SYNOPSIS E466 APPLIED MECHANICS (DYNAMICS)

Generalised coordinates ¢ = (g1, ..., q,)" (n degrees of freedom); ¢; = ¢;(71, ..., 7x); holonomic
(f(r;) = 0) and nonholonomic (f(r;,7;) = 0) constraints

Virtual displacement, virtual work: 6W = Y. F;-or; = Y " | Q; 6¢; (Q; generalised forces)
Kinetic energy T', potential energy V', Lagrangian L =T — V (where L = L(q;, ¢;))

Euler-Lagrange equations of motion (including non-conservative generalised forces @); for damp-
ing, forcing, etc.): (d/dt)(0L/0q;) —OL/0q; = Q; (i=1,...,n)

Hamilton’s principle of stationary action: 6.5 = 0, where S = f:f L(q;, ¢;) dt, yields the Euler-
Lagrange equations (in the conservative case)

Small displacements: quadratic forms T'= 3 ¢"M¢q, V = 3 ¢" Kq (M mass matrix, K stiffness
matrix, both symmetric: M7 = M, KT = K)

Small oscillations are governed by the linear system of equations M¢ + Kq = F, with F' the
vector of generalised applied forces (this follows from the Euler-Lagrange equations)

Natural frequencies (eigenvalues) w; and natural mode shapes (eigenvectors) v of free (F' = 0)
synchronous vibrations are given by solutions of the eigenvalue problem (K — w?M)v = 0

Orthogonality of eigenvectors with respect to M and K: v®" Mvy@ = 0 = v®" K@) (1 # 7)

Normalisation: v®" Mv® = TI; then v®" Kv® = w? (normalised eigenvectors are called normal
modes)

The v form a basis: any ¢ can be expressed as a linear combination of eigenvectors, i.e., ¢ =
S civ® (expansion theorem), where ¢; = v®" Mg (this assumes normalised elgenvectors)

Modal matrix V = (v, ...,0(™) (columns of V are (usually normalised) eigenvectors); trans-
formation to normal coordinates ¢ according to ¢ = V¢ leads to a fully uncoupled system
of equatlons cl + w?c; = Q;, where Q = VTF, with solution ¢;(t) = Acosw;t + Bsinw;t +
(1/w;) fo ) sin wz(t — 7)dr (the expression Q@ = VT F assumes normalised eigenvectors)

Zero eigenvalues correspond to non-oscillatory rigid body modes (translation and/or rotation)

System with linear damping: M{§ + C¢+ Kq = F; in case of proportional damping (i.e.,
C' = aM + BK, for some « and () the modal expansion is preserved with decaying ¢;s

Forced systems (F' # 0), harmonic or non-harmonic forcing; harmonic forcing at one of the
natural frequencies w; leads to resonance (in the absence of damping this gives rise to unbounded
oscillations)

Given an estimate v of the fundamental mode shape, Rayleigh’s quotient R(v) = vT Kv/vT Mv
gives an estimate of the corresponding fundamental frequency, good to second order; in fact,
w? = v®" Ko® /@O Moy® and R(v) > w? for all v

Small free vibrations of uniform continuous systems: lateral vibrations of a string, longitudinal
vibrations of a bar and torsional vibrations of a shaft are all governed by the wave equation

20%*u)0r* = 9*u/ot?



Small free vibrations of a uniform Euler-Bernoulli beam are governed by the beam equation
A0*u/0x* + 0%u/ot* = 0

Looking for separable solutions (synchronous motion), u(x,t) = Y (x)Z(t), leads to a boundary-
value problem for Y requiring 2 boundary conditions (one on each side) for the string, bar
or shaft, and 4 boundary conditions (two on each side) for the beam; there are infinitely
many solutions (eigenvalues, natural frequencies) w, of the characteristic equation, each with
corresponding eigenfunction (natural mode) Y, (z) (n =1,2,...)

There is again an orthogonality principle for the mode shapes Y,,(z); there is also an expansion
theorem which allows one to reduce the problem to an (infinite) set of uncoupled harmonic
oscillators ¢;; hence the problem of finding the response of a beam to external lateral excitation
is entirely analogous to that for a discrete system

The finite-element method offers a way of approximately solving the equations of motion for a
continuous structure by dividing the structure into elements and expressing the displacement
u(z,t) at any point of a given element in terms of displacements w; at the boundaries (the
nodes) of that element; for the approximate mode shapes we take solutions of the corresponding
statics problem (the shape functions ¢;(x)); the mass matrix M and stiffness matrix K follow
by performing the z-integration of the kinetic and potential (strain) energy; the vector of nodal
forces F'is found by using the virtual work expression; the result is a discrete system of equations
in the form MG+ Kq = F, where ¢ = (uy, us,...)T is the vector of nodal displacements

Torsion element (2 x 2 matrices); beam element (4 x 4 matrices)

The global mass and stiffness matrices M and K for the whole structure (an assemblage of
finite elements) are obtained by suitably integrating the individual elemental matrices M; and
K; into matrices for the overall structure: M = S | ATM;A;) K = SN ATK,;A; (sum over
N finite elements), where the matrices A; express the nodal displacements of element 7 in terms
of displacements relative to a global system of coordinates

Instead of consistent-mass matrices for an element one can use simpler (diagonal) lumped-mass
matrices
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