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The equilibrium shape of an elastic developable Mobius strip
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A variational geometrical approach is applied to find the characteristic shape of the Mdobius strip made of an inextensible
rectangular sheet.

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The Mobius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through 180°, and then joining
the ends, is the canonical example of a one-sided surface (Fig. 1). Such a physical Mdbius strip, when left to itself, adopts a
characteristic shape independent of the type of material (sufficiently stiff for gravity to be ignorable).

This shape is well described by a developable surface that minimises the deformation energy, which is entirely due to
bending. We assume that the material obeys Hooke’s linear law for bending. Thus, the energy is proportional to the integral
of the non-zero principal curvature squared over the surface of the strip, which is taken to be an isometric embedding of a
rectangle into 3D space.

The problem of finding the equilibrium shape of a narrow Mdobius strip was first formulated in 1930 by M. Sadowsky
who turned it into a 1D variational problem represented in a form that is invariant under Euclidean motions [1, 2]. Later
W. Wunderlich generalised this formulation to a strip of finite width [3]. Although several geometrical constructions of
developable Mobius strips have been proposed, the problem was solved only recently [4].

Here we show an efficient way to derive the governing equations by applying an invariant geometrical approach based on
the variational bicomplex formalism. While this method can be applied to a much wider class of problems, a developable strip
model provides a graphical example of its use. Then we specify the boundary conditions that correspond to the Mobius strip
topology and solve the boundary value problem numerically for a range of width-to-length ratios.

2 Theory of deformation of an inextensible plate

The elastic energy of a Kirchhoff-Love plate of thickness 2h < 1 may be decomposed as Viorq1 = hf/mem + h?’f/bend, where
the first (membrane) term is due to change of distances on the midsurface of the plate and the second (bending) term accounts
for an isometric deformation of that surface. In the limit » — 0, stretching becomes expensive compared to bending and we
may assume that the deformation is isometric. Thus, for a naturally flat plate its Gaussian curvature remains zero, i.e. the
shape of the plate is a developable surface.

We consider an isometric embedding into 3D space of a flat strip bounded by two parallel straight lines

(s, t) =7(s) +t[b(s) +n(s)t(s)], 7(s) =n(s)w(s), s=1[0,L], t=[-w,w]

where k(s), 7(s) are the curvature and torsion of the centreline r(s), resp., t(s) = '(s) is the tangent vector and b(s) the
binormal; prime denotes differentiation with respect to the arc length s. Let the principal curvatures of the surface be «; and
k2(= 0). Then the bending energy can be expressed as

Y 1 L ) m2 1 1+ wry
V= 5D/o /_w Ki(s,t)dtds = §Dw/0 g(k,mn)ds,  g(k,mn') =k (L+77) w7 log { 7 ) (1)
where D = 3(2%52) is the flexural rigidity, £ is Young’s modulus, v is Poisson’s ratio [3]. For an infinitesimally narrow strip,

as w — 0, we have g(k,n,1') — 2K> (1 + n2)2 [1, 2]. To find the equilibrium shape of the strip, we minimise the bending
energy, i.e. we arrive at the one-dimensional variational problem V' — min.

3 Variational problem in invariant form

Having a variational problem expressed in Euclidean-invariant form, it is possible to directly write down the associated Euler-
Lagrange equations in terms of the differential invariants, i.e. the curvature, torsion and their arc-length derivatives [5]. For
example, for the planar elastica functional [ x? ds, the Euler-Lagrange equation is " + %Hs =0.
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Proposition 3.1 (based on |2, 5, 6]). The Euler-Lagrange equations for the problem
L
/ FICR o i A O T(”)) ds — min
J0

can be presented in the form of balance equations for the components of the internal force F = (Fy, F,,, F},)T and moment
M = (M, M,,, My)" in the Frenet frame,

FiwxF=0 M+4wxM+txF=0, )
where w = (1,0, k)7 is the Darboux vector and
My =0uf = (O f) + (O f)' — ...k My=0,f — (0 f) + (O f)" —.... 3)

The above equations allow for the first integrals: |F|? and |F - M|,
For the functional Eq. (1), Egs. (3) simplify to

Oxg +nMy + My =0, (dyg) — 0,9 — KM, =0. (4)

4 Numerical results

Reconstruction of the surface was carried out by numerical integration of the system of DAEs which consists of Egs. (2),(4),
the Frenet-Serret equations and " = ¢. A parameter continuation approach was used to solve the boundary value problem for
a strip with its ends joined together under the Mdbius conditions. The shape possesses one umbilic line, which also serves
as an axis of symmetry. The edge of regression has a cusp point at the end of the umbilic generator. Strain localisation is
observed near this point. The solutions for increasing width-to-length ratio (Figs. 2,3) show the formation of creases bounding
nearly flat triangular regions, a feature also familiar from fabric draping and paper crumpling. This suggests that our approach
could give new insight into energy localisation phenomena in unstretchable elastic sheets, which for instance could help to
predict points of onset of tearing. The shape in Fig. 3 b) may be compared with a paper Mobius strip with the computed
bending energy density and straight generators printed on its surface (Fig. 1).

a) c)

Fig. 3 Computed Mdbius strips of length L. = 27 and half-width w = 0.1 (a),
w = 0.5 (b), w = 1.0 (c). Colour shows the bending energy density and changes
from violet (low bending) to red (high) (scales are individually adjusted). Straight
generators of the developable surfaces are shown.

Fig. 2 Centrelines of
Mdbius strips for vari-
ous width-to-length ra-
tios.

Fig. 1 Photo of a paper
model of Mébius strip
for L/w = 4x.

5 Concluding remarks

1. We have presented novel equilibrium equations for an inextensional strip of finite width.

2. We have demonstrated how an invariant geometric approach may be efficiently applied to variational problems with com-
plicated functionals, where conventional methods lead to prohibitively long algebraic expressions.

3. We have presented a solution of the long-standing problem of finding the equilibrium shape of developable Mébius strip.
4. The solution reveals characteristic features of strain localisation in inextensible sheets subject to twist.
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