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Abstract

Extending our previous work, we apply the large-deflection rod theory to a periodically
driven elastic rod in continuous contact with a cylindrical surface. Applications of this
problem are found in oilwell drilling and textile yarn spinning. The previously uncovered
quasi-statical helical collapse of the constrained rod is studied in the quasi-stationary
context, and its occurrence examined as a function of the applied end loads and the
driving frequency. Balanced plies, which are also relevant in DNA supercoiling, are shown
to be special solutions of the problem under consideration.

1 Introduction

Whirling rods in a constrained environment are encountered in a variety of industrial applica-
tions, e.g., rotating drill strings confined to narrow boreholes in oilwell drilling (see, e.g., [17, 10]
for recent references) and in textile yarn manufacturing processes such a two-for-one twisting
where the yarn is constrained by a cylindrical guide surface [3, 4]. Here we consider the case
of quasi-stationary rotations of a long rod in continuous contact with a cylindrical surface (i.e.,
the configuration of the rod is stationary when viewed in a reference frame that rotates with a
constant angular velocity).

There exists an extensive literature on drill strings, both on the statics and the dynamics
of the problem. Buckling problems have mostly been studied in the context of statics. The
precise post-buckling behaviour is a major concern to the drilling industry as the configuration
of the drill string may seriously affect the transmission of axial loads from the surface to the
bit. Since the buckled drill string is confined within a relatively narrow borehole, it is in contact
with the surrounding wall along most of its length. Consequently, many authors have assumed
continuous contact between the drill string (either heavy or weightless) and the borehole wall.
In fact, in most cases a helical shape for the drill string is assumed [16, 10]. Similarly, in
yarn spinning the yarn lies on a cylindrical surface for considerable lengths. When the yarn is
unwound from a stationary helically wound cylindrical package [1] it first moves away from its
stationary position in the package surface until its tangent angle is just right for it to lift off the



surface and fly into a rotating loop of yarn (the so-called ring-spinning balloon) [6]. In previous
work by one of us [19] the continuous-contact assumption was made but no assumption on the
shape of the rod was required. Rather, all equilibrium solutions supported by the applied end
loads were found (including the helical ones). An interesting feature was the collapse of the
rod into a helical configuration at certain critical loads.

More on the dynamical front, synchronous whirling drill string motions have been stud-
ied by Jansen [11] in a simple beam model taking account only of the first bending vibration
mode. The recent study by Tucker & Wang [17] is one of the rare cases of a full large-deflection
Cosserat modelling of the dynamics of drill strings. However, their model is so inclusive (deal-
ing, for instance, with accurate modelling of friction, drill-bit characteristics and bore cavity
interactions) that the underlying mathematical features tend to get hidden away. Our work
aims to occupy the middle ground.

Explicitly, this work makes three contributions. Firstly, the statics formulation developed
in [19] is extended to allow for quasi-stationary rotations of a periodically driven rod. Sec-
ondly, as we shall be restricting our attention in this paper to unshearable linearly elastic rods
of inextensible centreline and uniform symmetrical cross-section we take this opportunity to
present the formulation of the problem using the traditional notation of engineering structural
mechanics, rather than the Cosserat formulation in [19]. We hope that this will render our re-
sults in a form more accessible to a wider engineering audience. We also explore the previously
uncovered quasi-statical helical collapse of the rod more carefully as a function of the physical
parameters. Thirdly, we show that so-called balanced ply solutions as have recently attracted
a good deal of interest in studies of yarn twisting [7, 8, 13] and DNA supercoiling [2, 14, 15]
are special solutions of a rod with cylindrical constraint which occur naturally within our wider
formulation.

The organisation of the paper is as follows. We start in Section 2 by giving a formulation
of the more general problem of a rod moving on a cylinder, including full dynamical effects
(both translational and rotary inertia), friction and the finite thickness of the rod. Next, in
Section 3, a dimensional analysis is performed to assess the importance of each of these effects
in a given application. It turns out that in most of the applications we are interested in only
the translational inertia plays a significant role. Keeping this inertia in the equations we then
study the quasi-stationary rotations in detail in Sections 4 and 5. These solutions are found
as stationary solutions in a frame moving with the (constant) driving frequency. In this frame
the equilibrium equations essentially reduce to the statics equations studied in [19] with just
a constant centrifugal force added. The use of a cylindrical co-ordinate system allows us to
eliminate the constraint and to reduce the problem to that of an equivalent planar oscillator in
terms of the angle the local tangent of the rod axis makes with the axis of the cylinder. Section
6 focusses on the special balanced ply solutions, and we close this study in Section 7 with a
discussion.

2 General formulation

A detailed derivation of the equations for an elastic rod of uniform circular cross-section with
respect to a rotating reference frame can be found in the recent paper of Clark et al. [1]. The
derivation in that paper applies to the yarn spinning problem and includes the effect of the rod
being drawn through the system with a velocity V in the direction of the rod axis as the yarn



is unwound over-end from a cylindrical yarn package. In the present case ¥V = 0. Here we give
only a summary of the derivation.

Let {1, J, k} be the basis vectors of a right-handed orthonormal co-ordinate system rotating
with respect to an inertial frame with constant angular velocity w about k which is pointing
along the axis of the cylinder. We also introduce the corresponding cylindrical co-ordinates
(r,0, z) with basis vectors (e,, ey, €,) given by

e, =cosft+sinf g,
ey = —sinfi +cosb g, (1)

e, =k.

Thus e, is normal to the cylinder, ey in the circumferential direction, and e, in the direction
of the axis of the cylinder. The equation for the rate of change of linear momentum of the rod
element a distance s along the rod axis from some reference point on the axis with position
vector R(s,t) relative to the origin of the rotating reference frame at time ¢ can now be written
as

m{D’R + 2wk x DR+ w’k x (k x R)} = (TR + V) — Fe, — uFey, (2)

where T is the tension, V is the shear force, D( ) = 0( )/0t with respect to the rotating
reference frame, ()’ = 0( )/0s, —Fe, is the force per unit length of rod that the cylinder exerts
on the rod in the direction normal to the cylinder (with F' positive when this force is pointing
inward), and p is the coefficient of friction between the rod and the cylinder. Note that in the
frictionless case the cylinder reaction force has only a component normal to the cylinder.

The total angular velocity of the rod element is given by

Q=wR +R x (DR +wk x R)),
so that for a rod with a circular cross-section of radius a the angular momentum vector relative

to the centre of mass of the element of mass mds at R(s,t) is

1 1
Hés = §ma258 {th' + §[R' X (DR' + wk x R')]} ,

where w; R’ is the angular velocity of the rod element about the rod axis, and wk is the angular
velocity of the rotating reference frame. Finally, the equation for the rate of change of angular
momentum of the rod element is

DH +wk x H=(QR + M) + R xV — auFk, (3)

where () is the torque and M is the bending moment.
To these equations we add the following constitutive and constraint equations:

R -R =1, (4)
R -V =0, (5)
M = B(R' x R"), (6)
R -e. =0, (7)

expressing, respectively, inextensibility, unshearability, linear elasticity in bending, and the
cylindrical constraint.



3 Dimensional analysis

We now introduce the following dimensionless (barred) variables:
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L is a representative length such as the radius of the yarn package in unwinding or the radius
of the casing in case of an oil drill pipe, or even the distance between the stabilisers.

As all variables will be dimensionless from now on, unless specifically stated otherwise, the
barred notation will be dropped.

In terms of these dimensionless quantities the rate of change of linear and angular momentum
equations (2) and (3) become

Q*{D*R+2k x DR+kx (kx R)} = (TR +V) — Fe, — uFey, (9)
e?Q*(DH +k x H) = (QR' + M) + R' x V — euFk, (10)
where 274
02 =" 11
: (11)

measures the relative magnitude of the translational inertia terms.

In the case of a steel drill rod of radius 0.065 m rotating at say 2 Hz in a casing of radius
0.45 m, Q? ~ 0.2 and €2 = 0.02 so that it may be reasonable to neglect the rotary inertia
terms relative to the translational inertia terms. Dimensions quoted here are compatible with
the ranges of physical parameters quoted in [11]. We note, in this connection, that in the
construction of one-dimensional rod theories for describing waves in elastic waveguides the
unshearabillity assumption is consistient with neglecting the rotary inertia terms, and that
although these assumptions are sufficient for low-frequency (long-wavelength) waves, at high
frequencies and short wavelengths these effects become significant. See for example [5]. In the
case of yarn twisting dynamics ¢ ~ 1073 [1, 3, 4].

4 Reduction of the problem: the equivalent oscillator

We now consider the steady-state problem so that D( ) = 0, and in the light of the above
discussion we neglect the rotary inertia. We will also assume that the force and moment loads
at the remote ends of the rod are applied in the direction of the axis of the cylinder. These
loads at both ends need not be co-axial and we shall assume that the loading device leaves the
ends of the rod free to slide without friction (z = 0) along the circumference of the cylinder.
Thus equations (9) and (10) reduce to

(TR +V) =(F-Qr)e, = Ge,, (12)
(QR) +M'+ R xV =0, (13)
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where G is the effective reaction force and r is now the constant (dimensionless) radius of the
cylinder. The constraint equations (4), (5), (7) are unchanged and B = 1 in the constitutive
equation (6).

Equations (12), (13) can be simplified in several steps as follows. First form the scalar
product of k with (12) and integrate to arrive at

(TR +V)-k=P, (14)

where P is the (dimensionless) applied end force. Next take the scalar product of R’ with (13)
to get @' = 0, implying that the twisting moment () is constant along the rod. An expression
for the shear force is obtained by forming the vector product of R' with (13) and using (6):

V = Q(RI % R”) . [(R” . R//)R/ + RI”]. (15)

The formation of the scalar product of R’ with (12), the use of V' - R’ = —V - R" (since
V - R =0) and (15) followed by integration gives an expression for the tension:

1
T=T,~ ;(R"-R), (16)

where Tp, the integration constant, is a reference tension (taken at one of the ends of the rod,
for instance).

Because 7 is constant it follows from (1) that the position and (unit) tangent vectors can
be written as

R=rcosfi+rsinfj+zk, R =r0ey+ 2 k=sindpey+cosdk, (17)

where ¢ is the angle between the tangent of the rod and the axis of the cylinder. Substitution
of (15), (16) and (17) into (14) gives

3 [sin? ¢ cos ¢

. 3
PZTOCOS¢—§ @sin" ¢

= + ¢ cos | — (cos @) + R (18)

This equation can finally be integrated to arrive at an equivalent oscillator for the angle ¢ which
can be written as

1
S8 +VO) =T, (19)
with the ‘potential energy’ V(¢) given by
Ksing Qsingcos¢ sin¢
r r 2r2 7

where K is the (dimensionless) applied end moment. By differentiating (19) with respect to s
we obtain an alternative form of (19):

Kcosp (Qcos2¢ 2sin3q§cos¢_
r r r? B

V(¢) = Pcos ¢+ (20)

¢" — Psin¢ + 0, (21)

which is a generalisation of equation (2.41) in the paper by Coleman & Swigon [2] to the case
of non-zero end loading.

If desired, all physical quantities, such as P, T, V and M can now be expressed in terms of
the angle ¢ and its derivatives. A final quantity that will be useful later is the effective reaction
force G for which we have, from (12),

G=(TR'+V')-e,. (22)



5 Solutions and helical collapse

Fixed points of (19) are given by solutions of
V'(¢) =0, (23)
and correspond to helical solutions with pitch angle 7/2 — ¢ and axial wavelength A\ given by

- 2rr
- | tan ¢ |

(24)

By (17), the helix is right-handed if 0 < ¢ < 7/2 or —7 < ¢ < —7/2, and left-handed if
/2 < ¢ <mor —m/2 < ¢ < 0; it is in tension if |¢| < 7/2, and in compression if 7/2 < @] < .

In the remainder of this section we shall only consider values of the integration constants
that admit the straight rod, which has ¢ = 0, as a solution. This means that we have to choose

Q=K. (25)

The origin is then a saddle if P > 0 (straight rod in tension) and a centre if P < 0 (straight
rod in compression).

Fig. 1 shows two phase portraits for the oscillator (19), subject to (25), taking r = 1,
K = 0.8. Generically, the origin has two homoclinic orbits that connect the saddle to itself
(as in Fig. 1(b)). These solutions correspond to asymptotically straight localised solutions. At
special values of the parameters, however, a (heteroclinic) connection may be formed between
the origin and a non-trivial saddle (as in Fig. 1(a)). Since this non-trivial saddle corresponds
to a helix, these critical parameter values define loads at which the rod collapses into a helix.
This is illustrated by the load-deflection diagram in Fig. 2 which shows the end shortening D,
defined by

D= /_ : (1= cos é(s)) ds, (26)

as a function of the applied load for one of the homoclinic orbits to the origin in Fig. 1(b))
(the one with ¢ > 0). As the critical load P, = 0.1683 is approached the rod coils up and D
diverges. Right at P, the solution is a pure (infinite) helix.

For sufficiently high P (P > 0.3007), indicated by the triangle in Fig. 2, the rod starts
bending backwards on the cylinder over some arclength interval, i.e., z is no longer monotonic
in s. This is quickly followed at higher P by self-intersection of the solution and therefore the
dashed part of the curve in the figure is non-physical and will not concern us here (although
it may mean that there is a 3D solution nearby; we make a comment on this in Section 7).
Note though that there is a second critical load along the non-physical part of the curve at
P =0.5123. The corresponding left-handed helix is in compression at an angle ¢ = 2.1927.

In [19] it is shown that there are at most two critical collapse loads, one of which leading to a
self-intersecting solution and therefore non-physical. This non-physical collapse load exists for
all values of K. The physical collapse load P, of interest here only exists for 0 < rK < 0.9648
and 1.9093 < K/v/P < 2, or, equivalently,

1.9093vP < K < min {0.9648/r,2v/P} . (27)

Fig. 3 gives a graphical representation of this condition. The angle ¢ of the critical helix varies
between 0 (K = 0) and 0.7320 (K = 0.9648). This means the helix is always right-handed and
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Figure 1: Phase-plane diagrams for the equivalent oscillator (19) subject to (25) for r = 1,
K =0.8 and (a) P = P, = 0.1683, (b) P = 0.1322. Notice the saddle connection between the
origin and the non-trivial fixed point at ¢ = 0.4660 in (a).
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Figure 2: Load-deflection characteristic and evolution, under varying load P, of the asymp-
totically straight localised solution with initial ¢ > 0 at »r = 1, K = 0.8. There is a critical
collapse load corresponding to a right-handed tensile helix at P, = 0.1683. The triangle indi-
cates where the rod starts to go backwards on the cylinder over some section of rod. This is
soon followed by self-intersection, so the dashed part of the curve, including the second critical
load at P = 0.5123, is non-physical. D is the dimensionless end shortening.
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Figure 3: Region of helical collapse in the (P, K) end-load plane for » = 1. Collapse is only
possible in the region enclosed by the three curves as given by the inequalities (27). Only the
horizontal line depends on the radius r of the constraining cylinder. Where exactly in the
region collapse occurs depends on 7.

in tension. For the critical load of Fig. 1(a) the helix has an angle ¢ = 0.4660 or 26.70°. It then
follows from (24) that the ratio of helical wavelength to radius is equal to 12.49. Non-critical
helices of course are less constrained in their characteristics.

Fig. 4 shows the effective reaction force G for two different solutions along the load-deflection
curve in Fig. 2. Here (a) and (c) are for a solution close to the collapse point. It is seen that G
is constant over the central helical part of this solution and changes rapidly in the transition to
the straight terminal sections where G tends to zero. For a rod inside a cylinder, as in the drill
string problem, wall contact will be maintained as long as F' > 0. Where F' drops to zero the
rod will lift off and the present model ceases to be valid. In terms of G the contact condition is
G > —mw?r, so the critical lift-off level is set by the centrifugal force, and contact can always
be preserved by using a sufficiently high driving frequency w.

For a helical solution (22) and (21) yield relatively simple expressions for G and P:

_ sing (1 — cos @) (sing (1 + cos ) —rK)

; L | (28)
p_ —rK(1 —cos¢) + 2251?2 ¢ (rK — sin ¢ cos qb)' (29)
r?sin ¢

We consider three special cases:
1. The straight rod: ¢ =0, G =0, P and K indeterminate.
2. The (multi-covered) ring: ¢ = 7/2, G = (1—rK)/r®, P = K/r. So G drops to zero when

the applied axial moment K provides the bending moment required to hold the rod in a
ring of radius r.

3. The free helix: G = 0, rK = sin¢ (1 + cos¢), P = (sin®¢)/r2. These are well-known
relations for a Kirchhoff rod bent into a helix of radius r (see, e.g., [18]).
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Figure 4: Physical shape and effective distributed reaction force G for (a,c) a localised solution
close to P, = 0.1683 (D = 8.9036) and (b,d) one at P = 0.07111 (D = 0.05318). Shown in
the 3D diagrams are eight equally-spaced material lines of the rod (one emphasised) so as to
illustrate the twist. (r =1, K =0.8.)



6 The balanced ply

In this section we look at a special type of solution called a balanced ply which is important
in the textile spinning industry [7, 8, 13| and also in studies of DNA in molecular biology
(2, 14, 15]. A ply consists of two segments of rod in continuous contact along a straight line,
the ply axis. The ply is balanced if it carries no net forces and moments at its ends.

A balanced ply is a special case of a rod (more precisely, a pair of rods) winding on a
cylinder of radius equal to the radius of the rod, one segment providing the required pressure
force G to a 180-degrees rotated copy of itself. Indeed, if we set the applied end force P and
the applied end moment K to zero, then (21) reduces to the balanced ply equation derived in
[2] (the authors actually call it the equation for a generalised helix, i.e., a configuration with
constant radius 7 and variable angle ¢). This equation in turn has the uniform (right-handed)
balanced ply with constant ¢ studied in [7, 8] as a special fixed-point solution:

Q cos 2¢ + ; sin® ¢ cos ¢ = 0. (30)

This equation can be interpreted as a formula for the twisting moment () in terms of the ply
angle ¢. All other forces and moments are then also functions of ¢, viz.

.2
@ T =G =V tan 6, M= SS9 (31)
2r T
where V = Vb and M = Mb, with b = R’ x R"/|R"| the binormal of the helical rod. Note
that the total twisting moment in the rod has the opposite sense to that of the space torsion of
the helix, i.e., the sense the rod is winding about the ply axis. Also note that for small angles
G < 0, so the two strands in the ply are repelling each other.

In further analysing (30) we observe that this equation remains invariant under the trans-
formation ¢ — ™ — ¢, Q — —Q, so if we restrict attention to right-handed plies we can assume
¢ € [0,7/2] (a left-handed ply of the same angle is obtained for opposite @). A graphical
analysis reveals that there is a unique solution for ¢ € [0,7/2] for any non-zero @, a saddle
¢s € [0,7/4] for Q < 0 and a centre ¢, € [7/4,7/2] for @) > 0. In particular, this means that
the balanced ply phase portrait does not contain a heteroclinic orbit, so a balanced ply does
not collapse. The solution ¢, tends to 0 as rQ)Q — 0, and to 7/4 as rQQ — —oo, while ¢, tends
to m/2 as rQ — 0, and to 7/4 as rQ — oo.

Curiously, this angle 7 /4 is exactly the maximum possible angle, ¢,,, a uniform (i.e., helical)
ply can have, larger angles leading to self-penetration of the rod. This follows from the lock-up
condition quoted in a recent article by Stasiak & Maddocks [12]. Specifically, for a general
double helix the authors give the lock-up condition p/p = 27, where p is the radius and p
the pitch, i.e., the period, of one of the helical strands. For our balanced ply p = r, and the
condition leads to the lock-up angle ¢,, = n/4 = 0.7853.... Incidentally, for a single helix
the authors in [12] give the lock-up condition p/p = 2.512, which, still using p = r, gives
¢m = 1.1905 (68.21°), considerably larger than for a double helix.

V=

7 Discussion

We have given the general formulation of an isotropic rod deforming on a rigid cylinder using
the geometrically exact theory of rods, and shown that for such a rod whirling on a cylinder and
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Figure 5: End-load curves for the first four co-axial solutions (r = 1).

subject to an end tension and an end moment satisfying certain conditions a helical collapse
may occur. Apart from this physical collapse into a tensile helix we have also found a collapse
into a compressive helix. This collapse, which occurs for a wider range of parameters, requires
self-intersections and is therefore non-physical. This situation is similar to the case of looped
solutions in planar Euler buckling. In such cases (as, for instance, in [9]) the problem of self-
intersections is frequently discounted, it being argued that ‘slightly three-dimensional’ nearby
states exist arbirarily close to those with self-intersecting loops. A similar situation may apply
in our case.

The ends of the localised solutions need not be co-axial; indeed they rotate relative to
each other in the loading process as can be seen in Fig. 2. Co-axial solutions, making an
integer number of helical turns, therefore exist at isolated values of P. By using K as a second
continuation parameter we can draw curves of such solutions in the (P, K) load plane; see
Fig. 5. The 1-turn solution curve has two limit points in K and none in P. The 2-turn solution
curve forms two limit points in both parameters. Associated with these pairs of limit points
are hysteresis loops with jumps in the parameters. All n-turn solutions with n > 2 have only
one limit point defining maximum loads able to support the particular solution. Note that as n
increases the solution exists over a smaller and smaller range of loads about the collapse point
(cf. Fig. 3). The curves in Fig. 5 are therefore seen increasingly to approach the collapse region
of Fig. 3.

These (infinitely long) co-axial solutions give good approximations to shapes of sufficiently
long rods held by quasi-stationary clamps. Sufficiently long here means longer than the length
of rod needed in the helical turns, which depends on how close to critical the end loads are.
A measure of this distance to criticality is provided by n, and recalling formula (24) for the
helical wavelength and the fact that the end shortening of the rod forming the helix is given by

D = (1 — cos¢)L, we can estimate
2mrn

sing’

11



where ¢ is a function of r and the end loads P and K through (21).

Although our work does not give information on the stability of the solutions considered, the
presence of the cylindrical constraint is expected to make a number of them stable and therefore
observable in practice. We can again refer to studies of constrained Euler buckling for examples
in which constraints are found to stabilise certain branches of solutions (see [9] and references
therein). It would be interesting to use variational methods to investigate the stability of the
helical and localised solutions in the present model; this will be pursued elsewhere.

We finally mention that the analysis presented in this paper can be extended to the case of
a rod of non-symmetric cross-section. However, since one has to keep track of the orientation
of the cross-section a director formulation as employed in [19] is required which complicates
matters. It is also no longer possible to reduce the system of equations to a planar oscillator as
in Section 4. Instead, one gets so-called spatial chaos with infinitely many localised solutions
including multi-pulse ones. For more on this the reader is referred to [20].
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