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Abstract

We study how a top spinning in an unstable upright state can fall down in a near-
homoclinic fashion, i.e., by repeatedly falling down and coming up again. A symmetric
top shows regular behaviour but an asymmetric top can behave chaotically with infinitely
many homoclinic orbits available. These orbits could be utilised in toppling and recovery
manoeuvres of spinning bodies by applying subtle control techniques.

1 Introduction

In previous work we studied the spatial complexity of twisted elastic rods subject to end loading,
focussing on localised solutions described by homoclinic orbits of the underlying equilibrium
equations (see, e.g., [7, 8]). It is well-known that there is a close analogy between the equa-
tions for a twisted rod and those for a spinning top [12, 1]. In this paper we investigate the
implications of our previous work on twisted (anisotropic) rods for the behaviour of spinning
(asymmetric) tops.

Consider a top that is spinning in an upright state at an angular velocity such that, according
to standard bifurcation theory, the top is in a state of unstable relative equilibrium. Given an
infinitesimal perturbation it will fall away from the upright configuration. In the absence of
dissipation, it will however return, again and again, very close to the upright configuration.
In technical terms, its motion will lie very close to a homoclinic orbit that, as time passes
from minus infinity to plus infinity, departs from the upright state and returns to it. For a
top spinning about an axis of symmetry, the repeated returns will be regular and predictable.
However, for a non-symmetric top there are an infinite number of different homoclinic orbits,
implying that the repeated returns are chaotic and unpredictable. We use homoclinic path-
following techniques to explore the structure of these homoclinic orbits, and illustrate the
physical motions involved.

This short paper is organised as follows. In Section 2 the formulation of the spinning
top problem is given. The integrable cases are reviewed and a linear stability analysis is
presented with the aid of the inertia triangle. Section 3 then discusses the multitude of possible
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homoclinic motions and presents some continuation results. The paper closes, in Section 4,
with a discussion of the results.

2 The equations for a spinning top

The equation governing the motion of a heavy rigid body about a fixed point is given by (see,

e-g., [6])
m' = Mgk X c. (1)

Here m is the angular momentum of the rigid body about the fixed point, M is the mass, g is
the acceleration due to gravity, k is the vertical basis vector, and ¢ is the vector from the fixed
point to the centre of mass of the body. The prime denotes the derivative with respect to time
t. Eq. (1) can be rewritten in terms of components with respect to an orthonormal frame that
is fixed in the body and which is rotating about the fixed point with instantaneous angular
velocity w:

m =m xw+ Mgk x c, K =k xw, (2)

where the second equation describes the rotation of the constant vector k as seen from the
moving frame. Note that m, k, ¢ and w denote triples of co-ordinates with respect to the
moving frame, while m, k, ¢ and w denote vectors in the fixed inertial frame. Of course, m
and w are related through

m = lw,

where I denotes the inertia tensor of the rigid body about the fixed point. Without loss of
generality we shall assume that the body frame has been chosen to coincide with the principal
axes of inertia (which go through the pivot point). Thus we can write

I= diag(‘[17 127 I3)

If the length and time scales
I

le| and Myl (3)
are introduced, in which I := I, + I, + I3, then the equations (2) can be written out in
components as follows:

T1 = TeTy — T5T3,
Ty = T4T3 — TeZ1,
T3 = T5T1 — T4, (4)

%4 = [(i1g — i3) w526 + C3T9 — C2x3] /11,
5 = [(is — i1)TaZe + 173 — C321] [in,

G = (31 — 12)24z5 + C221 — €173] /i,

where now c?+c2+c2 =1, i1+is+iz = 1,4 = L,/I (1 = 1,2,3), k = (21, T2, 73), w = (T4, T35, Tg),
while the overdot denotes the derivative with respect to the rescaled time 7 = ¢1/I/Mg|c|. Tt



follows immediately from their definition (see, e.g., [9]) that the principal inertias (indeed, any
triple of inertias) satisfy the inequalities

ik +iu >, (E#1#m), (5)

with the equality holding for planar bodies tumbling about a pivot lying in the plane of the
body. At this point we introduce the inertia triangle shown in Fig. 1. It defines all the possible
values of the i;’s subject to the constraint ¢; +i5+i3 = 1. The co-ordinates of a point inside the
triangle, sometimes called trilinear co-ordinates, are determined by the perpendicular distances
to the three sides, as illustrated in Fig. 1 (top left). The inequalities in (5) then define a
subtriangle inside which all possible values of the principal inertias are actually situated (Fig. 1
(bottom left)).
System (4) has the following two ‘trivial’ (geometric) first integrals:

22 + 2% + 23 (unit vector), (6)

112124 + T9%oxs + 137376 (angular momentum about k). (7)

They can be used to reduce the six-dimensional system (4) globally to a two-degrees-of-freedom
canonical Hamiltonian system (see [16], where this is performed for twisted rods), but that form
of the equations becomes awkward in numerical computations so we shall not use it here. In
addition, (4) has the energy integral

(1123 + G9w? + i322) /2 + 121 + c2mo + c3z3  (total energy). (8)
The following special cases have additional first integrals and are completely integrable:

1. Lagrange top: the centre of mass lies on one of the principal axes, and the moments
of inertia about the other two axes are equal, e.g., ¢ = (0,0,1), 41 = i = (1 — 43)/2.
Additional integral: xg, angular momentum about the symmetry axis.

2. Kovalevskaya top: two of the principal moments of inertia are equal and twice the third
one, and the centre of mass lies in the plane corresponding to the two equal moments of
inertia, e.g., ¢ = (0,0,1), 4, = i3 = 2i, = 2/5. Additional integral: (23 — 22 + (—cy171 +
c313)/12)? + (2w4w6 — (c371 + C1T3) [12)%.

3. Goryachev-Chaplygin top: two of the principal moments of inertia are equal and four
times the third one, and the centre of mass lies in the plane corresponding to the two
equal moments of inertia, e.g., ¢ = (0,0,1), iy = i3 = 4i; = 4/9. Additional integral:
z5(x3 + x2) — x2(C1m4 + €376)/io- This extra integral is only conserved at zero angular
momentum, i.e., if, in addition, we have i1x,24 + tox2x5 + 132326 = 0.

To this list could be added the case of a free rigid body (gyroscope), except that its defining
condition, ¢ = 0, is incompatible with the scaling used in deriving (4), which makes ¢ into a
unit vector. However, ¢ can be set to zero in (2), in which case one obtains the Euler equations,
which are again integrable [6]. These four cases exhaust all the integrable cases of (4).

From now on we shall consider the case ¢ = (0,0, 1), but with no conditions imposed on
the i, (apart from the normalisation condition i; + i + 43 = 1). Thus, (4) is treated as a
two-parameter family of equations (a unique set of equations for each point of the subtriangle
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Figure 1: The inertia triangle and its geometry. (Top left) an equilateral triangle of unit height
has a + b+ ¢ = 1. The ratios of the moments of inertia are given by A: B: C =a:b: c
(Top right) two symmetrically placed curves of tangencies (where all eigenvalues are zero); they
touch at C' = 2B = 2A. (Bottom left) A top has a+b > ¢, etc. (cf. (5)). Hence all tops lie in
the subtriangle A; B;C;. Boundary lines of this subtriangle have a + b = c etc., and represent
planar bodies. For instance, if a + b = ¢ then ¢ = 1/2 and the top lies in the plane through the
pivot and normal to k. At C; the top is a pole, at A; and B; a perch. (The curves running from
A to B define the stiffnesses for families of solid elliptical rods.) (Bottom right) The shaded
zones are zones with no complex eigenvalues at any spin speed wy. The lines DE and EB are
lines of limit points along the w.; curves in Fig. 2. The straight line with arrow defines a typical
family of asymmetric tops.



in Fig. 1 (bottom left)). It is well-known that the system of equations (4) is then equivalent
to that describing the bending and twisting of a linearly elastic inextensible rod held by end
forces and twisting moments, and with » = ¢, where r describes the centre line of the rod.
This is known as Kirchhoff’s kinetic analogy [12, 1]. In the rod, the i, are the bending and
torsional stiffnesses, the components of £ the shears and the tension, and the components of w
the bending and twisting strains.

With ¢ = (0,0,1), (4) is invariant under the two reversing involutions

Rl : ($1,$2,$3,$4,$5,$6) — (—./1:1,.7)2,.7;3, _./,E4,./,E5,.7)6), t— _t’ (9)

R2 : ($1,.’E2,$3,x4,3}'5,$6) - (.’1}'1,—3}'2,.1'3,374,—.%'5,.’1'6), t— —t. (10)
Together they imply invariance under the reflection symmetry Z = Ry Ry = RoR;:
Z: ($1,$2,$3,$4,.’E5,$6) — (_xla_$2ax3)_$4:_x55$6)- (]-]-)

These symmetry properties will be important later in determining the number of homoclinic
orbits of the system, i.e., the number of ways a slowly spinning upright top can fall down.
The system has the following two-parameter family of fixed points:

T = (O,O,kO,O,O,wO). (12)

Note, however, that we have to choose ky = 1, because k is a unit vector, while wy is arbitrary.
These solutions correspond to tops spinning about the vertical axis with (dimensionless) angular
velocity wy. The stability of these solutions is determined by the eigenvalues of the fixed points
(12), which will depend on the two free parameters of (4) as well as on wg. Two of the eigenvalues
are zero with eigenvectors (0,0,1,0,0,0) and (0,0,0,0,0, 1), corresponding to the arbitrariness
of ko (as far as the equations are concerned) and wq in (12). The other four eigenvalues are the
roots of the characteristic polynomial of the linearisation of (4) about (12), which in reduced
form we can write as

P(A) = A" + a2A? + ay, (13)
where
ap = i1+ (1+wd)ia + (1 — w)is| [(1+ wi)is + iz + (1 — w))is| / (inia),
az = — [i} + i3 — Wi + 2(1 — w))indz + (1 + w))inds + (1 + wd)inds| / (ini2).
A codimension-one bifurcation occurs when one of the following conditions is satisfied:
(i) a2 —4ap=0, a >0 (Hamiltonian-Hopf),

(ii) ap=0, ay<0 (Hamiltonian-pitchfork), (14)
(iii) ap =0, ay>0.

In the symmetric case of a Lagrange top (i; = i) a change of stability, through a Hamiltonian-
Hopf bifurcation, occurs at a critical angular velocity given by

2V/iy

i3

(15)

We =



The upright top is stable at spin speeds higher than w,. (sleeping top).
In general, the equation ag = 0 has the solutions

+ ! + ! (16)
Wo = - =, - — -
’ \/ 3 — 11 \/ 13 — 12
Consequently, there are three different cases:
(1) 13 > 11, 13 > 19 (‘oblate’),
(ll) 1 < i3 < i or 19 < i3 < 11, (17)
(111) 13 < 11, 13 < 19 (‘prolate’),

which can be illustrated by means of the two typical parameter planes in Fig. 2. In each of the
diagrams the ratio i5/i3 is fixed, and the parameter p := i5/i; — 1 is varied. Note that p is a
measure of the asymmetry of the top, taking values between —1 and oo. A value of p in these
diagrams fixes a body.

Fig. 2(b) is more complicated than Fig. 2(a) because of an additional line, labelled w4,
of two zero and two imaginary eigenvalues intersecting the other w.4 line on the vertical axis.
This extra line w4 arises because of the additional solution in (16) if i3 > i5. It moves up and
disappears at infinite wy as i — i3, leaving a parameter plane as in Fig. 2(a). Note that this
extra line w.4 prevents the symmetric top (at p = 0) from becoming unstable at high spin speed
wp. In both diagrams there is a vertical asymptote for w4 at a value of p such that i3 = 4;
(cf. (16)).

Also in both diagrams, a line of Hamiltonian-Hopf bifurcations, labelled w2, passes through
the critical point of the symmetric case given by (15). It runs up to a tangency with a line,
labelled w3, of Hamiltonian pitchfork bifurcations. At the tangency ay changes sign, and the
Hopf line continues as a line, labelled w,;, of double real eigenvalues which reaches a limit point,
at p = 2iy/i3 — 1, before it bends back to the origin of the parameter plane. Note that in both
diagrams we have a complex quadruple of eigenvalues in the region bounded by w.; and w. By
analogy with our previous work on twisted rods [7] we expect chaotic dynamics in this region
of the parameter plane.

Fixing the ratio iy /i3 restricts us, in the inertia triangle of Fig. 1, to a straight line coming
out of A. If we lift this constraint and introduce a second parameter then we can draw curves
of the codimension-two points (tangencies and limit points) in the parameter plane, as is done
in Fig. 3, or directly in the inertia triangle, as is done in Fig. 1 (top right and bottom right).

Stable upright tops only exist for parameters in the region of imaginary eigenvalues in Fig. 2.
Stability is lost by crossing either the line we or the line w.4. The natural scenario to consider
is to reduce the parameter wy (for instance, friction in a real top will slowly reduce wp). In
the next section we focus on what happens as the Hamiltonian-Hopf line w.y is crossed. This
includes the case of a symmetric top (p = 0) and is also the case most relevant for the twisted
rod. We note, however, that if i5 < i3 (Fig. 2(b)) an upright top can also become unstable by
crossing the line w4, and indeed can be destabilised in this manner by an increase of its spin
speed (this ‘superfast’ top instability is also pointed out in [14]). We will comment further on
this possibility in the Discussion.
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Figure 2: The two cases of the p-wy parameter plane with eigenvalue configurations and loci of
bifurcation points: (a) is = (6/5)is, (b) ia = (4/5)is.
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Figure 3: Curves of limit points (LP) and tangencies (T).

3 Falling tops

As already stated, in the symmetric case (p = 0) the system is completely integrable and
we have a symmetric family of homoclinic orbits. By generalising the Melnikov technique
to multi-degree-of-freedom Hamiltonian systems, Holmes & Marsden [10] have proved that
if i1 /i3 is sufficiently large and iy/i; sufficiently close to 1 (assuming i; > iy > i3), then
the invariant manifolds of the trivial saddle points intersect transversely, leading to infinitely
many homoclinic orbits and horseshoe-type chaos. In particular this implies that the slightly
asymmetric top is non-integrable. In this section we confirm this numerically and show that
these analytical results valid asymptotically near p = 0 actually remain valid well away from
the symmetric case.

In fact, we find that the family of homoclinic orbits present in the symmetric case breaks
up into four primary homoclinic orbits: a Z-symmetric pair of R;-reversible homoclinic orbits
and a Z-symmetric pair of Ry-reversible homoclinic orbits. Together they represent two phys-
ically distinct motions for the top, as illustrated in Fig. 4 for the parameter values p = 0.2,
wo = 3, taken in the region of the parameter plane where we have complex eigenvalues. The
existence of these four homoclinic orbits is consistent with the work of Iooss & Péroueme [11]
on Hamiltonian-Hopf bifurcations which shows that under some conditions symmetric pairs
of homoclinic orbits exist near such a bifurcation (see also [8] where one of these conditions,
a normal form sign condition, is verified explicitly). The solutions were computed with the
shooting method explained in [7]. The right diagrams in Fig. 4 show the orbits traced out by
the top’s centre of mass as seen by an inertial observer looking down onto the pivot point.

The primary (single-pulse) homoclinic orbits are numerically found to exist in the entire
region of complex eigenvalues in Fig. 2. Since our system is Hamiltonian and reversible, and
essentially 4-dimensional, a result by Devaney [5] tells us that we should expect to find, in
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Figure 4: Rj-reversible (top) and Rs-reversible (bottom) primary homoclinic orbits (left) and
the corresponding projections of the orbit of the top’s centre of mass (right). The dotted unit
circle represents the ‘horizon’ where the top goes through the horizontal plane through the
pivot. (wp =3, p=0.2, iy/isg =6/5.)
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Figure 5: Multi-pulse homoclinic orbits: (top) Rj-reversible 2-pulse homoclinic orbit, (middle)
Ry-reversible 2-pulse homoclinic orbit, (bottom) R;-reversible 4-pulse homoclinic orbit. On the
right are shown the corresponding projections of the orbit of the top’s centre of mass. The
dotted unit circle represents the ‘horizon’ where the top goes through the horizontal plane
through the pivot. (wy =3, p=0.2, /i3 = 6/5.)
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Figure 6: Continuation results for homoclinic orbits at p = 0.2. The dotted curves are for the
two primary orbits of Fig. 4, the lower one being for the R;-reversible solution. The solid curves
are for the multi-pulse orbits of Fig. 5. Only the primary orbits bifurcate (at wy = 3.721038);
the multi-pulse orbits form limit points. The Rs-reversible 2-pulse reaches furthest down. The
4-pulse is barely visible and lies entirely near the upper primary branch. 6,,,, is the maximum
nutation angle, in radians, reached along an orbit.

addition, infinite families of multi-pulse homoclinic orbits and horseshoe-type chaos in that
same region. With the shooting method mentioned above we were able to locate whole series
of these multi-pulse homoclinic orbits some of which are depicted in Fig. 5. They essentially
consist of any number and combination of the four primary solutions separated by any number
of small oscillations. The small oscillations correspond to rotations of the top subtending a
small solid angle about the upright state. The shooting method used exploits the reversible
symmetry of the problem and hence only finds reversible solutions, but asymmetric solutions
exist as well. Clearly, for reversible solutions there are constraints on the possible combinations
of primary pulses and their separating oscillations.

The multi-pulse homoclinic orbits do not bifurcate at w.o in Fig. 2, but disappear pairwise
in limit points as this line is approached. Multi-pulse orbits do however exist arbitrarily close
to this line. The same is true when approaching the integrable limit at p = 0 (either from
positive or negative p), where only primary homoclinic orbits exist. Some continuation results
illustrating the above are given in Fig. 6. In this figure 6,,, is the maximum nutation angle
reached along an orbit, i.e., the largest angle the top’s axis falls away from the vertical when
going through its homoclinic motion. More information on the complexity of the structure of
homoclinic orbits in the problem can be found in [7].

The two Rs-reversible primary homoclinic orbits can be continued outside the region of
complex eigenvalues into the region of real eigenvalues. Indeed, it was found in [8] that, due
to symmetry, only the Ry-reversible primary homoclinic orbits bifurcate from the Hamiltonian
pitchfork line w. This behaviour is recovered in the present system. (It should be noted,
though, that the line w.3, which was important for rods, is unimportant for the stability of
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tops.) In contrast, when an R;-reversible solution is continued towards the line w. then its
single pulse splits into two pulses which run off in opposite directions, reaching infinity at w.
(see also [7]).

4 Discussion

By using results from homoclinic bifurcation theory we have argued that the equations of
motion for a top that has its centre of mass on one of its principal axes, admit infinitely many
(multi-pulse) homoclinic solutions. These solutions provide infinitely many ways for the slowly
spinning upright top to fall down. The existence of these solutions has been verified numerically
and a sample of them has been computed. The use of homoclinic toppling and recovery motions
has been proposed as a fast and energy-efficient means of reorienting spinning bodies such as
satellites by applying suitable control mechanisms making use of the geometric phase difference,
i.e., the different orientation in space, between the initial and final state of the body [2] (see
also [3]).

We have introduced the inertia triangle to indicate regions of different behaviour for tops of
different shapes, and studied instability through a Hamiltonian-Hopf bifurcation in some detail.
It has also been noted that tops with certain values for their inertias can be destabilised in a
different way (by two of the eigenvalues becoming real), but we have not explored this scenario
any further. The relevant normal form has recently been computed by Langbort [13], taking
account of both reversing symmetries i; and R,. It is concluded that for some set of p-values a
pair of symmetric homoclinic orbits exist for parameters below the m, curve in Fig. 2, but also
that for other p-values no such primary homoclinic orbits exist. Given this situation, the work
of Mielke, Holmes & O’Reilly [17] becomes relevant. They showed the existence of horseshoe-
type chaos, and again infinitely many n-pulse (n > 1) homoclinic orbits, near a saddle-centre
(i.e., two real and two imaginary eigenvalues) in a general 4-dimensional reversible Hamiltonian
system, provided a primary homoclinic orbit exists and a certain normal form sign condition is
satisfied. A further analysis of this possibility falls outside the scope of this short paper.

We finally mention that in a real top damping and friction will prevent full recovery from
the toppling motion back to the upright state. Also, in such a system the complex issues of
dissipation induced instabilities arise. For more on this the reader is referred to [4, 15] and
references therein.
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