Wind, Waves and Currents

Specifying Design Conditions for Offshore Wind Farms

Wind turbines —

Part 3: Design requirements for offshore wind turbines

Design Cases For Offshore Turbines

Table	1 -	Design	load	cases
-------	-----	--------	------	-------

Design situation	DLC	Wind condition	Waves	Wind and wave directionality	Sea currents	Water level	Other conditions	Type of analysis	Partial safety factor
1) Power production 1.1 1.2 1.3 1.4 1.5 1.6a 1.6b	1.1	NTM	NSS	COD, UNI	NCM	MSL	For extrapolation of extreme loads on the RNA	U	N (1.25)
		RNA	n _s – L[n _s] v _{hub}]						(1,25)
	1.2	NTM $V_{in} < V_{hub} < V_{out}$	NSS Joint prob. distribution of H _s , T _p , V _{hub}	COD, MUL	No currents	NWLR or ≥ MSL		F	*
	1.3	ETM	NSS	COD, UNI	NCM	MSL		U	N
		$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	$H_{s} = E[H_{s} V_{hub}]$						
	1.4	ECD	NSS (or NWH)	MIS, wind direction change	NCM	MSL		U	N
		$V_{hub} = V_r - 2 \text{ m/s}, V_r$	$H_{s} = E[H_{s} V_{hub}]$						
		V _r + 2 m/s							
	1.5	EWS	NSS (or NWH)	COD, UNI	NCM	MSL		U	Ν
		$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	$H_{s} = E[H_{s} V_{hub}]$						
	1.6a	NTM	SSS	COD, UNI	NCM	NWLR		U	N
		$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	$H_s = H_{s,SSS}$						
	1.6b	NTM	SWH	COD, UNI	NCM	NWLR		U	N
		$V_{\rm in} < V_{\rm hub} < V_{\rm out}$	$H = H_{SWH}$						

For Scenario: Case 1.1

operational conditions:

$$V_{\rm in} < V_{\rm hub} < V_{\rm out}$$

NSS MSL NCM COD UNI U normal sea state (see 6.4.1.1) mean sea level (see 6.4.3) normal current model (see 6.4.2.4) co-directional (see 6.4.1) uni-directional (see 6.4.1) ultimate strength (see 7.6.2)

Design Cases For Offshore Turbines

6) Parked (standing still or idling)	6.1a	EWM Turbulent wind model	ESS	MIS, MUL	ECM	EWLR		U	N
		$V_{hub} = k_1 V_{ref}$	$H_{\rm s} = k_2 H_{\rm s50}$						
	6.1b	EWM Steady wind model	RWH	MIS, MUL	ECM	EWLR		U	N
		$V(z_{hub}) = V_{e50}$	$H = H_{redS0}$						
	6.1c	RWM Steady wind model	EWH	MIS, MUL	ECM	EWLR		U	N
		$V(z_{hub}) = V_{red50}$	$H = H_{50}$						
	6.2a	EWM Turbulent wind model	ESS	MIS, MUL	ECM	EWLR	R Loss of electrical network	U	Α
		$V_{\rm hub} = k_1 V_{\rm ref}$	$H_{s} = k_{2} H_{s50}$						
	6.2b	EWM Steady wind model	RWH	MIS, MUL	ECM	EWLR	Loss of electrical	U	Α
		$V(z_{hub}) = V_{e50}$	$H = H_{red50}$			network			
	6.3a	EWM Turbulent wind model	ESS	MIS, MUL	ECM	NWLR	Extreme yaw	U	N
		$V_{\text{hub}} = k_1 V_1$	$H_{s} = k_2 H_{s1}$				misalignment		
	6.3b	EWM Steady wind model	RWH	MIS, MUL	ECM	NWLR	Extreme yaw	U	N
		$V(z_{hub}) = V_{e1}$	$H = H_{red1}$				misalignment		
	6.4	NTM	NSS Joint prob.	COD, MUL	No	NWLR or		F	
		$V_{\rm hub} < 0.7 V_{\rm ref}$	distribution of $H_{\rm s}, T_{\rm p}, V_{\rm hub}$		currents	≥ MSL			
			RWM	reduc	ed wir	nd spe	ed model	(see 6	5.3)
r Scena	r Scenario: Case 6.1c		FWH	extreme wave height (see 6416)					
(with alterations)		ations)							
		ECM	extreme current model (see 6.4.2.5)						
Extreme conditions		nditions	EWLR	extreme water level range (see 6.4.3.2					.4.3.2
			COD	co-directional (see 6.4.1)					
			000						
			UNI	uni-directional (see 6.4.1)					
			U	ultin	nate st	trenath	(see 7.6	2)	
			<u> </u>	annuale strength (see 1.0.2)					

Operational Case

Wind: higest operational

 $V(z) = V_{hub} (z/z_{hub})^{\alpha}$ for normal wind conditions α , is 0,14

Current: NCM = wind-generated + breaking wave currents

Scenario assumption: no breaking wave current

The wind generated current may be characterised as a linear distribution of velocity $U_w(z)$ reducing from the surface velocity $U_w(0)$ to zero at a depth of 20 m below SWL:

$$U_{\rm W}(0) = 0.01 V_{1-\rm hour}(z=10 \,{\rm m})$$
 $U_{\rm W}(z) = U_{\rm W}(0)(1+z/20)$

Waves: normal sea state associated with highest operational wind

BS 6349-1:2000 "Maritime structures – Part 1: Code for practice for general criteria"

22.2 Wave prediction

22.2.4 Prediction by significant wave charts

Wave Parameters

3.5.9 significant wave height average height of the highest one third of the waves

Significant Wave Prediction Chart

Wind

speed

(knots)

Extreme Case

Wind: Reduced Extreme Wind Speed

 $V_{\text{red50}}(z) = 1,1 V_{\text{ref}} (z/z_{\text{hub}})^{0,11}$, V_{ref} reference wind speed.

Current: Extreme Current Model, 50 years extreme

Scenario assumption: Subsurface current only $U_{ss}(z) = U_{ss}(0)[(z+d)/d]^{1/7}$

Waves: 50 years extreme

BS 6349-1:2000 "Maritime structures – Part 1: Code for practice for general criteria"

21.3 Sea state properties

21.3.8 Return period and design wave condition

27 Extrapolation of wave data

27.2 Extrapolation to extreme wave conditions

Typical Wave Data

Wavehight (m) vs Time (years): Hs - red; Hmax - green

Return Period and Probabylity

Design working life, n years

Probability Distributions

For a set of n_x values of representative heights H the probability, p_n , that H_n is equalled or exceeded is given by:

$$p_{\mathbf{n}} = 1 - \frac{n}{n_{\mathbf{x}} + 1}$$

The following distributions may be appropriate

- a) Weibull distribution. Plot $\log_{e} \log_{e} (1/p_{n})$ against $\log_{e} (H_{n} H_{L})$.
- b) Fisher-Tippet distribution. Plot $-\log_e \log_e (1/(1 p_n))$ against $-\log_e(H_L H_n)$.
- c) Frechet distribution. Plot $-\mathrm{log_elog_e}(1/(1-p_n))$ against $\mathrm{log_e}(H_n-H_L).$
- d) Gumbel distribution. Plot $-\log_e \log_e(1/(1 p_n) \text{ against } H_n$.
- e) Gompertz distribution. Plot
 $\log_{\rm e}\!\log_{\rm e}(1/p_{\rm n})$ against $H_{\rm n}.$
- $H_{\rm L}$ represents a limiting value of $H_{\rm n}$

Example from Data

Probability vs Wavehight (m): Hs - red; Hmax - green

Example from Data

Same using Gumbel distribution Hs – red; Hmax – green; probability of 50years event - blue

Wave Period

Wavehight (m) vs Period (s)

More Reading

Holthuijsen, Leo H. (2007). Waves in Oceanic and Coastal Waters. Cambridge University Press.

- 3. Description of ocean waves
 - 3.1 Key concepts
 - 3.2 Introduction
 - 3.3 Wave height and period
 - 3.4 Visual observations and instrumental measurements
- 4. Statistics
 - 4.3 Long-term statistics (wave climate)

Online version available at:

http://app.knovel.com/hotlink/toc/id:kpWOCW0002/waves-in-oceanic-coastal

Example of a Wave Data Report (available on MOODLE):

https://moodle.ucl.ac.uk/mod/resource/view.php?id=1534943