies which way the rod moves along v1.
When the rod buckles, the axis v0 lifts up and the rod
is free to find its own radius r. Condition (46) ensures
that any bifurcating helices will be centred at e3. This

is important when we start rotating the axes v0 and v1

about e3. A centred helix will experience a uniform
centrifugal force and is therefore expected to remain
helical.

We shall take φ = 0 so that the initial rod, lying
straight along e3, is untwisted. This choice implies that
any helices will have an integer number of half heli-
cal periods. Also, the directors, and hence the cross-
section of the rod, will make a half-integer number of
turns between s = 0 and s = L. Note that in this case
of aligned v0 and v1 boundary condition (46) also pre-
vents a rigid body translation along these axes. Without
loss of generality we may choose v0 = v1 = e2, so
that at the ends the directors {d1, d2, d3} are aligned
with {e1, e2, e3}.

Of course the above coat hanger boundary conditions
merely allow helical solutions. They need not exist.
However, if the equilibrium equations do have helical
solutions and one-parameter curves of such solutions
intersect the trivial path of straight solutions, then one
might expect to detect them as (pitchfork) bifurcations
at critical buckling loads. The results presented in Sec-
tion 5 show that this is indeed the case.

4 Nondimensionalisation

We make the system of equations dimensionless by
scaling the variables in the following way

ωc =

√

f
EI1

ρAL4
, t̄ = tωc, s̄ =

s

L
∈ [0, 1],

x̄ =
x

L
, F̄ = F

L2

fEI1
, T̄ = T

L2

fEI1
,

ω̄ =
ω

ωc

, M̄ = M
AL3

fEI2
1

, κ̄ = κL.

(50)

Here ωc is a reference bending natural frequency
which, through tuning of the numerical constant f ,
can be adapted to the particular boundary conditions at
hand and the natural mode considered. In the ET case,
we take f = 500.5639, which corresponds to the first
bending natural frequency of a fixed-fixed beam about
d1. In the case of the coat hanger boundary conditions
we simply take f = 1.

With this nondimensionalisation the equations be-
come (dropping the overbars for simplicity and letting
a prime denote d

ds̄
):

F ′ + Bd3 × k = ω × (ω × x), (51)

M ′ + Qd3 × F = (ω · d1)(d1 × ω) +

R(ω · d2)(d2 × ω), (52)

x′ = d3, (53)

d′

i = κ × di, (54)



and the constitutive relations can be written as

M =
Q

f

[

κ1d1 + Rκ2d2 +
Γ(1 + R)

2
κ3d3

]

, (55)

where the dimensionless parameters are

Q =
AL2

I1
, R =

I2

I1
, B =

B0IL3

fEI1
, Γ =

2G

E
.

(56)
1
Γ − 1 is equal to Poisson’s ratio. For the boundary
conditions we can still use (23) to (48) if we assume
that they now refer to dimensionless variables and that
the right-hand conditions are imposed at s̄ = 1.

5 Numerical results
We use the well-tested code AUTO [Doedel et al.,

1997] to compute single-parameter curves of solutions
to the boundary-value problems formulated in Section
3. AUTO employs orthogonal collocation allied to
pseudo-arclength continuation. It requires a starting
solution and can then trace out solution curves as a pa-
rameter of the problem is varied. Bifurcations are de-
tected where branches of solutions intersect. We start
from the trivial straight and untwisted rod

x̄(s̄) = s̄e3, F̄ (s̄) = −T̄e3, M̄(s̄) = 0,

di(s̄) = ei (i = 1, 2, 3), s̄ ∈ [0, 1], (57)

which is a solution for both the welded and the coat
hanger boundary conditions. The parameters we vary
are B and ω.

5.1 Results for welded boundary conditions
Figure 5 shows the bifurcation diagram obtained when

the magnetic field parameter B is varied, using a suit-
able phase-space norm along the vertical axis. The
dimensionless parameters taken are those of the SET.
They are listed in Table 1, along with the dimensional
parameters. Note that ω is non-zero, so we are con-
sidering whirling solutions. The value of ω = 2 has
been chosen because spinning tethers generally oper-
ate above their first bending natural frequency [Tyc et
al., 1993; Valverde et al., 2003]. We find a (presum-
ably infinite) sequence of non-trivial branches bifurcat-

L 100 m Q 9997136842.15

A 4.16× 10−6 m2 R 0.5526

E 1.32× 1011 N
m2 Γ 0.76923

EI1 38 Nm2 f 500.5639

EI2 21 Nm2

Table 1. Dimensional and dimensionless parameters for the SET.

Figure 5. Bifurcation diagram for welded boundary conditions

(ω = 2).

Figure 6. Projection of the first three modes onto the x-z and y-z
planes at a constant z(0) = 0.39. Values of B are: 4.448 (b1),

16.49 (b3) and 38.74 (b5).

ing from the trivial (horizontal) branch at pitchfork bi-
furcations, similar to the case of a statical rod in a mag-
netic field [Wolfe, 1988]. Figure 5 shows the first six
branches. They come in close pairs because of the rel-
atively small anisotropy of the rod. The enlargement in
Figure 5 reveals a solution branch connecting branches
b1 and b2. A similar connection occurs between the
pairs b3, b4 and b5, b6. The shapes of the rod along
these connections form a smooth transition between the
shapes on the connected branches.
Projections onto x-z and y-z planes of bifurcating so-

lutions along branches b1, b3 and b5 are shown in Fig-
ure 6 for constant z(0) = 0.39. Figure 7 shows the
three-dimensional shape of a solution on the fourth bi-
furcating branch.
If the problem of the ET is treated from a design point

of view, it would be interesting to quantify the value
for which the ET buckles out of the trivial solution due
to the action of the geomagnetic field. In the case at
hand, this value is B = 2.09, which in dimensional
variables would be IB0 = 7.942 × 10−5 N

m
. Not-

ing that the maximum value of the geomagnetic field
is Bg = 7 × 10−5 T [Cosmo and Lorenzini, 1997],
and assuming that the maximum current that will flow
along the tether would be I = 1 A [Cosmo and Loren-
zini, 1997], the maximum expected value for the con-
stant IBg = 7 × 10−5 N

m
. In our case, the ET would



Figure 7. 3D view of a solution along b4.

be below the critical value at any time but quite close
to it. Note, though, that B goes as the cube of L and
for longer tethers, which are common in radially sta-
bilised ETs, the critical value may be exceeded result-
ing in buckling into a helical-like shape (cf. Figure 7),
as has been reported in some tether flights, such as the
PGM and TSS-1R missions [Beletsky, 1993; Cosmo
and Lorenzini, 1997].

5.2 Results for coat hanger boundary conditions
First we consider the statical case (ω = 0). The for-

mulation of the boundary conditions in Section 3.3 is
valid for anisotropic rods, but it turns out that perfect
helices only occur for isotropic rods (R = 1). This is
not surprising as it is well-known that for anisotropic
rods the twist κ3 (and hence the moment M3) is not
constant and therefore we should not expect uniform
solutions. The values for the other parameters are given
in Table 2. A bifurcation diagram is shown in Fig-
ure 8. Since bifurcating solutions are exact helices,
the dimensionless helical radius r/L is plotted against
B. A slight complication in computing this diagram
occurs because of the denominator in (49), which is
zero for the straight rod. However, this problem is eas-
ily resolved by replacing boundary condition (46) by
x(L) · v1 = 0 along the trivial branch and switching
back to (46) once an incipient non-trivial solution has
been obtained.
Figure 9 shows x-z and y-z projections of bifurcating

solutions along the first four branches, taken at con-
stant curvature κ̄ = 8. It was noted in Section 3.3 that
the coat hanger boundary conditions with φ = 0 (i.e.,
parallel end supports v0 and v1) only allow helices of
a half-integer number of helical turns. It turns out that
each successive bifurcating solution in Figure 8 has one

L 5 m Q 8333333.33

A 3 × 10−5 m2 R 1

E 30× 109 N
m2 Γ 0.76923

I1 = I2 9 × 1011 m4 f 1

Table 2. Parameters used for the coat hanger boundary conditions.

Figure 8. Bifurcation diagram for coat hanger boundary conditions

(ω = 0).

Figure 9. x-z and y-z projections of the first 4 helical modes at

constant curvature κ = 8. Values of B are: 61.68 (bh1), 270.69

(bh2), 868.72 (bh3) and 2024.70 (bh4).

Figure 10. 3D views of helices on branch bh6.

more half helical turn. The bifurcating branches have
handedness. That is, regardless of the sign of r, the bi-
furcating solutions are right-handed helices if, as here,
B > 0 and would be left-handed helices if B < 0, i.e.,
had we run B in the other direction. Figure 10 shows
three-dimensional views of a solution along the sixth
branch. It has three full turns and nicely illustrates the
exact helical shape.

Next we consider whirling motions in which the sup-
ports v0 and v1 are spun about k with constant angular
velocity ω. Solutions remain helical, as expected, and
Figures 11 and 12 show the effect of ω on a solution
taken on the second branch of Figure 8.



Figure 11. Influence of ω on the helical radius for a solution taken

from the second branch bh2 with B = 271.69.

Figure 12. Projections of helical shapes for two solutions indicated

in Figure 11.

6 Conclusions
We have shown that whirling current-carrying rods bi-

furcate under increasing magnetic field (or current). In
the case of an isotropic rod the coat hanger bound-
ary conditions that we introduced generate branches
of exact helical solutions. The S1 symmetry of this
case (rotational symmetry about the e3 axis) compli-
cated Wolfe’s analysis of the whirling string [Wolfe,
1985]. Our coat hanger boundary conditions break the
S1 symmetry down to Z2 symmetry (reflection symme-
try along v0 and v1), and no problems in the applica-
tion of standard results from bifurcation theory should
arise. Indeed, the bifurcations are detected numerically
in Figure 8 without difficulty.
Wolfe’s analysis for strings suggests that the first bi-

furcating branch is stable and that all other branches
are unstable. We expect the same to be true for rods but
our present analysis does not give (dynamical) stability
information. We intend to take up a stability analysis
elsewhere.
We finally like to speculate on another possible ap-

plication of this work. There is great current interest
in conducting nanowires. These can either be silicon-
based wires, carbon nanotubes or metal-coated biolog-
ical fibres such as proteins, DNA molecules and micro-
tubules [Scheibel et al., 2003]. In addition there is the
ongoing discussion whether or not DNA molecules are
electrical conductors [Maiya and Ramasarma, 2001].
All these nanometer-scale structures are believed to
have great potential as building blocks for future elec-
tronic devices. The interaction of these wires with mag-

netic fields could conceivably be exploited to obtain
certain desirable properties.
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