
Hopf bifurcation

Hopf bifurcation for flows

The term Hopf bifurcation (also sometimes called Poincaré-Andronov-Hopf bifurcation) refers to the
local birth or death of a periodic solution (self-excited oscillation) from an equilibrium as a parameter
crosses a critical value. It is the simplest bifurcation not just involving equilibria and therefore belongs
to what is sometimes called dynamic (as opposed to static) bifurcation theory. In a differential equation
a Hopf bifurcation typically occurs when a complex conjugate pair of eigenvalues of the linearised flow
at a fixed point becomes purely imaginary. This implies that a Hopf bifurcation can only occur in
systems of dimension two or higher.

That a periodic solution should be generated in this event is intuitively clear from Fig. 1. When
the real parts of the eigenvalues are negative the fixed point is a stable focus (Fig. 1a); when they cross
zero and become positive the fixed point becomes an unstable focus, with orbits spiralling out. But
this change of stability is a local change and the phase portrait sufficiently far from the fixed point
will be qualitatively unaffected: if the nonlinearity makes the far flow contracting then orbits will still
be coming in and we expect a periodic orbit to appear where the near and far flow find a balance (as
in Fig. 1b).

The Hopf bifurcation theorem makes the above precise. Consider the planar system

ẋ = fµ(x, y),
ẏ = gµ(x, y),

(1)

where µ is a parameter. Suppose it has a fixed point (x, y) = (x0, y0), which may depend on µ. Let
the eigenvalues of the linearised system about this fixed point be given by λ(µ), λ̄(µ) = α(µ)± iβ(µ).
Suppose further that for a certain value of µ, say µ = µ0, the following conditions are satisfied:

1. α(µ0) = 0, β(µ0) = ω 6= 0, where sgn(ω) = sgn[(∂gµ/∂x)|µ=µ0
(x0, y0)]

(non-hyperbolicity condition: conjugate pair of imaginary eigenvalues)

2.
dα(µ)

dµ

∣∣∣∣
µ=µ0

= d 6= 0

(transversality condition: the eigenvalues cross the imaginary axis with non-zero speed)

3. a 6= 0, where

a =
1
16

(fxxx + fxyy + gxxy + gyyy) +
1

16ω
(fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy),

with fxy = (∂2fµ/∂x∂y)
∣∣
µ=µ0

(x0, y0), etc.
(genericity condition)

Then a unique curve of periodic solutions bifurcates from the fixed point into the region µ > µ0 if
ad < 0 or µ < µ0 if ad > 0. The fixed point is stable for µ > µ0 (resp. µ < µ0) and unstable for
µ < µ0 (resp. µ > µ0) if d < 0 (resp. d > 0) whilst the periodic solutions are stable (resp. unstable)
if the fixed point is unstable (resp. stable) on the side of µ = µ0 where the periodic solutions exist.
The amplitude of the periodic orbits grows like

√|µ− µ0| whilst their periods tend to 2π/|ω| as µ
tends to µ0. The bifurcation is called supercritical if the bifurcating periodic solutions are stable, and
subcritical if they are unstable.

This 2D version of the Hopf bifurcation theorem was known to Andronov and his co-workers from
around 1930 [1], and had been suggested by Poincaré [5] in the early 1890s. Hopf [2], in 1942, proved
the result for arbitrary (finite) dimensions. Through centre manifold reduction the higher-dimensional
version essentially reduces to the planar one provided that apart from the two purely imaginary eigen-
values no other eigenvalues have zero real part. In his proof (which predates the centre manifold
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Figure 1: Phase portraits of (2) for (a) µ = −0.2, (b) µ = 0.3. There is a supercritical Hopf bifurcation
at µ = 0.

theorem), Hopf assumes the functions fµ and gµ to be analytic, but C5 differentiability is sufficient (a
proof can be found in [3]). Extensions exist to infinite-dimensional problems such as differential delay
equations and certain classes of partial differential equations (including the Navier-Stokes equations)
[3].

Example:
Consider the oscillator ẍ− (µ− x2)ẋ + x = 0 (an example of a so-called Liénard system), which, with
u = x, v = ẋ, we can write as the first-order system

u̇ = v,
v̇ = −u + (µ− u2)v.

(2)

The origin (u, v) = (0, 0) is a fixed point for each µ, with eigenvalues λ(µ), λ̄(µ) = 1
2

(
µ± i

√
4− µ2

)
.

The system has a Hopf bifurcation at µ = 0. We have ω = −1, d = 1
2 and a = −1

8 , so the bifurcation
is supercritical and there is a stable isolated periodic orbit (limit cycle) if µ > 0 for each sufficiently
small µ (see Fig. 1).

Hopf bifurcation for maps

There is a discrete-time counterpart of the Hopf bifurcation. It occurs when a pair of complex conjugate
eigenvalues of a map crosses the unit circle. It is slightly more complicated than the version for flows.
The corresponding theorem was first proved independently by Naimark [4] and Sacker [6] and the
bifurcation is therefore sometimes called the Naimark-Sacker bifurcation. A proof can again be found
in [3].

Consider the planar map Fµ = (fµ, gµ) : IR2 → IR2, with parameter µ, and suppose it has a fixed
point (x, y) = (x0, y0), which may depend on µ. Suppose further that at this fixed point DFµ has a
complex conjugate pair of eigenvalues λ(µ), λ̄(µ) = |λ(µ)|e±iω(µ), and that for a certain value of µ, say
µ = µ0, the following conditions are satisfied:

1. |λ(µ0)| = 1
(non-hyperbolicity condition: eigenvalues on the unit circle)
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2. λk(µ0) 6= 1 for k = 1, 2, 3, 4
(non-strong-resonance condition)

3.
d|λ(µ)|

dµ

∣∣∣∣
µ=µ0

= d 6= 0

(transversality condition)

4. a 6= 0, where

a = −Re

[
(1− 2eic)e−2ic

1− eic
c11c20

]
− 1

2 |c11|2 − |c02|2 + Re(e−icc21),

c = ω(µ0), sgn(ω(µ0)) = sgn[(∂gµ/∂x)|µ=µ0
(x0, y0)]

and
c20 = 1

8 [(fxx − fyy + 2gxy) + i(gxx − gyy − 2fxy)],
c11 = 1

4 [(fxx + fyy) + i(gxx + gyy)],
c02 = 1

8 [(fxx − fyy − 2gxy) + i(gxx − gyy + 2fxy)],
c21 = 1

16 [(fxxx + fxyy + gxxy + gyyy) + i(gxxx + gxyy − fxxy − fyyy)].
(genericity condition)

Then an invariant simple closed curve bifurcates into either µ > µ0 or µ < µ0, depending on the signs
of d and a. This invariant circle is attracting if it bifurcates into the region of µ where the origin is
unstable (a supercritical bifurcation) and repelling if it bifurcates into the region where the origin is
stable (a subcritical bifurcation).

Note that this result says nothing about the dynamics on the invariant circle. In fact, the dynam-
ics on the circle has the full complexity of so-called circle maps (including the possibility of having
attracting periodic orbits on the invariant circle) and depends sensitively on any perturbation (see the
example below). Consequently, unlike the Hopf bifurcation for flows, the Hopf bifurcation for maps is
not structurally stable.

Example:
Consider the following family of maps:

Fµ

(
x
y

)
= (1 + dµ + a(x2 + y2))

(
cos(c + b(x2 + y2)) − sin(c + b(x2 + y2))
sin(c + b(x2 + y2)) cos(c + b(x2 + y2))

) (
x
y

)
. (3)

The origin is a fixed point for each µ. The Jacobian matrix of Fµ at this fixed point is

DFµ(0, 0) = (1 + dµ)

(
cos c − sin c
sin c cos c

)
(4)

and the eigenvalues are λ(µ), λ̄(µ) = (1 + dµ)e±ic. The map takes a simpler, semi-decoupled, form in
polar co-ordinates r =

√
x2 + y2, θ = arctan(y/x):

(
r
θ

)
7→

(
r(1 + dµ + ar2)

θ + c + br2

)
. (5)

This 5-parameter map is in fact the normal form for the Hopf bifurcation up to cubic terms (i.e., by
a smooth change of co-ordinates we can bring any Fµ into this form (plus higher-order terms)). The
parameters a, c and d in (3) and (5) are precisely those defined in the conditions above. We choose
a = −0.02, b = c = 0.1, d = 0.2. The map then undergoes a supercritical Hopf bifurcation at µ = 0,
as can be confirmed by a simple graphical analysis of the decoupled r map (for a > 0 it would be
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Figure 2: Phase portraits of (3) for (a) µ = −0.2, (b) µ = 0.2. There is a supercritical Hopf bifurcation
at µ = 0. (a = −0.02, b = c = 0.1, d = 0.2.)

subcritical). For sufficiently small µ > 0 we have an attracting invariant circle given by r =
√−dµ/a

(see Fig. 2). On the circle the map is given by θ 7→ θ + c− bdµ/a. This is simply a rotation through a
fixed angle φ = c−bdµ/a, giving periodic orbits if 2π/φ ∈ IQ, or dense (irrational) orbits if 2π/φ ∈ IR\IQ.

If the Hopf bifurcation occurs in a map associated with the return map (Poincaré map) near a periodic
orbit of an autonomous flow then the bifurcation is often called a secondary Hopf bifurcation. In this
case the invariant curve corresponds to an invariant torus for the flow and attracting periodic orbits
on the circle correspond to mode-locked periodic motion on the torus, whilst dense orbits correspond
to quasi-periodic motion.

Degenerate Hopf bifurcations

If one or more of the listed conditions for a Hopf bifurcation are not satisfied (for instance because
of symmetry) one may still have the emergence of a periodic orbit but some of the conclusions of the
theorem may cease to hold true. The bifurcation is then called a degenerate Hopf bifurcation. For
instance, if the transversality condition is not fulfilled the fixed point may not change stability, or
multiple periodic solutions may bifurcate. An important case is provided by a Hamiltonian system for
which complex eigenvalues come in symmetric quadruples and therefore the transversality condition
cannot be satisfied. This is why the analogous bifurcation in Hamiltonian systems (the so-called
Hamiltonian-Hopf bifurcation [7]) is much more complicated. For one thing, it needs a 4-dimensional
phase space.

Applications

The balance between local excitation and global damping mentioned at the beginning occurs com-
monly in physical systems and the Hopf bifurcation underlies many ‘spontaneous’ oscillations such as
airfoil flutter and other wind-induced oscillations (e.g., those that caused the Tacoma-Narrows bridge
collapse) in structural engineering systems, vortex shedding in fluid flow around a solid body at suf-
ficiently high stream velocity, LCR oscillations in electrical circuits, relaxation oscillations (e.g., as
described by the Van der Pol oscillator), the periodic firing of neurons in nervous systems (e.g., in the
FitzHugh-Nagumo equation modelling these phenomena), oscillations in autocatalytic chemical reac-
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tions (e.g., the Belousov-Zhabotinsky reaction) as described by the Brusselator and similar models,
oscillations in fish populations (as described by predator-prey models), periodic fluctuations in the
number of individuals suffering from an infectious disease (as described by epidemic models), etc.

Gert van der Heijden
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