
Experiments on snap buckling, hysteresis and loop

formation in twisted rods

V.G.A. Goss∗, G.H.M. van der Heijden, J.M.T. Thompson, S. Neukirch

Centre for Nonlinear Dynamics, University College London, Gower Street, London WC1E 6BT, UK

∗

November 5, 2004

Abstract

We give results of large deflection experiments involving the bending and

twisting of 1 mm diameter nickel-titanium alloy rods, up to 2 m in length. These

results are compared to calculations based on the Cosserat theory of rods. Details

of this theory, formulated as a boundary value problem are presented. The

mathematical boundary conditions model the experimental set up. The rods

are clamped in aligned chucks and the experiments are carried out under rigid

loading conditions. An experiment proceeds by either twisting the ends of the

rod by a certain amount and then adjusting the slack, or fixing the slack and

varying the amount of twist. In this way commonly encountered phenomena

such as snap buckling, the formation of loops, and buckling into and out of

planar configurations are investigated. The effect of gravity is discussed.

Key words: twisted rods, rod experiments, snap buckling, loop formation,

snarling, hockling, welded boundary conditions.

∗Current address: London South Bank University, Borough Road, London SE1 OAA, UK.

1



1 Introduction

The distinctive feature of a thin rod is that it buckles rather than breaks when subjected

to end forces and end moments. For example, experience tells us that a compressed

rod can buckle in any lateral direction. It is also well-known that if a bending moment

is applied at the ends of the compressed rod while in its buckled state, it may undergo

a sudden large movement and “snap” into a configuration which is a mirror image

of the buckled state. The symmetry associated with these buckling phenomena is a

recurring theme in rod theory and is reflected in the mathematics where these types of

phenomena are described by pitchfork bifurcation.

Perhaps not so well-known in rod mechanics is the existence of certain secondary

bifurcations. These can be encountered by continuing to load the rod after it has

buckled. They arise in a variety of industrial and biological applications. Amongst

these we can mention “hockling” – the formation of loops during pipeline and cable

laying operations. Hockling occurs when a twisted rod is slackened off and a section

of it flips into a loop, [1], [2], [3], [4] and [5]. Other applications include “snarling”,

a term used in the textile industry [6] to describe the onset of highly twisted helical

plies. More recently the mechanics of twisted rings as they jump in and out of various

figure-of-eight configurations has been analysed [7], [8], a problem of specific relevance

to the writhing of DNA filaments [9].

Many of these phenomena can easily be observed by twisting and bending a rubber

rod with one’s fingers, as shown in Figure 1. Experience teaches us that the response

of a rod depends on the material it is made of, the geometry of its cross section, the

manner in which it is held at its ends, the type of loading and the loading sequence.

Over recent years a plethora of literature exploring, describing and explaining these

effects has emerged, but very little in the way of experiments. This paper aims to help

fill that gap.

The most straightforward experimental procedure for rod experiments is rigid load-

ing. In this arrangement the displacements are controlled and the corresponding forces

2



straight 
untwisted rod

input twist 
(R)

input 
slack (D)

jump
into a loop,
''hockling''

'' snarling''

sm
oo

th
 in

pu
t o

f  D

Figure 1: Slackening off a twisted rod (i.e., input of D) can cause it to throw a loop (hockling).

If the initial twist is high enough, then further D leads to snarling (i.e., the formation of a

ply)
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and moments remain passive. The two pertinent control parameters are firstly, the

displacement of the ends of the rod towards each other – the slack D; and secondly

the rotation of one end of the rod with respect to the other end – the end rotation

R. It is through D and R that the axial force T (positive when tensile) and axial

twisting moment M do work respectively. Thus the natural arenas for the analysis of

experimental results are TD and MR diagrams.

In his PhD thesis, Born [10] carried out some elegant large deflection bending

experiments by hanging weights on the end of a rod (i.e., dead loading). Of the sparse

experimental work carried out since, we can point to [2] and [5]. Using jacketed optical

fibres Yabuta [5] carried out experiments in a rig with facilitation for measuring R, D,

M and T , and investigated both hockling and “pop-out” whereby the loop is removed

by pulling it out (reversing D). However the precise manner by which the rods are fixed

at their ends is not specified. Consequently, the mathematical model is not formulated

as a boundary value problem. Instead, using an energy method, he assumes an initial

helical deformation (which is Love’s solution [11]) and obtained the Greenhill [12]

formula for the onset of looping which in fact describes the primary bifurcation for a

rod with zero bending moments at its ends. Modelling the loop as a circle, he also

derived a formula for the point at which it reopens (i.e., pop-out) which he compared

with his experimental results.

Thompson and Champneys [13] took up the problem of looping using modern geo-

metric concepts of nonlinear dynamical systems theory. They reported on some qual-

itative experiments using silicone rubber rods which showed that if a highly twisted

rod is slackened off it undergoes a localisation process prior to loop formation. In con-

sidering infinitely long rods, they identified the localised solutions as homoclinic orbits

in the phase space of the underlying system of equations.

Miyazaki and Kondo [14] undertook theoretical investigations of finite rods. By

choosing an Euler angle as the independent variable rather than arc length, they pre-

sented analytical solutions in a rather unwieldy integral form. Concentrating on two

different rigid loading sequences, controlled D with fixed R, and controlled R with fixed
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Figure 2: Best-fit line to experimental data for the determination of the flexural and torsional

rigidities.

D, they give results for the onset of a number of secondary bifurcations, such as the

formation of loops, snap buckling and bifurcations in and out of planar configurations.

However the work most closely associated with our experiments is [15] (which in-

cludes some of our experimental results), and should be referred to for the more ana-

lytical aspects of these investigations. This work deals with rods with isolated points

of self contact, which we also briefly touch on in the experiments reported below.

This paper is set out as follows. Section 2 outlines the mathematical model with

which we compare our results. We also give details of the experimental determination

of the constitutive relations for the nitinol rods used in our experiments. In sections

3 and 4 we discuss and present results of experiments in which either D or R is fixed

whilst the other is varied. Section 5 presents a discussion of our results including the

effect of gravity.
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2 Outline of the mathematical model

2.1 The Constitutive Relations

Large deflection rod experiments have been hampered by the sometimes conflicting re-

quirements that the rod possesses high flexibility, but that its statics is not dominated

by sagging effects due to gravity; and that the loads are measurable. For one of these

reasons or another, materials such as rubber, steel and nylon are not always conve-

nient for experiments. However, the highly flexible nickel titanium alloy nitinol (which

stands for Nickel Titanium Naval Ordnance Laboratory where it was first discovered

by William Buehler in 1959 [16]) is a suitable material for a wide range of such experi-

ments. Nitinol has the property that it undergoes a phase transition from the relatively

ordered austenite solid-state phase to the more disordered martensite phase, either by

varying (lowering) the temperature or stress-induced. The critical temperature can be

varied from 100◦C to well below −200◦C, by changing the precise composition of the

alloy.

Nitinol’s high flexibility has been used in, for instance, spectacle frames, telecom-

munication antennae and actuator valves [17]. This flexibility together with its biocom-

patibility [18] is currently being exploited in a number of medical applications including

surgical instruments, orthopaedic devices and orthodontic arches (see [19] for a recent

review).

Nitinol rods of circular cross section with radius r = 0.5 mm and lengths L varying

from 300 mm to 2000 mm were selected. We assume, with good justification, that the

specimens are isotropic and possess identical material properties at all points along

their length (i.e., uniformity and homogeneity) and that their natural state is straight.

We also assume that in our experiments they suffer no appreciable extension or trans-

verse shear. It follows that we need only to establish the material’s characteristic

response to a lateral end force and a twisting moment: specifically the bending rigid-

ity B and the torsional rigidity C. Since suppliers advise that these properties vary

with manufacturing history (especially heat-treatment), we established them directly
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by means of simple experiments. From a cantilever experiment the value of B was

determined using the engineer’s formula ([20], page 369):

δ =
PL3

3B
, (1)

where δ is the deflection measured at the free end of the rod due to the application

of a known applied load P . As a consequence of isotropy, this experiment will give

the same result in any lateral direction. To establish C, the rod was fixed at both

ends and the torque measured for increments of end rotation R. The data from these

measurements are shown in Figure 2. The straight line relationships between the loads

and deflections indicate linear constitutive relations of the form:

M1 = Bκ1, M2 = Bκ2, M = Cτ (2)

where M1 and M2 are the bending moments about two (orthogonal) principal axes of

the cross-section (the reason for referring to principal axes will become clear in the

next section), κ1 and κ2 are the respective curvatures, M is the axial twisting moment,

and τ is the twist per unit length. The slopes of the graphs in Figure 2 give B =

0.0028 Nm 2 and C = 0.0020 Nm 2.

Using B = EI, where E is the modulus of elasticity and I =
πr4

4
the second

moment of area, we find E = 57 GNm−2. This result is consistent with a separate

tensile test carried out on a Tensometer 20 Universal Testing Machine. Quoted E

values for nitinol alloys usually range from 28− 44 Nm−2 for the martensitic state and

80− 110 GNm−2 for the austenitic state [21]. However, our value correlates well with

the range 32− 60 GNm−2 reported in [21] for heavily drawn wire.

Using C = GJ , where G is the shear modulus and J =
πr4

2
the polar moment of

area, we find G = 20 GNm−2. There is a scarcity of reported G values in the literature.

The only value of G we could find is that extracted from experimental data reported in

[22], which yields G = 21 GNm−2. Our values imply a Poisson’s ratio ν = E
2G
−1 ≈ 0.4.

Note that all measurements of forces and moments reported in this paper are in the
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range from −0.5 to 1 N, and ±0.2 Nm respectively. The transducers used to measure

the forces and torques have a sensitivity of 0.0001 N and 0.0001 Nm respectively.

The constitutive relations (2) link the kinematics of a deformed rod to the equilib-

rium equations. These we treat in the following two sections. Together they establish

the basis of the Special Cosserat Theory of Rods [23], a geometrically exact one di-

mensional theory, which we use to compare with our experimental results.

2.2 The Kinematics

Cosserat theory treats the rod as a set of material points forming a curve in space

which we can think of as the centreline of the rod. The curve is parameterised by arc

length s ∈ [0, L] where L is the length of the rod in its natural unstressed state, called

the reference state. A distinctive feature of Cosserat theory is that it endows each

material point with a unit vector d1(s), called a director. The director is normal to

the curve and aligned with a principal axis. The position of each point along the rod

with respect to a fixed coordinate system (which is taken here to be coincident with

the experimental rig, see Figure 3) is given by the vector r(s) = (x(s), y(s), z(s)) with

basis (i j k). The origin r(0) = (0, 0, 0) is taken to be at one end of the experimental

rig, where the rod at s = 0 is attached. For an unshearable, inextensible rod, we can

define d3 as the tangent vector:

d3 :=
dr

ds
. (3)

We can then define d2 as follows:

d2 := d3 × d1 = (d3yd1z − d3zd1y)i− (d3xd1z − d3zd1x)j + (d3xd1y − d3yd1x)k, (4)

where the second suffix in each term of (4) refers to components in the fixed frame.

The triad (d1,d2,d3) constitutes a moving orthonormal frame attached to the rod.

We assume that in its unstressed state the rod is straight and untwisted. We choose

the directors in this reference state to be everywhere aligned with the rig axes, i.e.,
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Figure 3: The experimental rig is designed as a rigid loading device whereby the slack D
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of nitinol rod with the directors di superimposed. Also shown is the ijk rig-based frame.
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d1 = i,d2 = j, d3 = k. It follows that r = ks. Due to the orthonormality of the

director frame, the spatial evolution of the directors is given as

ddi

ds
= u × di (i = 1, 2, 3), (5)

where u denotes the curvature vector

u = κ1d1 + κ2d2 + τd3, (6)

κ1 being the curvature about d1, κ2 the curvature about d2 and τ the twist about d3.

2.3 The Equilibrium Equations

Newton and Euler’s laws state that for statical equilibrium the resultant of the contact

forces and contact moments must be zero [23]. Therefore, ignoring body forces, we

have:

dN

ds
= 0, (7)

where N = N1d1 + N2d2 + N3d3, and N1 and N2 are shear forces and N3 is the axial

force (tension positive and compression negative). For the balance of moments we have

dr

ds
×N +

dM

ds
= 0, (8)

where M = M1d1 + M2d2 + M3d3, and M1 and M2 are the bending moments and M3

is the twisting moment.

The derivatives
d

ds
on the left hand sides of (7) and (8) can be expressed as the

derivative with respect to arc length in the moving co-ordinate frame, plus terms which

describe the derivative of the directors themselves. For example:
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dN

ds
=

d

ds
(N1d1 + N2d2 + N3d3)

=

(
dN1

ds
d1 +

dN2

ds
d2 +

dN3

ds
d3

)
+

(
N1

dd1

ds
+ N2

dd2

ds
+ N3

dd3

ds

)
.

Consequently, using (5) and the constitutive relations (2), we can express (7) and (8)

in component form:

dN1

ds
=

N2M3

C
− N3M2

B
,

dN2

ds
=

N3M1

B
− N1M3

C
,

dN3

ds
=

N1M2

B
− N2M1

B
,

dM1

ds
=

M2M3

B

(
1− B

C

)
+ N2,

dM2

ds
=

M1M3

B

(
1− B

C

)
−N1,

dM3

ds
= 0.

(9)

An important property of the weightless isotropic rod is the existence of the follow-

ing three independent constants:

|N |2 = N2
1 + N2

2 + N2
3 = constant,

N ·M = N1M1 + N2M2 + N3M3 = constant,

M · d3 = M3 = constant.

(10)

The first two of (10) exist in the more general case of an anisotropic rod and correspond

to the conservation of force and conservation of torque about the force vector. The

line of action of this force vector is called the wrench axis. It is rotated and displaced
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with respect to the rig loading axis; see [15] for further details. The third constant is a

consequence of isotropy and expresses conservation of twist about the rod’s axis. To-

gether the integrals in (10) render a fully integrable mathematical system of equations

(see [24]) with solutions expressed in terms of elliptic integrals and elliptic functions.

Whilst working with these integrals and functions has no benefit in the context of

this experimental study (we use numerical methods), it is worth pointing out that the

intrinsic symmetry in the mathematics manifests itself in the actual configuration of

the rod: odd symmetry exists in the zx plane, and even symmetry in the zy plane.

Photographs taken during the experiments have tried to capture this symmetry. Note

though that strictly speaking the symmetry is with respect to the wrench axis, not the

rig axis (see [15]).

2.4 Boundary conditions and experimental procedure

Since the rig is a rigid loading device we seek mathematical boundary conditions de-

picting the kinematics rather than the loads. First of all we specify the position vector

at each end of the rod where it is attached to the rig:

r(0) = (0, 0, 0), r(L) = (0, 0, L−D), (11)

where D denotes the distance by which the end s = L is displaced towards s = 0 in a

straight line along the z axis, i.e., the slack. With respect to the tangent d3, the rig

grips the ends of the rod in chucks in exactly the same way as a drill bit is gripped in

a drill (see Figure 3). Consequently the slope at the ends is also fixed. Thus

d3(0) = (0, 0, 1), d3(L) = (0, 0, 1). (12)

Note that (11) and (12) correspond to Antman’s welded boundary conditions [23].

Experiments may also involve inputting end rotation. When the rod is straight but

twisted the rotation (modulo 2π) of one end with respect to the other end is given by

d1(0) · d1(L) = cos R. Thus we have the following boundary conditions for d1:
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d1(0) = (1, 0, 0), d1(L) = (cos R, sin R, 0). (13)

We now have a system of fifteen first order ordinary differential equations; three in

(3) for the position vector, six for the directors d1 and d3 in (5), and six in (9) for the

forces and moments. Together with all nine boundary conditions stipulated at s = 0 in

(11), (12) and (13), plus three at s = L in (11) and the conditions on d3x(L) and d3y(L)

in (12) and d1x(L) in (13) constitute a well posed boundary value problem. This was

solved by a single-parameter continuation of solutions using MATLAB’s boundary value

solver bvp4c. This is a finite difference code that implements a collocation formula,

details of which can be found in [25]. Solution paths were traced out by gradually

incrementing D or R. We remark here that it is not always easy to find starting

solutions in this continuation procedure and the program is slow when it is set at high

accuracy.

Two different rigid loading experiments were carried out:

• Fixed R loading: input R and control D. These experiments are discussed in

Section 3.

• Fixed D loading: input D and control R. These experiments are discussed in

Section 4.

In each set of these rigid loading experiments, the rig force T and rig twisting

moment M are passive and are measured by the corresponding transducers at either

end of the rod (see Figure 3). Because of the welded boundary conditions in which

d3(0) and d3(L) are aligned with the rig, the transducers measure the axial loads and

therefore N3 = T and M3 = M . Each data point in the TD and MR diagrams to be

presented represents the mean of at least three separate experiments taken at three

separate times. Most experiments involved rods with lengths less than 1
2

m.
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3 Experimental results: R fixed, D varied

It has already been mentioned that under fixed R conditions the TD diagram is the

natural arena for the study of experimental results. Some insight into the global char-

acteristics of the TD diagram can be gained from consideration of the planar elastica

– the two dimensional theory describing the planar configurations of a rod loaded only

by an end force. This is a classical case in rod theory which Euler completely solved in

1744 [26]. The planar elastica solutions comprise two loading paths in the TD diagram

as shown in Figure 4. These two paths, the inflectional and noninflectional, represent

a good guide to the upper and lower bounds of all other spatial loading paths for

D/L < 1.

In an experiment, a rod loaded only by an end force (i.e., R = 0) buckles from

the reference state at TL2/4π2B = −1 (Euler buckling). Under continued inputs of

slack D the rod bends in the plane and its loading path is initially identical to that

of the inflectional planar elastica. However at a certain load a secondary bifurcation

occurs. In the case of a nitinol rod this happens at D/L = ∆1 := 0.5590... [15]. In the

MD diagram this event is depicted by the appearance of nonzero twisting moments

(see Figure 4). Thus this bifurcation involves a transfer of bending energy into twisting

energy, causing the rod to twist out of the plane and depart from the inflectional planar

elastica loading path. With further inputs of D the rod gradually folds back upon itself

until at D/L = 1 it again adopts a planar state in the form of a twisted ring, having

gained 2π radians of twist.

Whilst our rig does not facilitate experiments in the vicinity of D/L = 1, we can

nevertheless conceive of a hypothetical experiment starting from a planar twist-free

ring. We can proceed in one of two directions: either increasing or decreasing D.

By increasing D we open out the ring and follow the noninflectional planar elastica

which remains stable for D/L > 1. Experimental data for this case were obtained for

1.5 ≤ D/L ≤ 1.8 and involve turning the rig ends around (see photograph in Figure

5).
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By decreasing D from the ring the ends of the rod are pulled across each other to

form a loop. Whilst in this case the rod is strictly not planar (separated as it is by

its cross sectional thickness) the loading path follows very closely that of the upper

“self-intersecting” branch of the noninflectional planar elastica (0 < D/L < 1); see

Figure 5. In this case another secondary bifurcation arises (D/L = ∆2 := 0.6772... for

nitinol [15]) in which the rod twists out of the planar loop and buckles spatially. If the

experiment is then continued all the way to the straight state at D = 0, we find that

the rod has again gained a twist of 2π radians. We can also perceive this experiment

in reverse: start at D = 0 with R = 2π and input slack until the rod bifurcates into

the plane at ∆2. Further slack then retrieves the ring at D/L = 1 with all the twist

having been removed.

For R 6= 0 buckling is directly from a twisted straight state into a spatial configu-

ration, mathematically described as a pitchfork bifurcation. The critical condition can

be found from a linear eigenvalue analysis and is given in [15]:

2πn3

λ
sin πλ = cos πλ− cos πm3, (14)

where λ =
√

m2
3 − 4n3 with m3 = CR

B
and n3 = TL2

4π2B
. As more slack is input into

the rod it releases twisting energy and transfers it to bending energy, adopting a 3D

configuration. A characteristic of loading paths for R < 2π is that they all lead to the

planar ring at D/L=1, a state of zero tension (but non-zero twist).

For R > 2π qualitatively different behaviour arises. A point is reached when the

loading path develops a vertical tangency and changes direction (the knee of the curve

in Figure 6). At this point the rod jumps off the path and flips into a self-contacting

loop during which nearly 2π radians of twist is released. Loop formation (hockling) is

therefore described by a fold bifurcation and involves a transfer of twisting energy to

bending energy. High initial end rotations are accompanied by correspondingly large

jumps and occur at less slack.

Inspection of the TD diagram in Figure 6 shows that hockling involves a jump

towards the self-intersecting planar elastica loading path. If, after hockling, the slack
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is subsequently reversed back towards D = 0, then the loop is under tension and pulled

tight, causing an increase in curvature, and therefore the bending moment, around the

loop. A point is reached when this configuration becomes unstable and the loop pops

out. In the TD diagram pop-out corresponds to the rod falling back onto its original

loading path, thereby creating an hysteresis cycle. Note that the path to pop-out may

be accompanied by plastic deformation resulting in a permanently damaged kinked

rod. This occurs when the loop dimensions decrease to the point that the curvature

becomes so large as to push the rod outside of its linearly elastic regime.

On the other hand, increasing D after loop formation can cause the rod to “snarl”,

i.e., form a ply, as shown in Figure 6, which may also damage the rod. The onset of

snarling is only evident beyond a critical value of R, and for nitinol this was found

experimentally to be at R ≈ 4.5π radians, a result consistent with the theoretical

amount of end rotation that can be input into a ring before it buckles spatially, given

in [27]:

Rcrit = 2π
√

3(1 + ν), (15)

which for nitinol gives R = 4.85π radians. For R less that this value the loop remains

intact and is converted into a twisted ring at D/L=1.

4 Experimental results: D fixed, R varied

In this section we discuss experiments on rods that are loaded by twisting the ends

relative to each other whilst D is fixed. Five qualitatively different regions of behaviour

are identified, and their demarcation depends upon the critical values ∆1 and ∆2 at

which the secondary bifurcations arise. Numerical data for loading paths within each

region are shown in Figure 7. We now discuss our experimental results, treating each

of these regions in turn.

• D/L < ∆1

The two distinctive characteristics of this region are that firstly, since D/L < ∆1,

the planar elastica is stable and consequently the rod can be rotated through

19



       
-2

-1

0

1

2

D/L=0.8

D/L=0.62

D/L=0.5

D/L=1.587

D/L=1

-2π 2π
R  (rads)

M
L

/2
πB

Figure 7: The theoretical MR loading diagram, for a range of fixed D values. Note that the

maximum twisting moment occurs in the D/L = 1 case. For D/L > 1 the moment reduces

again.

R = 0 smoothly; and secondly, a jump into a loop occurs once R > 2π, cor-

responding to hockling. The loop can be removed by unwinding R to induce

pop-out. The paths between hockling and pop-out form an hysteresis cycle, as

shown in Figure 8. Note that the theoretical path through the self-contact data

between B and C in this figure is provided by the (friction-free) point contact

theory in [15].

• ∆1 < D/L < ∆2

Once D/L exceeds the value ∆1 the planar state is no longer stable and the

rod jumps through R = 0, a phenomenon known as snap buckling, which is

described mathematically as a pitchfork bifurcation. Under further input of R

the rod will jump into a loop (hockling) which can be removed by unwinding R

(pop-out). These phenomena are shown in Figure 9 where it can be seen that

both snap buckling and hockling involve hysteresis cycles. Whilst the amplitude

of the jump associated with snap buckling rises under increasing D, there is an
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= 0.5. The rod passes smoothly through R = 0 but becomes unstable at A and jumps into

a loop (to B). Reversing R causes the rod to pop out of the loop (C) and return to the

stable branch at D (without self-contact). The circuit ABCD forms an hysteresis cycle, also

encountered in negative R. We observe that the fit is better in positive R than in negative

R, but we can offer no explanation for this.
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Figure 9: Experimental and theoretical MR results for D/L = 0.62, showing snap buckling,

looping, pop-out and the hysteresis cycles.
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accompanying decrease in the magnitude of the jump into and out of self-contact

during hockling (see Figure 10).

• ∆2 < D/L < 1

When D/L exceeds the value ∆2 the jump to self-contact and its attending

hysteresis loop disappear and are replaced by a smooth path (see Figure 10).

However the magnitude of the snap buckling jump continues to increase.

• D/L ≈ 1

At D/L=1 a rod forms a closed ring. A small but distinctive region of ring-

like behaviour exists in its vicinity. Figure 11 plots the theory for D/L = 1 and

experimental results for D/L = 0.98 (with the rod attached directly to the torque

transducer).

In the experiment the amount of twist that the ring absorbs before it becomes

unstable is consistent with (15). The rod then jumps from its twisted planar state

into a “pinched” figure of eight, see Figure 11). Swigon’s analysis [7] predicts that

the ply forming the central part of this configuration has two points of self contact,

implying the existence of a gap in between. However no gap was discernable in

the experiment (see lower photograph in Figure 11). Unwinding R brings about

another state: at M ≈ 0 the rod jumps into a figure-of-eight with one cross over

point (consistent with [7]). After further reduction of R the rod jumps back to a

twisted ring, again when M ≈ 0.

• D/L > 1.2

Experiments for D/L > 1 were conducted with the clamps turned around. When

R is input into the rod whilst lying in a plane with D/L ≈ 1.2, a section towards

the end of it is seen to rotate out of the plane, but not to a condition of self

contact. Note however that this does not imply the nonexistence of stable self-

contacted solutions for D/L > 1 (see Figure 10 of [15]).
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Figure 10: MR diagrams showing experimental data obtained under control of R with D/L

fixed. The top four figures show cases where the value of D/L lies between the two secondary

bifurcations, i.e., ∆1 < D/L < ∆2. Note that for each increase in D/L the jump associated

with snap buckling (which occurs in the vicinity of R = 0) is more pronounced whilst the jump

associated with hockling (which occurs when R > 2π) decreases in magnitude and eventually

disappears at D/L = ∆2 ≈ 0.6772.... For D/L > ∆2 loop formation occurs smoothly and

does not involve a jump (see lower figure with D/L = 0.8), but the magnitude of the snap

buckling jump continues to increase.
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 Details of condition of rod at C.
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Figure 11: MR diagram for an experiment in which end rotation is input into the rod with

D/L = 0.98, where it is in the form of a ring. The twisted ring remains stable until the

loading path reaches B at which point it jumps into a “pinched” figure of eight. Subsequent

reduction of R induces a jump (D −→ E) into a figure of eight with a single point of self-

contact. Further unwinding induces another jump (F −→ G), this time back on to the original

loading path where it remains until R is reduced to zero and we retrieve the twist-free ring

at A.
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Figure 12: Mixed loading experiment. The experimental (*****) and theoretical (− · −·)
TD loading paths for R = π/2. The experiment is initiated from A under control of slack

until point B (which lies beyond the secondary bifurcation at ∆1). The experiment is then

paused and placed under control of R with D fixed (see MR diagram in the inset). Snap

buckling (B1 −→ B2) causes the rod to jump across the R = 0 curve (B −→ C in the TD

diagram). After winding R back to its original value of π/2 (B2 −→ C in the MR diagram),

the experiment is resumed under control of slack C −→ D −→ E, at which point the loading

path encounters a fold, and the rod spontaneously jumps back across the R = 0 path to F .

Further reduction of slack takes the rod on a smooth path all the way back to A.
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It is worthwhile to include in our investigation mixed loading sequences, in which

both D and R are varied. Under special circumstances it is possible to encounter

unexpected instabilities. Figure 12 gives the results of an experiment which initially

proceeds under control of slack with R = π/2. The experiment is momentarily stopped

at a point when the slack exceeds ∆2, and therefore the planar elastica is unstable.

The experiment is continued under control of R. Adjusting R induces snap buckling

which lands the rod on a new path which is situated in a region of the TD diagram

beyond the R = 0 path, a region which is not accessible under sole control of D. It

reveals an interval of D/L values with more than one stable solution, a phenomenon

which arises as a consequence of the nonlinearity of our system; the reader should refer

to [15] for a more thorough investigation of the multiplicity of solutions for the elastic

rod equations. With R wound back to π/2 and the experiment resumed under control

of D the rod undergoes another bifurcation (by encountering a fold on the new path)

and snap buckles back across the R = 0 path to its original path.

5 Discussion

The focus of our numerical study is the statics of an inextensible, unshearable, uni-

formly isotropic, weightless Cosserat rod. Here we can be assured by its quintessence.

However, in treating the Cosserat rod as a reference point for the study of the be-

haviour of real rods as observed through experiment, we need to pay special attention

to the experimental set-up. As far as is practically possible, we strive to identify and

eliminate those physical imperfections which may cause an experiment to deviate from

the mathematical model. For example we require rods with linear elasticity at large

strains, and avoid heavy rods. Our experiments indicate that deviation between exper-

iment and Cosserat theory is likely to arise in situations where the strains are high and

where friction may arise, such as in states with high twist and self-contact. We note

here that in an attempt to keep the twist per unit length such that the rod remains in

a linearly elastic regime, long rods were used for high twist experiments. We also note
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the sensitivity of experimental results to boundary conditions.

A noticeable qualitative discrepancy between our fixed R experimental results and

the theory is a rounding off of the primary bifurcation, given by (14). This is only

evident in the TD diagrams, particularly in Figure 6, and indicates the presence of

an imperfection which does not effect the twisting moment. An obvious source of this

error is therefore the rod’s self weight. We also remark that a heavy rod would be

expected to buckle at a higher tension than a light rod.

0
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1

sagging

hogging

deflection to the side

planar elastica theory

0

0.20.1
D/L

T
L

2
/4

π2
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Figure 13: Experiments on a rod with a rectangular cross section (3 mm × 0.5 mm × 600

mm) can give different results in the magnitude of the buckling force. This difference is due

to rod’s weight and depends on whether it buckles by sagging, hogging (i.e., rising upwards)

or by deflecting to one side. Sagging results in a steep negative gradient, hogging results in

a positive gradient and for the case that the rod buckles to one side, the effect of gravity is

minimised.

The effect of self weight was investigated by performing experiments on a 600 mm

long rod with a flat cross section (i.e., a tape). Tapes can be easily induced to bend in

the plane perpendicular to their flat side, whether this is up (hogging), down (sagging)

or sideways. Experimental data corresponding to these three different modes are shown

in Figure 13, where it can be seen that a tape, initially held under tension, which buckles

by hogging delays the primary bifurcation, whilst sagging hastens it. A difference of

4 mm between the maximum x deflection in these two modes was recorded. Force
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diagrams which include weight, imply that as the angle of deflection θ increases (due

to inputs of D), a tape which sags is under higher tension than a tape which hogs, but

the difference declines as slack increases.

Weight can be incorporated into the mathematical model by replacing (7) by

dN

ds
= m(s)gk, where m is the mass per unit length, which from measurements is

0.0048 kg/m. Preliminary numerical results show that the inclusion of the rod’s weight

leads to a rounding off of the primary bifurcation as observed in our experimental data.

However the magnitude of the offset between experiment and theory is insignificant and

does not reflect the quantitative offset between the gravity free theory and some of our

experimental results, especially those at high fixed R (see Figure 6). It is likely that

our assumptions of linear constitutive relations and nonshearability break down as R

increases. We note here that experiments were particularly sensitive to errors in the

boundary conditions (12).

This work shows that if a loop forms in a rod, then unwinding the twist may instigate

a dynamic jump as the rod pops out of self contact. Therefore to ensure smooth

removal of loops, the slack should be increased beyond the out-of-plane bifurcation

before reversing R. Note that by trying to pull the loop out by reversing the slack may

damage the rod.
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