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1 The model |

We investigate a model proposed to describe the lateral vibrations of a rotating
stabilised drillstring as is used in drilling oil wells. A schematic picture of the
underground part of a drilling assembly is given in Fig. 1. Usually it consists
of a rock-crushing tool (the bit) at the lower end of a series of tubular sections
(collars) supported by regularly spaced stabilisers. A small play between sta-
biliser and wall (inevitable in practice) introduces a nonlinearity in our model
which will turn out to give rise to complicated dynamical behaviour.

In deriving the equations of motion we assume that the hole is in the vertical
and that the deflected shaft is in its first bending mode so that we have a two-
degrees-of-freedom system (this is justified by the relatively low rotary speeds,
often close to the natural bending frequency of the shaft, in actual drilling).
Also, the stabilisers are considered massless. Then the equations of motion of
an isolated section of the drillstring between two stabilisers can be written, in
terms of the complex variable y = y; + 1y2, as follows:

k2

il )y = ew? exp iwt,

(1) j+ay+el -

where .
{0 if r=lyl=vyZ+y2 <8
o =
1 if r=ly|=1412+y.2> 4.

The equation has already been scaled into nondimensional form using the max-
imum possible deflection %(Dh — D.) (D and D, being the hole and collar
diameter respectively, see Fig. 1) and the natural bending frequency of the sec-
tion as reference length and frequency, respectively.

YThis work was supported by Shell Research B.V.
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Fig.1: Deflected drill collar section (left). Section A-A’ through the borehole and the
deflected drill collar (right).

In equation (1) the co-ordinates y; and y, represent two orthogonal dis-
placements of the geometric centre of the drill collar relative to the centre of
the hole, in a plane perpendicular to the borehole axis half way between the
two stabilisers (see Fig. 1). 7 is a linear damping coefficient, w is the driving
frequency, € the mass eccentricity of the collar and § is the stabiliser clearance.
« expresses the fact that, because the stabilisers are taken massless, an elastic
restoring force will only act when the radial deflection r exceeds the stabiliser-
wall clearance 6, i.e. when the stabiliser is in contact with the wall. This force,
then, is proportional to the displacement of the deflected collar with respect to
the stabiliser centre.

The immediate observation that the equation of motion (1) becomes au-
tonomous (time-independent) in a co-ordinate system z =z;+iz, rotating with
the frequency of forcing w, i.e. z=yexp(—iwt), will be useful in discussing the
dynamics of the model in the following sections. To end this section we refer to
[1,2] for more details on modelling drillstring dynamics, and to [3-5] for related
models in nonlinear rotordynamics.

2 Synchronous forward whirl
The simplest solutions of (1) are the so-called synchronous forward whirl so-
lutions. The drill collar then performs a circular motion around the centre of

the hole with frequency equal to the frequency of forcing w. Obviously, these
solutions can be obtained as fixed point solutions of the system in co-rotating
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Fig. 2: Forward whirl curves (e=0.1, y=0.02). Clearances less than £o: §= 0,{0.04,
0.08 (curves slightly shift to the right for increasing §) (left); clearances larger than eq:
6=0.2 (a), 0.4 (b), 0.6 (c) (xight). Solid lines represent stable, dotted lines unstable
solutions.

co-ordinates. For zero clearance, § =0, there is, for all w, a unique forward whirl
solution, which also acts as a global attractor. For non-zero é there turn out to
be two cases, depending on the size of the clearance § relative to the size of the
mass eccentricity . More precisely, the limiting case is not exactly § =& but
rather §=¢q where gg=¢€1/1 — 42 + O(+*%). In Fig. 2 frequency-response curves
are given for both cases. For § <eo there is stable whirl for all rotary speeds w
higher than a certain value (which is very small). In contrast, for § > ¢, whirl is
only possible for rotary speeds up to a certain speed (which is less than 1). For
more details on the exact nature of this distinction (in terms of the bifurcations
involved) we refer to [1]. For the present purpose it is important to note that
no whirl is possible for § >¢¢ and w>1, so the question, to be answered in the
next section, is: what kind of motion occurs in this region of parameter space.

3 Quasi-periodic solutions and chaos

In the region of parameter space where no simple whirl is possible (§ > &,
w>1) we find, in co-rotating co-ordinates, a whole family of seemingly related
limit cycles. Examples are shown in Fig. 3. They may be characterised by the
number of loops they develop in the (z1,z2)-plane. We will call them n-loops,
n referring to this number of loops. Solutions with up to 10 loops have been
observed. Note that these solutions correspond to quasi-periodic motions of the
drill collar in fixed co-ordinates.

Continuing some of the n-loops we obtain Fig. 4, showing the wedge-shaped
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Fig. 3: n-loops in co-rotating co-ordinates (§=0.2, £=0.1, 7=0.01). T denotes the

period.
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Fig. 4: Resonance tongues for the 1-loop (a), 2-loop (b), 3-loop (c) and 4-loop (d).
Also drawn are some first and second period-doubling curves (¢=0.1, =0.01).
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Fig. 5: Projections of a Poincaré section of the chaotic attractor for w=1.12,
§=0.2, £=0.1 and v=0.01.

regions (also called tongues) of their existence in the (w, §)-plane. On the bound-
aries of these tongues saddle-node bifurcations occur in which the n-loops an-
nihilate with their unstable partners (the resonance curves are closed curves).
In between the tongues motion eventually reaches the fixed point solutions for
§ <eq discussed in the previous section (these solutions, by the way, also exist,
along with the n-loops, for parameters inside the tongues, as long as 6 <&o)

For decreasing damping v the tongues become wider and move down to-
wards the w-axis. Indeed, in the limit of zero damping they seem to touch the
frequency axis at simple rational values of w. For instance, for the 1-, 2- and
4-loop these base frequencies would appear to be 3, 2 and :—;, respectively.

For low values of § the tongues are disjoint, but for é§ ~ 1 they start to
overlap. Two or more different n-loops then coexist for the corresponding
parameters. In the regions of overlap the n-loops each individually undergo
a series of period-doubling bifurcations for decreasing w. In Fig. 4 first and
second period-doubling curves for the 1-, 2- and 3-loop have been included.
After these period-doubling cascades chaotic motion is found. For the 3-loop
chaotic attractor two projections of the (3-dimensional) Poincaré section (with
the plane #; = 0) are shown in Fig. 5. They clearly feature the structure of
folded and nested lines typical of chaotic attractors. Quantitative evidence for
chaotic behaviour comes from a calculation of the Lyapunov exponents (yielding
A =0.176, A3 =0, A3=—0.0145, Ay =—0.191), confirming the occurrence of
a positive Lyapunov exponent, which is often taken as the definition of chaotic
dynamics.

The situation sketched above, in particular the behaviour of the tongues, is
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strongly suggestive of a resonance nature of the n-loops (compare, for instance,
[6,7]), as indeed will be established in the next section.

4 Resonances

To gain more insight into the origin of the n-loops it is useful to return to
fixed co-ordinates. For § =+ =0 system (1) reduces to a linear system whose
solutions can be written down immediately. They contain two frequencies,
the scaled natural frequency and the driving frequency w, and are periodic for
rational and quasi-periodic for irrational w. Since our n-loop tongues emerge
from rational w on the frequency axis in the (w, §)-plane, it would appear that for
nonzero 6 some of these periodic solutions of the linear model are entrained by
the nonlinearity. Recall however that the n-loops correspond to quasi-periodic
solutions in fixed co-ordinates. So, where does the additional frequency come
from?

To answer this question note that the linear system obtained from (1) by
putting 6=<=0 has a twofold natural frequency 1, as dictated, of course, by the
symmetry of the problem. Now, it turns out that the nonlinearity resolves this
degeneracy, creating two distinct frequencies out of the one natural frequency
of the linear model.

Having established the existence of three frequencies for finite § (two inter-
nal frequencies and the forcing frequency), one could anticipate approximate
solutions in the form of a sum of the corresponding harmonics:

y1(t) = a11 cos(wit + 1) + a1z cos(wat + @12) + @13 cos(wt + 13)
(@)

Y2(t) = ag1 cos(wit + a1) + as2 cos(wat + pa2) + ags cos(wt + pa3),

where w; and w; are the two internal frequencies and w is the driving frequency.
It is well-known, however, that, in coupled oscillators, a response of this form is
only possible if the frequencies are commensurate, i.e. if they satisfy a resonance
condition like

(3) niw; + Naws = nNw,

for certain integers ny, ny and n. The physical reasoning, of course, is that only
a forcing appropriately tuned to the internal cycles is able to effectively supply
energy to the system to compensate for the energy loss due to damping.

To verify whether conditions of the form (3) hold for our quasi-periodic
solutions we numerically computed their power spectra. The spectra of all
quasi-periodic solutions corresponding to n-loops in co-rotating co-ordinates
were found to be composed of frequencies ni@; + no.@, with @; and @, the
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two major frequencies and n;,n; non-negative integers satisfying |ne — nq|=1.
What’s more, the speculated resonances are indeed found: for each solution a
specific linear combination of @; and @, in its spectrum locks onto the forcing
frequency,i.e. ny@w;+nqw, = w for certain ny, ny, which depend on the particular
n-loop considered. Results for the first ten n-loops are listed in Table 1.

n-loop resonance n-loop ' resonance wo
l-loop | 2001+ @ =w l-loop | 2wy + we= w] 3
2-loop| @1 +2@; =w 2-loop | 8wy + wa= 2w 2
3-loop | 3@y + 2@ =w 3-loop | 3wy + 2wy = 3w | 3
4-loop | 2@0; + 3@ = w 4-loop | 2w + wr= 2w %
5-loop | 4@y + 3@y = w 5-loop | 4wy + 3wy = Sw| I
6-loop | 3@y +4@y, =w 6-loop | 5wy + 3wy = 6w % !
T-loop | 5@y + 4@y =w T-loop | Sw; +4we = Tw ,—?
8-loop | 4@y + 5@ = w 8-loop | 3wy + 2w = 4w 751
9-loop | 6@y + 5@ =w 9-loop | 6wy + 5wy = 9w | L

10-loop | 5@y + 6@ = w 10-loop | Tw; + 5wy = 10w g

Table 1 Table 2

A thorough inspection of the spectral analysis results reveals that the major
frequencies @y and w, are not just the perturbed natural frequencies which split
from the degenerate frequency of the linear model. In fact, they have a different
interpretation depending on whether n is even or odd. Explicitly, the measured
frequencies w; and @, can be identified in terms of the w; and w, (with the
behaviour: wy, wp — 1 if 6, ¥ — 0) as follows:

@ = 4, g = 2 for an odd n-loop
4
( ) TR 'l‘(w2_°’1) e W f 1
=20 Wy = i or an even n-loop.
2

Remark that, apparently, (2) is only valid for @; and @, in place of w; and ws.
Using Table 1 and the relations in (4) we can now derive the resonance
relations for the n-loops in terms of the w; and w;. Results are given in Table
2, from which the trend for increasing n is transparent. We have also listed wy
which is defined as the base frequency from which the resonance tongues emerge
and which can now easily be found by putting wy =w,=1. In fact, it is readily
checked that for an arbitrary n-loop wq is given by the simple formula

(5) w0=1+%’

consistent with results in Fig. 4 as well as with more extensive numerical cal-
culations. Formula (5) suggests that solutions with more and more loops exist
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for increasingly narrower resonance tongues which accumulate to the princi-
pal resonance of the system located at w = 1. More results will be published
elsewhere.

5 Discussion

A

We have studied a simple model for drillstring dynamics. The nonlinearity in-
troduced by stabiliser-wall clearance turns out to induce a whole series of quasi-
periodic responses which can be traced to entrainments of periodic solutions of
the associated linear problem.

For parameter values well within the region of practical significance chaotic
motion is found which seems to be associated with overlapping resondnces.

As to the practical implications of the various types of motion we note that
for the present scaling r =1 means that the drill collar hits the wall. Our results
show that for the quasi-periodic and chaotic responses, in general, collar-wall
contact will not occur. The forward whirl, however, may cause unwanted drill
collar rub against the wall if w is close to 1.

Another threat to the proper operation of the drilling assembly is presented
by fatigue (especially in the threaded connections between sections) caused by’
strongly fluctuating bending moments. Forward whirl, representing just a rigid
rotation of the shaft around the borehole axis, yields constant bending moments.
The other types of motion, however, most notably the chaotic motion, may cause
bending moments to vary considerably.
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