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The Möbius strip, obtained by taking a rectangular strip of plastic or paper, twisting one end through

180◦, and then joining the ends, is the canonical example of a one-sided surface. Finding its character-

istic developable shape has been an open problem ever since its first formulation in [22, 23]. Here we

use the invariant variational bicomplex formalism to derive the first equilibrium equations for a wide

developable strip undergoing large deformations, thereby giving the first non-trivial demonstration

of the potential of this approach. We then formulate the boundary-value problem for the Möbius

strip and solve it numerically. Solutions for increasing width show the formation of creases bounding

nearly flat triangular regions, a feature also familiar from fabric draping [6] and paper crumpling

[28, 17]. This could give new insight into energy localisation phenomena in unstretchable sheets [5],

which might help to predict points of onset of tearing. It could also aid our understanding of the rela-

tionship between geometry and physical properties of nano- and microscopic Möbius strip structures

[26, 27, 11].

It is fair to say that the Möbius strip is one of the few icons of mathematics that have been absorbed

into wider culture. It has mathematical beauty and inspired artists such as M.C. Escher [8]. In engineering,

pulley belts are often used in the form of Möbius strips in order to wear ‘both’ sides equally. At a much

smaller scale, Möbius strips have recently been formed in ribbon-shaped NbSe3 crystals under certain growth
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Figure 1: Photo of a paper Möbius strip of aspect ratio 2π. The strip adopts a characteristic shape. Inextensibility of the
material causes the surface to be developable. Its straight generators are drawn and the colouring varies according to the
bending energy density.
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conditions involving a large temperature gradient [26, 27]. The mechanism proposed by Tanda et al. to

explain this behaviour is a combination of Se surface tension, which makes the crystal bend, and twisting

as a result of bend-twist coupling due to the crystal nature of the ribbon. Recently, Gravesen & Willatzen

[11] computed quantum eigenstates of a particle confined to the surface of a developable Möbius strip and

compared their results with earlier calculations by Yakubo et al. [30]. They found curvature effects in the

form of a splitting of the otherwise doubly degenerate groundstate wavefunction. Thus qualitative changes

in the physical properties of Möbius strip structures (for instance nanostrips) may be anticipated and it is

of physical interest to know the exact shape of a free-standing strip. It has also been theoretically predicted

that a novel state appears in a superconducting Möbius strip placed in a magnetic field [14]. Möbius strip

geometries have furthermore been proposed to create optical fibres with tunable polarisation [2].

The simplest geometrical model for a Möbius strip is the ruled surface swept out by a normal vector that

makes half a turn as it traverses a closed path. A common paper Möbius strip (Fig. 1) is not well described

by this model because the surface generated in the model need not be developable, meaning that it cannot

be mapped isometrically (i.e., with preservation of all intrinsic distances) to a plane strip. A paper strip is

to a good approximation developable because bending a piece of paper is energetically much cheaper than

stretching it. The strip therefore deforms in such a way that its metrical properties are barely changed.

It is reasonable to suggest that some nanostructures have the same elastic properties. A necessary and

sufficient condition for a surface to be developable is that its Gaussian curvature should everywhere vanish.

Given a curve with non-vanishing curvature there exists a unique flat ruled surface (the so-called rectifying

developable) on which this curve is a geodesic curve [10]. This property has been used to construct examples

of analytic (and even algebraic) developable Möbius strips [29, 24, 25, 21].

If r(s) is a parametrisation of a curve then

x(s, t) = r(s) + t [b(s) + η(s) t(s)] , (1)

τ(s) = η(s)κ(s), s = [0, L], t = [−w, w]

is a parametrisation of a strip with r as centreline and of length L and width 2w, where t is the unit tangent

vector, b the unit binormal, κ the curvature and τ the torsion of the centreline (e.g., [21]). The parametrised

lines s = const. are the generators, which make an angle β = arctan(1/η) with the positive tangent direction.

Thus the shape of a developable Möbius strip is completely determined by its centreline. We also recall that

a regular curve in 3D is completely determined (up to Euclidean motions) by its curvature and torsion as

functions of arclength.

As simple experimentation shows, an actual material Möbius strip, made of inextensible material, when

left to itself, adopts a characteristic shape independent of the type of material (sufficiently stiff for gravity

2



to be ignorable). This shape minimises the deformation energy, which is entirely due to bending. We shall

assume the material to obey Hooke’s linear law for bending. Since for a developable surface one of the

principal curvatures is zero, the elastic energy is then proportional to the integral of the other principal

curvature squared over the surface of the strip:

V =
1

2
D

∫ L

0

∫ w

−w

κ2
1(s, t) dtds, (2)

where D = 2h3E/[3(1−ν2)], with 2h the thickness of the strip, and E and ν Young’s modulus and Poisson’s

ratio of the material [18].

Sadowsky [22, 23], as long ago as 1930, seems to have been the first to formulate the problem (open

to this date) of finding the developable Möbius strip of minimal energy, albeit in the limit of an infinitely

narrow strip (w = 0). He derived the equations for this special case (to our knowledge the only equilibrium

equations for a developable elastic strip anywhere in the literature) but did not solve them. For the general

case Wunderlich [29] reduced the 2D integral to a 1D integral over the centreline of the strip by integrating

over the straight generator (i.e., performing the t integration in (2)). The resulting functional is expressed

in terms of the curvature and torsion of the centreline and their derivatives:

V =
1

2
Dw

∫ L

0

g(κ, η, η′) ds, (3)

g(κ, η, η′) = κ2
(

1 + η2
)2 1

wη′
log

(

1 + wη′

1 − wη′

)

,

where the prime denotes differentiation with respect to arclength s. In the limit of zero width this reduces

to Sadowsky’s functional

VS = Dw

∫ L

0

(

κ2 + τ2
)2

κ2
ds. (4)

Since D appears as an overall factor, equilibrium shapes will not depend on the material properties.

Energy minimisation is thus turned into a 1D variational problem represented in a form that is invariant

under Euclidean motions. The standard way of solving it, by expressing the Lagrangian g in terms of r

and its derivatives (or possibly introducing coordinates) and deriving the Euler-Lagrange equations, is a

formidable task even with the use of modern symbolic computer software and no equations for the finite-

width case seem to exist in the literature. Here we use a powerful geometric approach based on the variational

bicomplex formalism [12, 1], which allows us to obtain a manageable set of equations in invariant form almost

immediately. This theory (apparently little known outside the mathematicians community), when applied
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to variational problems for space curves, yields equilibrium equations for functionals of general type

∫ L

0

f(κ, τ, κ′, τ ′, κ′′, τ ′′, · · · , κ(n), τ (n)) ds, (5)

involving derivatives up to any order [1, Ch. 2, Sec. C]. A similar technique was applied in [16, 4] to derive

Euler-Lagrange equations for some simple Lagrangians f , but our current problem appears to be the first

for which an invariant approach is essential to obtain a solution.

The equilibrium equations can be cast into the form of six balance equations for the components of the

internal force F and moment M in the directions of the Frenet frame of tangent, principal normal and

binormal, F = (Ft, Fn, Fb)
T , M = (Mt, Mn, Mb)

T , and two scalar equations that relate Mt and Mb to the

Lagrangian g:

F
′ + ω × F = 0, M

′ + ω × M + t × F = 0, (6)

∂κg + ηMt + Mb = 0, (∂η′g)
′ − ∂ηg − κMt = 0, (7)

where ω = κ(η, 0, 1)T is the Darboux (or curvature) vector. These equations follow from Proposition 2.16 in

[1]. They can also be obtained by extending the theory of Sadowsky [22], based on mechanical considerations,

to functional (3). We note that in the variables (κ, η, η′) the first equation in (7) is an algebraic equation.

(In the limit w = 0 both equations in (7) become algebraic.) The equations have |F |2 and F · M as first

integrals and are invariant under the involution (κ, η, η′) → (κ, η,−η′), s → −s.

Randrup & Røgen [21] have shown that along the centreline of a rectifying developable Möbius strip an

odd number of switching points must occur where κ = η = 0 and the principal normal to the centreline flips

(i.e., makes a 180◦ turn). It follows that the strip must contain an umbilic line, i.e., a line on which both

principal curvatures vanish [20]. (Incidentally, if the initial strip is not a rectangle then a Möbius strip may

be constructed that has no switching points [7].) To make the twisted nature of the Möbius strip precise we

note that a closed centreline with a periodic twist rate (here τ(s)) defines a closed cord [9], for which one

can define a linking number Lk [9]. Any ribbon of a cord of half-integer Lk is one-sided. Any such ribbon

with Lk = ± 1
2 gives a Möbius strip.

The centreline in 3D may be reconstructed from (κ(s), τ(s)) by integrating the usual Frenet-Serret equa-

tions and the equation r
′ = t. Coupling these to (6), (7) we thus have a differential-algebraic system of

equations for which we formulate a boundary-value problem for the Möbius strip by imposing boundary

conditions at s = 0 and s = L/2 and selecting the solution with Lk = 1
2 . The involution property is then

used to obtain the solution on the full [0, L] interval by suitable reflection. This yields a symmetric solution;

it seems unlikely that non-symmetric solutions exist. A Möbius strip has chirality, meaning that it is not
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Figure 2: Computed Möbius strips. The left panel shows their 3D shapes for w = 0.1 (a), 0.2 (b), 0.5 (c), 0.8 (d), 1.0 (e) and

1.5 (f), and the right panel the corresponding developments on the plane. The colouring changes according to the local bending

energy density, from violet for regions of low bending to red for regions of high bending (scales are individually adjusted).

Solution (c) may be compared with the paper model in Fig. 1 on which the generator field and density colouring have been

printed.
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Figure 3: Curvature and torsion of a Möbius strip. a, Curvature κ and b, torsion τ are shown for w = 0 (magenta), 0.1 (red),

0.2 (green), 0.5 (blue), 0.8 (black), 1.0 (cyan) and 1.5 (orange). At s = π the principal normal changes direction to its opposite.
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equivalent to its mirror image. This mirror image, having a link Lk = − 1
2 , is obtained by reflecting η → −η,

η′ → −η′.

Fig. 2 shows numerically obtained solutions. There is only one physical parameter in the problem, namely

the aspect ratio L/2w of the strip. In the computations we have fixed L = 2π and varied w. Also shown in

the figures is the evolution along the strip of the straight generator. We note the points where the generators

start to accumulate. At these points |wη′| → 1 and the integrand in (3) (the energy density) diverges. Where

this happens the generator rapidly sweeps through a nearly flat (violet) triangular region, a phenomenon

readily observed in a paper Möbius strip (Fig. 1). We also observe two additional (milder) accumulations

where no inflection occurs and the energy density remains finite. It can be shown that the energy density is

monotonic along a generator. This implies that the (red) regions of high curvature cannot be connected by

a generator, as a careful inspection confirms. Bounding the (violet) triangular (more precisely, trapezoidal)

regions are two generators of constant curvature. These generators realise local minima for the angle β.

As w is increased the accumulations and associated triangular regions become more pronounced. At the

critical value given by w/L =
√

3/6 the strip collapses into a triple-covered equilateral triangle [3, 25]. The

folding process as w is increased towards this flat triangular limit resembles the tightening of tubular knots

as they approach the ideal shape of minimum length to diameter ratio [15]. In the flat limit the generators

are divided into three groups, intersecting each other in three vertices. The bounding generators of constant

curvature become the creases. It has been conjectured that a smooth developable Möbius strip can be

isometrically embedded in R
3 only if w/L <

√
3/6 [13], while it has been proven that a smooth developable

Möbius strip can be immersed in R
3 only if w/L < 1/π [13]. Interestingly, larger (in fact, arbitrarily large)

values for the ratio w/L can be obtained if one allows for additional folding [3].

Fig. 3 gives plots of curvature and torsion. The Randrup & Røgen property that κ = η = 0 at an odd

number of points is confirmed in Fig. 3 and can also be seen in Fig. 2 at the centre of the images where

the generator makes an angle of 90◦ with the centreline. As the maximum value wc = π/
√

3 = 1.8138 . . .

is approached, both curvature and torsion become increasingly peaked about s = 0, 2π/3 and 4π/3. In

the limit all bending and torsion is concentrated at the creases of the flat triangular shape. Going to the

other extreme, we find that the solution in the limit of zero width has non-vanishing curvature, so that the

Randrup & Røgen conditions are not satisfied. Given that the Frenet frame flips at s = π (as enforced by

the boundary conditions) this means that the curvature is discontinuous. In addition, η tends to 1, giving

a limiting generator angle β = 45◦. Both these properties were anticipated in [22]. This shows that the

zero-width limit is singular and suggests that the Sadowsky problem has only a solution with discontinuous

curvature.

Mahadevan & Keller [19] computed the shape of a Möbius strip by using a thin anisotropic elastic rod
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model. They obtained asymptotic equations for large values of the aspect ratio of the rod’s cross-section. This

limit corresponds to perfect alignment of the rod material frame and the Frenet frame, and the equilibrium

equations are therefore the Euler-Lagrange equations for Lagrangian f = 1
2Bκ2 + 1

2Cτ2 in (5), where B

and C are the bending and torsional stiffnesses, respectively. The solution to those equations, however,

even after the modifications made by M&K, does not satisfy the Randrup & Røgen conditions mentioned

above, and therefore cannot serve as the centreline of a developable Möbius strip, not even a narrow one

(see supplementary material).

The Möbius strip defines only one example of a boundary-value problem for twisted sheets. A natural

generalisation is to strips with linking numbers other than ± 1
2 . Our techniques can readily be applied to

such problems and an example of a strip with Lk = 3
2 (also known from Escher’s work [8]) is shown in

the supplementary material. Clearly, the same equations (6), (7) apply to non-closed strips. A further

generalisation would be to non-rectangular sheets, although it is not guaranteed that the t integration in (2)

can be performed, meaning that we might end up with a system of integro-differential equations instead of

(6), (7).

The geometrical features of Möbius strips observed here are seen more widely in problems of elastic

sheets such as paper folding or crumpling and fabric draping. Crumpling of paper is dominated by bending

along ridges bounding almost flat regions or facets [28, 17], behaviour that we see back in the nearly flat

triangular regions in Fig. 2. In fabric draping, triangular regions are seen to form that radiate out from

(approximate) vertices. The formation of these flat triangular regions appears to be a generic feature of

nature’s response to twisting inextensible sheets. Analytical work on such sheets often assumes regions of

localisation of bending energy in the form of vertices of conical surfaces [5, 6]. It is known that conical

surfaces have infinite elastic energy within the linear elastic theory. The difficulties associated with this

necessitate the introduction of a cut-off [6]. As the example of the Möbius strip shows, the consideration of

non-conical developable elastic surfaces allows one to describe bending localisation phenomena without the

need for a cut-off. Importantly, our approach predicts the emergence of regions of high bending. Points of

divergence of the bending energy may serve as indicators of positions where out-of-plane tearing (fracture

failure mode III) is likely to be initiated. In this respect it is interesting to observe that when one tries to

tear a piece of paper (see Fig. 4) one intuitively applies a torsion, thereby creating intersecting creases as in

the vertices of the central triangular domains in Fig. 2.

Acknowledgments

This work was supported by the UK’s Engineering and Physical Sciences Research Council under grant

number GR/T22926/01.

7



Figure 4: Tearing a piece of paper. In trying to tear a sheet of paper one creates a deformation similar to what we see in the
Möbius strip. A crack will start at the vertex, where the energy density diverges.
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