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Abstract

In most cases the hexagonal packing of fibrous structures extrem-
izes the energy of interaction between strands. If the strands are not
straight, then it is still possible to form a perfect hexatic bundle. Con-
ditions under which the perfect hexagonal packing of curved tubular
structures may exist are formulated. Of particular interest are closed
bundles like DNA toroids or spools. The closure or return constraints of
the bundle result in an allowable group of automorphisms of the cross-
sectional hexagonal lattice. The structure of this group is explored.
Examples of an open helical-like and closed toroidal-like bundles are
presented. A possible implication on a condensation of DNA in toroids
and its packing inside a viral capsid is briefly discussed.

1 Introduction

It is known that the densest packing of infinite straight cylinders is hexago-
nal when all their axes are parallel [1]. It evidently corresponds to hexagonal
packing of disks in a plane. The hexagonal packing of tubular objects oc-
curs in numerous instances at nano to macro scale. Among examples there
are nanotubes [19], high density columnar hexatic liquid crystalline DNA
mesophases [12] and others. In most cases, this packing extremizes the in-
teraction energy between filaments. Geometrically, it means that all pairs
of neighbouring axes are located at constant distance to each other.

In some instances, the filaments are not straight. Then, the natural
question arises of whether it is still possible to reach the same maximal
density of packing. If yes, then the second question can be formulated
as: what is the set of configurations of infinite (or closed) tubes that have
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the maximal density? By a tube (or a tubular neighbourhood) here we
understand the set of all points in space whose distance from the smooth
axial curve does not exceed the constant thickness radius. We can set the
scale by fixing this radius to 1. Moreover we will assume that the global
radius of curvature of the axes is less or equal to 1. Thus, the tubes cannot
overlap, but they are perfectly flexible. It will be shown in the following
that the densest packing class includes curvilinear axes, which should be
relatively parallel. This implies that an arbitrary small twist of one axis
around another immediately destroys the hexagonal packing.

In most cases, one is interested in the optimal packing in some particular
domain. In this paper we do not deal with the disturbing influence of the
boundaries. The packing will be considered as optimal if in any section
orthogonal to the axis of a tube at some point P , the cross-sectional discs
are hexagonally packed within a connected domain which includes the point
P . In this sense, any single curvilinear perfect tube, which does not contact
itself is optimally packed. This degenerate case just shows that the set of
such locally optimal hexagonal packs is richer then the global packing.

A complicated structure arises when the tubes are in contact with them-
selves. An important example is a condensation of DNA in toroids [6, 8, 9]
or a DNA arrangement inside of viral capsids [4, 11, 3]. In this paper,
particular attention is given to closed bundles of hexagonally packed tubes.
The closedness condition imposes a strict constraint on the whole structure.
Indeed, take an orthogonal cross-section of the bundle. Then, we study the
mapping of the 2D hexagonal lattice in the cross-section onto itself. The
automorphisms that preserve both the distances and the connectivity form
a discrete infinite group. Its study results in characterization of all pos-
sible closed hexagonally packed bundles: the writhing number [7] of each
axis that realizes the mapping should equal n/6, where n is integer. One
consequence of the automorphism group structure is that it is impossible to
form a closed hexagonally packed bundle with a single filament: frustration
is inevitable [14]. Examples of closed bundles made up with several strands
are presented and the inverse spool model of the DNA packing inside a viral
capsid is briefly discussed.

2 Unconstrained tube packing

We start with consideration of a perfect tube of some length with axis r0(s), s
being the arclength parametrization. Let the tube be in a continuous contact
with the maximal allowed number of other tubes of the same thickness. This
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number equals 6 [18], thus it may be said that the tubes are hexagonally
packed. Denote the axes of the neighbouring tubes by rj(s), j = 1, . . . , 6.
We can choose the same parametrization for all the tubes such that for every
s the points rj(s), j = 1, . . . , 6 are the closest to the central axis r0(s) and
they lie in the vertices of a regular triangular lattice. Note that s is not
obliged to be an arc coordinate for rj(s), j = 1, . . . , 6. The vector field
mj0(s) ≡ rj(s) − r0(s) is relatively parallel [2]. It implies that there is no
twist of vectors mj0(s) about the central axis. We can add more layers of the
tubes in the same manner as first six tubes. Proceeding this way will allow
us to build a bundle of parallel tubes that fill up some domain in space.
The hexagonal packing provides the maximal density in this domain. In
particular, if all the tubes are straight, we have the packing of cylinders [1].

Let us now obtain an equation that governs the position of the neigh-
bouring tube for a given central axis. We omit the index j for clarity. Since
‖m‖ = const(= 2), we can write

dm

ds
= ω ×m, (1)

and the vector ω may be represented as ω = ω1m +ω2T×m [18], where we
denote by T = dr

ds the tangent to the central axis.
By definition, the vector m connects the closest points on two curves,

which implies m ·T = 0. Differentiating this equation and further substitute
eq. (1) for dm

ds , we come to ω2m
2 = m · dTds , or, with the help of the Serret-

Frenet equations, ω2m
2 = κm ·N. Finally, the differential equation for the

orientation vector m can be given the form

dm

ds
= −κ(m ·N)T. (2)

This is the main equation that describes the arrangement of tubes in the
hexagonally packed bundle.

The infinite number of infinitely long cylinders can fill in the entire space.
This is not possible for curvilinear tubes. Suppose the axis r(s) has the
curvature κ0 > 0 in some point r(s0). The tangent T(s0), the principal
normal N(s0) and the binormal B(s0) form the othonormal Frenet frame
in the same point. The normal plane Q spanned by N(s0) and B(s0) is
that of the orthogonal cross-section of the bundle. Now take some vector
R ∈ Q. Then the curvature of a tube’s axis that passes through the point
r(s0) + R is κ1 = κ0(1 − κ0R ·N(s0))−1. Since κ1 ≤ 1, we come to an
ineqality R · N(s0) ≤ κ−1

0 − 1. In other words, all the axes of the tubes
in the bundle may only cross the plane Q in the region bounded by the
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straight line which is parallel to the binormal B(s0) with the offset distance
κ−1

0 − 1. Therefore, the thickness radius of the bundle cannot exceed κ−1
0

in the direction of the principal normal. As the coordinate s varies, the
boundary straight line sweeps out a ruled surface which bounds a domain
in space where the bundle can exist.

By way of example let us take a look at the regular helical curve: r(s) =
(cosas, sinas,

√
1− a2s), 0 ≤ a ≤ 1. Equation (2) transforms to the system

dξ

ds
= aη,

dη

ds
= a(a2 − 1)ξ,

dmz

ds
= a2

√
1− a2ξ, (3)

and the first two components of the vector m = (mx, my, mz) are expressed
as mx = ξ cos as− η sin as, my = ξ sin as+ η cos as. The explicit solution of
eq. (3) is easy to find:

ξ = c1 cos τs+ c2 sin τs, η =
√

1− a2(c2 cos τs − c1 sin τs),

mz = a(c1 sin τs− c2 cos τs),

where τ = a
√

1− a2 is the torsion and m2 = c2
1 + c2

2. Figure 1 shows a
bundle of six tubes arranged at constant distance from the central tube and
from the neighbours. At every section which is orthogonal to their axes the
crossing points form the hexagonal lattice.

3 Cycled bundles

Consider a bundle of tubes that are hexagonally packed. Take a plane Q of
an orthogonal cross section of some tube with an axis point P . Let Ψ ∈ Q
be a connected domain which includes all the cross-sectional discs of tubes
in the bundle touching each other. Clearly, this plane is orthogonal to all
the axes of the tubes that cross Ψ. Thus, the axes’ points are the vertices of
a triangular lattice ie1 + je2, i, j ∈ �

and e2
1 = e2

2 = 2e1 · e2 = 1. Actually,
eq. (2) defines a parallel vector field in the 3D space and if a 2D lattice is
specified in a plane orthogonal to the field, then the structure of this lattice
remains invariant when the plane moves along the field. This opens the way
to generalizations for tubes of different thickness.

Now we are interested in such arrangements of tubes in space that, when
starting at some particular vertex, the axis comes back to the same plane at
the same point or another vertex. Moreover, we will assume that the tubes
originating from two neighbouring vertices will remain in permanent contact
and thus return to neighbouring vertices. Then, the general question to be
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Figure 1: The perfectly packed bundle of 1+6 tubes. The axis of the central
one (shown in blue) is a regular helix, six others are relatively parallel to it.
The tubes are shown thinner to ease representation.
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asked is: what are allowable automorphisms of the lattice induced by the
three-dimensional shape of the bundle?

Let us fix the origin of the reference frame in some vertex in the plane Q.
Without loss of generality, we can study the tube that starts in the origin,
we call it the core. Let it come back next time at the vertex ∆r = ke1 + le2,
k, l ∈ � . Now take the neighbouring starting vertex p1; without loss of
generality we can take p1 = e1. It is enough to consider only one neighbour,
because, if we know the shape of two neighbouring tubes we can reconstruct
the entire bundle uniquely, including the automorphism of the lattice. Let
the neighbouring tube end up in the vertex p2 = ∆r + Ωnp1, where Ωn is a
rotation linear operator with matrix

Ωn =

(
cos π3n − sin π

3n
sin π

3n cos π3n

)
, n ∈ � 6, (4)

and Ω1e1 = e2, Ω2e1 = Ω1e2 = e2 − e1, Ω3e1 = −e1, Ω4e1 = −e2, Ω5e1 =
e1 − e2, Ω0e1 = e1.

Let us first consider the case when the core comes back to the origin,
i.e. k = l = 0. Then the mapping of the lattice onto itself is just a rotation
through the angle π

3n around the origin. If n = 0, then the map is identical,
all the tubes come back to their starting places. Thus the whole bundle
contains a set of closed tubes and every tube crosses the domain Ψ only
once. Such a bundle is often used as a simplified model in studies of DNA
condensation into nanostructures, in particular, toroids [20, 9] or spools [16,
15]. For n = 1, 5, every tube makes closure after 6 intersections with Ψ
(fig. 2(a)), for n = 2, 4 after three crossings (fig. 2(b)) and for n = 3 after
two (fig. 2(c)).

Take the axes of the core and of a neighbouring tube and consider a closed
thin ribbon which is formed by an arbitrary short vector ε∆r(s), s ∈ [0, L],
pointing from the core axis to the closest point onto the neighbouring axis.
Generally, the ribbon is not closed, the closed is only its one edge, the core
axis. The ribbon is untwisted, because of the parallelism of the axes. Then,
the fractional part of the writhe of the closed core axis equals − 1

2π · π3n = −n6
(see Appendix A in Ref. [17]). Moreover, it is easy to see that the writhe of a
piece of every axis between two intersections with Ψ is the same. Note, that
for n 6= 0, these pieces are not closed though they have parallel tangents at
their ends.

Now we come to the more general case when |k|+ |l| 6= 0. Our aim is to
find a point c = µe1 + νe2 such that the rotation of the plane Q through
the angle π

3n maps the origin into the point ∆r and p1 into p2. We shall
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Figure 2: a) Rotation of the lattice around the central disk through ± 1
3π

mod 2π (n = 1, 5). b) Rotation of the lattice around the central disk
through ±2

3π mod 2π (n = 2, 4). c) Rotation of the lattice around the
central disk through ±π mod 2π (n = 3).

call this point c the centre of rotation and it should satisfy the equation

Ωnc = c−∆r, (5)

which transforms into a system of two equations for the coordinates µ, ν.
Equation (5) implies that Ωn(c−p1) = c−p2 which shows that the point p1

goes to p2 after rotation. This means that the transformation of the plane
Q is consistent with an automorphism of the lattice.

Consider now all the possible cases of various n ∈ � 6 and find the co-
ordinates of the point c explicitly. Note that the point c is not obliged to
belong to the domain Ψ.

n = 0. The centre of rotation does not exist; the transformation is a
translation along ∆r (fig. 3(a)).

n = 1. The centre of rotation is located in a vertex of the triangular
lattice: c = −le1 + (k + l)e2. The self-mapping of the lattice is rotation
around the point c through π

3 mod 2π (fig. 2(a)).

n = 2. The centre of rotation has the coordinates: µ = k−l
3 , ν = k+2l

3 . It
can be represented as c = σ

3 (e1 +e2)+se1 + te2 with σ = 0,±1 and s, t ∈ � ,
from where we see that the centre of rotation is located in a vertex of a
reciprocal lattice. If l − k = 3h, h ∈ � (σ = 0), then the centre of rotation
coincides with the centre of a cross-sectional disk of a tube which closes after
one cycle (fig. 2(b)). Otherwise, the point c is located in the centre of one
of the equilateral triangles of the initial lattice. There exists no core tube,
instead, all the lattice is decomposed into triples of disks and every triple
corresponds to a single tube which closes after three intersections with Ψ
(fig. 3(b)).

n = 3. The lattice map is a rotation through π mod 2π around c =
1
2(ke1 + le2). If k and l are both even, then the map is as in fig. 2(c).
Otherwise, there is no self-joining core, all the tubes have two crossings
with Ψ (fig. 3(c)).



E.L.Starostin. On the perfect hexagonal packing of tubes 8

Figure 3: a) Translation of the lattice along e1 (n = 0). b) Rotation of the
lattice around 1

3(e1 + e2) through ±2
3π mod 2π (n = 2, 4). c) Rotation of

the lattice around 1
2e1 through ±π mod 2π (n = 3).

n = 4. This case resembles that for n = 2. The lattice is rotated through
4
3π mod 2π around c = 1

3((2k + l)e1 + (l− k)e2) = σ
3 (e1 + e2) + se1 + te2

with σ = 0,±1, s, t ∈ � . If l − k = 3h, h ∈ � (σ = 0), then the point c lies
in the centre of the disk of the one-cycle core (fig. 2(b)). Otherwise, there
exist only cycles of period three (fig. 3(b)).

n = 5. The last case is similar to that for n = 1. The lattice is mapped
onto itself by rotation through 5

3π mod 2π around the centre c = (k+l)e1−
ke2.

Summing up, we can say that the automorphism group of the lattice is
finitely generated by the following set of transformations: 1) an identity map,
2) translations along the lattice vectors e1 and e2, 3) a rotation through 1

3π
around the origin, 4) a rotation through 2

3π around 1
3(e1 +e2), 5) a rotation

through π around 1
2e1.

The above group includes all the transformations of the lattice which
may be realized with a bundle of continuously hexagonally packed tubes.
We see that the maximal number of returns of one tube is six. This implies
that a thick (multi-layered) bundle may be formed only by a set of separate
closed tubes. Note that in the case of translations, one may speak only
about self-attached bundles, not closed in a strict sense.

The spatial configuration of the bundle determines the continuous map-
ping of the domain Ψ of the cross-sectional plane which moves in space as
the parameter s varies. Therefore, the centres of rotation form a closed curve
c(s). As in the above-considered particular case, the fractional part of the
writhe of a piece of axis between consecutive crossings equals −n

6 . To prove
this in case n 6= 0, one has to consider a ribbon formed by a vector ε∆r(s)
directed from the curve c(s) to the closest point onto the neighbouring axis.

If n = 0, then we can consider a ribbon formed by the vector ε∆r(s)
moving along an open or closed axis of some tube on the interval between
two consecutive intersections with Ψ. The ribbon is untwisted and both its
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edges may be not closed, but the orientation of its ends is the same. If open,
such a ribbon may be made closed by adding another untwisted ribbon,
hence its writhe (i.e. the writhe of the tube’s axis) should be integer (details
on how to deal with the writhe of open curves can be found in Ref. [17]).

Consider a helical tube in which the successive coils touch each other
continuously. Fix a point on the axis of the tube and take an orthogonal
cross-section of the tube at this point. It is easy to show that the plane of this
section crosses all other coils non-orthogonally. But the hexagonal packing
is only possible with parallel tangents to the axes at the cross-section [18].
Therefore, the packing in a cylindrical spool when the helical tubes form
layers [13] is nowhere hexagonal. In other words, the adjacent coils cannot
be made relatively parallel (cf. fig. 1). Additionally, the spool formation
scenario from outer to inner layers [13] poses more problems: 1) it is not
clear how DNA may switch to a next layer without either self-intersection
or sharp bends, depending on its relative direction in the adjacent layers;
2) since the radius of the helix decreases with the number of coils being the
same in all the layers, the DNA tube is forced to be compressed in the inner
layers, which should lead to frustration.

An example of a perfectly packed closed bundle is shown in fig. 4. The
axis of the central tube lies on the surface of a torus. It closes after one
turn around the torus’ hole. The writhing number of the central axis was
made equal to −1

6 . The second tube winds six times around the torus’ hole,
forming the hexagonally packed structure. Another example is presented in
fig. 5, it corresponds to the lattice transformation of fig. 3(b). The mapping
of fig. 3(c) takes place in the bundle shown in fig. 6. Three closed tubes are
drawn. The axis of each tube may be considered as an edge of a Möbius
strip. The contact line of the central tube lies on the surface of a torus and
its writhing number is − 1

2 .
Under certain conditions, the DNA toroids may deform taking on a

warped shape [5]. Generally, this deformation affects the interstrand dis-
tances and the interaction energy between strands. This effect may influ-
ence the twist-bend instability of the DNA condensates [10]. However, fig. 5
shows a perfectly packed structure with an overall shape that closely resem-
bles the warped toroids in [5].
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Figure 4: The perfectly packed bundle made up of two closed tubes. The
core (dark) makes one turn and the second tube winds six times. The
colour variation codes the arclength. The tubes are shown thinner to ease
representation.
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Figure 5: The perfectly packed bundle made up of four closed tubes. The
tubes are shown thinner to ease representation.
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Figure 6: The perfectly packed bundle that corresponds to the case of
fig. 3(c).
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