
SYNOPSIS E466 APPLIED MECHANICS (DYNAMICS)

Generalised coordinates q = (q1, ..., qn)T (n degrees of freedom); qi = qi(r1, ..., rN ); holonomic
(f(ri) = 0) and nonholonomic (f(ri, ṙi) = 0) constraints

Virtual displacement, virtual work: δW =
∑

i F i · δri =
∑n

i=1 Qi δqi (Qi generalised forces)

Kinetic energy T , potential energy V , Lagrangian L = T − V (where L = L(qi, q̇i))

Euler-Lagrange equations of motion (including non-conservative generalised forces Qi for damp-
ing, forcing, etc.): (d/dt)(∂L/∂q̇i) − ∂L/∂qi = Qi (i = 1, ..., n)

Hamilton’s principle of stationary action: δS = 0, where S =
∫ t2

t1
L(qi, q̇i) dt, yields the Euler-

Lagrange equations (in the conservative case)

Small displacements: quadratic forms T = 1
2
q̇T Mq̇, V = 1

2
qT Kq (M mass matrix, K stiffness

matrix, both symmetric: MT = M , KT = K)

Small oscillations are governed by the linear system of equations Mq̈ + Kq = F , with F the
vector of generalised applied forces (this follows from the Euler-Lagrange equations)

Natural frequencies (eigenvalues) ωi and natural mode shapes (eigenvectors) v(i) of free (F = 0)
synchronous vibrations are given by solutions of the eigenvalue problem (K − ω2M)v = 0

Orthogonality of eigenvectors with respect to M and K: v(i)T

Mv(j) = 0 = v(i)T

Kv(j) (i 6= j)

Normalisation: v(i)T

Mv(i) = I; then v(i)T

Kv(i) = ω2
i (normalised eigenvectors are called normal

modes)

The v(i) form a basis: any q can be expressed as a linear combination of eigenvectors, i.e., q =∑n

i=1 civ
(i) (expansion theorem), where ci = v(i)T

Mq (this assumes normalised eigenvectors)

Modal matrix V = (v(1), ..., v(n)) (columns of V are (usually normalised) eigenvectors); trans-
formation to normal coordinates c according to q = V c leads to a fully uncoupled system
of equations c̈i + ω2

i ci = Qi, where Q = V T F , with solution ci(t) = A cos ωit + B sin ωit +
(1/ωi)

∫ t

0
Qi(τ) sin ωi(t − τ) dτ (the expression Q = V T F assumes normalised eigenvectors)

Zero eigenvalues correspond to non-oscillatory rigid body modes (translation and/or rotation)

System with linear damping: Mq̈ + Cq̇ + Kq = F ; in case of proportional damping (i.e.,
C = αM + βK, for some α and β) the modal expansion is preserved with decaying cis

Forced systems (F 6= 0), harmonic or non-harmonic forcing; harmonic forcing at one of the
natural frequencies ωi leads to resonance (in the absence of damping this gives rise to unbounded
oscillations)

Given an estimate v of the fundamental mode shape, Rayleigh’s quotient R(v) = vT Kv/vTMv
gives an estimate of the corresponding fundamental frequency, good to second order; in fact,
ω2

i = v(i)T

Kv(i)/v(i)T

Mv(i) and R(v) ≥ ω2
1 for all v

Small free vibrations of uniform continuous systems: lateral vibrations of a string, longitudinal
vibrations of a bar and torsional vibrations of a shaft are all governed by the wave equation
c2∂2u/∂x2 = ∂2u/∂t2
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Small free vibrations of a uniform Euler-Bernoulli beam are governed by the beam equation
c2∂4u/∂x4 + ∂2u/∂t2 = 0

Looking for separable solutions (synchronous motion), u(x, t) = Y (x)Z(t), leads to a boundary-
value problem for Y requiring 2 boundary conditions (one on each side) for the string, bar
or shaft, and 4 boundary conditions (two on each side) for the beam; there are infinitely
many solutions (eigenvalues, natural frequencies) ωn of the characteristic equation, each with
corresponding eigenfunction (natural mode) Yn(x) (n = 1, 2, ...)

There is again an orthogonality principle for the mode shapes Yn(x); there is also an expansion
theorem which allows one to reduce the problem to an (infinite) set of uncoupled harmonic
oscillators ci; hence the problem of finding the response of a beam to external lateral excitation
is entirely analogous to that for a discrete system

The finite-element method offers a way of approximately solving the equations of motion for a
continuous structure by dividing the structure into elements and expressing the displacement
u(x, t) at any point of a given element in terms of displacements ui at the boundaries (the
nodes) of that element; for the approximate mode shapes we take solutions of the corresponding
statics problem (the shape functions φi(x)); the mass matrix M and stiffness matrix K follow
by performing the x-integration of the kinetic and potential (strain) energy; the vector of nodal
forces F is found by using the virtual work expression; the result is a discrete system of equations
in the form Mq̈ + Kq = F , where q = (u1, u2, ...)

T is the vector of nodal displacements

Torsion element (2 × 2 matrices); beam element (4 × 4 matrices)

The global mass and stiffness matrices M and K for the whole structure (an assemblage of
finite elements) are obtained by suitably integrating the individual elemental matrices Mi and
Ki into matrices for the overall structure: M =

∑N

i=1 AT
i MiAi, K =

∑N

i=1 AT
i KiAi (sum over

N finite elements), where the matrices Ai express the nodal displacements of element i in terms
of displacements relative to a global system of coordinates

Instead of consistent-mass matrices for an element one can use simpler (diagonal) lumped-mass
matrices
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