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Abstract. The equilibrium shapes of a closed DNA are investigated by employing a model of a thin, homogeneous,
isotropic, linearly elastic rod of circular cross section. An equilibrium configuration of such an initially straight and
twisted rod, submitted to external forces and moments at its ends only, obeys equations identical to those governing
the rotation of a symmetric gyrostat spinning about a fixed point in a gravitational field (the Kirchhoff analogy). To
represent the equilibrium of the looped DNA, the model rod must be smoothly closed into a ring. The corresponding
BVP results in a system of four nonlinear equations with respect to four parameters. The perturbation analysis and
the parameter continuation approach are used to find nonplanar solutions. The conformation change is discussed
for various values of parameters.

Sommario. Si analizzano le configurazioni di equilibrio di una molecola chiusa di DNA per mezzo di un modello
di trave sottile, omogenea, isotropa e linearmente elastica, con sezione circolare. La configurazione di equilibrio
di una tale trave, inizialmente rettilinea e poi ritorta, soggetta a forze esterne e momenti solo alle sue estremita,
¢ descritta dalla soluzione di equazioni identiche a quelle che governano il moto di un girostato simmetrico in
rotazione intorno ad un punto fisso in un campo gravitazionale (I’analogia di Kirchhoff). Per poter rappresentare
’equilibrio del cappio di DNA, il modello di trave deve essere racchiuso in un anello, Il corrispondente problema
al contorno consiste in un sistema di quattro equazioni nonlineari rispetto a quattro parametri. Le soluzioni del
problema fuori del piano vengono ottenute tramite 1’analisi perturbativa ed una procedura di continuazione al
variare di un parametro. Si discutono le modifiche di configurazione del sistema per diversi valori dei parametri.
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‘It is not easy to think clearly about the way in which double-stranded
DNA twists into various coils and supercoils’.

EH.C. Crick [1].

1. Introduction

A molecule of deoxyribonucleic acid, DNA, is usually represented by two chains of com-
plementary nucleotides which wind around a common axis and form a right-handed double
helix. The double helix of DNA was discovered by James D. Watson and Francis H.C. Crick
in 1953. The radius of the helix is about 10 A and the length of the DNA may achieve 10* A
or even more. Approximately 10 base pairs correspond to one turn of the helix in the relaxed
state [2].

Over more than two decades, a number of papers have appeared, which deal with the
subject of the global structure of DNA (e.g. [1]-{10]).

Two models are used when studying properties of a DNA as a whole.
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Figure 1. The model of DNA. 1, two sugar-phosphate backbones; 2, paired nucleotide bases; 3, a twisted ribbon;
z, the helical axis; y, the dyad axis.

From the mathematical point of view, the molecule is a narrow, infinitesimally thin ribbon
with axis following the axis of the helix and its surface lies perpendicular to the dyad axes
defined by the base pairs (Figure 1) [1], [3].

Mechanical properties of DNA are usually studied by modelling it as a thin elastic rod.
The intersection of a ribbon surface with the rod gives two winding antipodal lines. They may
be assigned opposite directions. This reflects opposite spatial orientations of bases in the two
polynucleotide chains. The ribbon and the rod may bend and twist (Figure 2).

The DNA molecules are known to exist in either linear or circular form. Each of two
polynucleotide chains that constitute the double helix is looped in the closed DNA molecule.
In 1965 J.Vinograd introduced the concept of a superhelicity or supercoiling of DNA. The
superhelicity may be observed in experiments. It arises from the fact that the winding rate of
the helix about its central axis is usually less in the circular molecule than in the same molecule
when it is in the linear relaxed form. Therefore, in this case, the looped DNA can wind in
space to form a superhelix of a higher order. Then it is said to be supercoiled or superhelical.
A large proportion of DNAs take a supercoiling form at least once in their life cycles.

Specialized enzymes were discovered that control superhelicity of DNA. They are called
topoisomerases. Supercoiling is a biologically important form of DNA. One example shows
that it is true: if the gyrase, the enzyme that causes negative supercoiling, is destroyed then
replication of the DNA cannot proceed. Superhelicity was observed in molecules containing
various number of base pairs — from 350 to 1 750 000.
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Figure 2. A closed DNA. The two winding lines of opposite direction are the edges of the model ribbon and they
must join themselves.

qls,, s}

Figure 3. To the integral formula for the linking number of two loops; q(s1, s2) is a continuous vector function
defined for loops C1 and C».

A number of works were devoted to investigations of spatial conformations of the DNA
molecule by employing the thin elastic rod model. The rod model is the elastica and its
equilibrium equations were given by Euler, Kirchhoff and Clebsch. It is extensively described
in [11], where planar non-closed equilibrium shapes are presented.

Benham [4] treated a homogeneous isotropic rod of circular cross section by applying the
Kirchhoff analogy. He gave some considerations for possible shapes of an elastic molecule.
The elastic model was also studied in [5]. A more detailed analysis can be found in {6]; it
contains the ring closure conditions. The closed conformations were studied in (2], [8]. The
variational approach was applied to obtain the equilibrium equations of the model rod. An
elastic energy extremum was searched subject to the smooth closure constraint with a fixed
linking number. The simple plane circular and 8-shaped forms were found. An approach based
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F z:gure 4. The Euler angles ¢, o, and ¥ specify the attitude of the principal axes of bending and twisting =723
with respect to the coordinate system &;£,¢3 fixed in space. The axis z; is along the central axis of DNA. The
direction of the axis £, is coincident with the direction of the end force P-.

Figure 5. The cylindrical coordinates p, «, and ¢ of the central axis of DNA.

on the ideas of Fuller and Benham was developed in [7] where considerable numerical results
were presented for spatial conformations of DNA. However, closed molecules were not dealt
with.

Mention should be made of recent works devoted to shapes of the thin elastic rod as well
as to its dynamics [12], [13]. The variational technique is applied.

Possible shapes of a closed elastic rod were classified in [14] by using the group theory.

2. Some Related Mathematical Concepts

The polynucleotide chains are closed in a looped DNA [15]. Each of the two chains may join
only with itself — and not with the other (an analog of the Mobius strip is impossible for DNA).
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The linking number Lk indicates how many times one closed loop encircles the other and it
is given by the Gauss integral [2]:

1 1 0q Oq

Lk =— [ds; [dsy ——det|—=, —

4«/ 3‘/82|q|3 © (asl’asz"‘>’
C, Ch

where q( sy, s2) is a vector function defined for two loops C| and C, (Figure 3).

The linking number value cannot change unless at least one loop is broken (nicked). From
a practical point of view the problem can be solved effectively by using algorithms of the
computational geometry. The algorithms of searching for projection points of spatiai curves
are widely used in the computer graphics. They can be applied for computation of linking
numbers.

Two more numbers that describe the spatial configuration of the molecule may be intro-
duced (2], [8].

The twisting number 7w counts how many times either loop twists around the central axis
of the DNA.

s
1
Tw = 2—7FO/w1(s) ds,

where w; is a twisting rate of the polynucleotide chain, s is the arclength of the central axis,
0 < s < 5,5 is the total length of the central axis.

Note that the twisting number may be defined for an arbitrary molecule (not necessary for
a closed one).

For a closed ribbon, the difference between the linking of its edges and its twisting depends
only on the shape of the central axis. Fuller [16] gave this quantity the name of writhing (Wr)

Wr =Lk ~-Tuw. (1)

The writhing is equal to zero for a planar closed curve or for a closed curve lying on a
sphere.

In contrast to linking, neither twisting nor writhing are topological invariants and their
values may vary continuously as the molecule changes its shape in space.

The basic relationship implies that by continuous deformation of a molecule when its
writhing number changes, the twisting number must change correspondingly because the
linking remains constant.

3. Mechanical Model of DNA Molecule

Adeqguate understanding of how DNA works is impossible without complete investigation
of its large-scale, tertiary structure, of which the mechanical properties of the molecule are
known to be important determinants.

Results of many experiments show that, in solution, the DNA molecule possesses prop-
erties of a linearly elastic rod. Therefore, it appears reasonable to treat DNA as a long thin
homogeneous rod of circular cross section governed by the linear elasticity law [6], [7]. Such
a rod is characterized by two parameters — torsional and bending stiffnesses, which will be
denoted by By and By, respectively, and assumed to be constant along the rod. The torsion-
al and bending stiffness values have been found experimentally a number of times [17]. In
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Figure 6. The function ©(d) from (37) for mo = 2. Two branches are plotted. d; and d, are roots of Equation
(36). ! corresponds to the initial twisting. ¢ is the Poisson ratio.

particular, the bending stiffness dependence of the base pair composition has been studied in
[18]. Below are presented the typical values [8] for the B-form of DNA

By = 2.2 x 1072%1m, By = 2.7 x 107%8Jm.
For a cylindrical rod

ratp ra*E
DBy =
7 22 4

where a is the cross section radius, I/ the Young modulus, i the shear modulus (the Lamé
coefficient) [19). For ¢ = 10~7m, one can find

E=35%x10Nm™2, p=14x108Nm™2

By =

This gives the Poisson ratio o = i% —-1=0.23.

Notice that the values of F and i may vary essentially with the chemical composition of
the environment. For example, the Young modulus is halved as the concentration of NaCl
reduces from 0.0005 M to 1 M [8].

3.1, THE ELASTIC ROD EQUILIBRIUM EQUATIONS.
THE KIRCHHOFF ANALOGY

The equilibrium state of a curved and twisted rod is described by a system of differential
equations [11], [20]

M
glj—f:O, d——+m-1’><F:O. )
ds ds
Here, F is the resultant of all the forces acting in the cross section, M the moment of these

forces, f, m the densities of the distributed forces and moments, respectively, 7 the unit vector
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Figure 7. The functions ®(d). The curves are marked with two numbers: the first indicates mq, the second — m;
(its value is given for starting non-perturbed solutions). Two series are presented for m; = 1 (solid lines) and
my = 2 (dashed lines). All the curves ®(d) are shown continuous.

along the tangent to the central axis, s the arc coordinate along the central axis (its extension
is neglected).
The cross section is assumed to remain plane and orthogonal to the central axis after

deformation.

We introduce the principal axes of bending and twisting for a deformed state: direct axis
x| along the tangent to the central axis (i.e., along T) and axis z, along the tangent to the line,
intc which one of the principal central inertia axes of the cross section for the non-deformed

state turns; z3 supplements the system up to the right orthogonal one.
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Figure 8. The normalized bending energy density 2(d) for closed equilibria. The curves are marked with two
numbers: the first indicates my, the second - m; (its value is given for starting non-perturbed solutions). Two
series of conformations are presented for m; = 1 and m) = 2.

Rewriting Equations (2) in the principal axes of bending and twisting gives
FFtrwxF-f=0, M4+wxM+m-7xF=0, 3)

where * denotes differentiation with respect to s in the local coordinate system, w is the
Darboux vector for the rod in the deformed state.

Further, the case will be considered when the rod is deformed by the forces and moments
at its ends only. Denote by ~ the unit vector in the direction of the end force F = P~. The
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Figure 9. The normalized end force p(d) for closed equilibria. The curves are marked with two numbers: the first
indicates my, the second ~ m (its value is given for starting non-perturbed solutions). Two series of conformations
are presented for my = 1 and m; = 2.

rod is assumed to be initially straight and not twisted. Then the second equation (3) takes the
form

M+twxM=Pr1 x~. 4)
The following kinematic equation is to be added to it:
Y=y Xw. )]

According to the Hooke generalized law, the relationships that complete the system of
equations may be written in the form

M = Bw,



244  Eugene L. Starostin

l

204
.
-1
J
] 42 52 6.2 72
_ P e
10 P
B PPN /,\//
b LN D %Y 51 8474
] e
]
0 ’
_ / 4
] /4
] 74
J 7
] /
/s
_10—:] e
: Ve
N / 7
] s ST
R / Y V,
] / Y /
—20+ s/
e / 7/
J / /
R
: 7/
1 s l=-d
=304 -
]
—‘40 lIIIYIITI,llT]‘rlTll“fl‘T|Ill‘11’ITTI_TIIFI—]
—35 -15 5 25 45

Figure 10. The normalized end moment I(d) for closed equilibria. The curves are marked with two numbers:
the first indicates myo, the second m, (its value is given for starting non-perturbed solutions). Two series of
conformations are presented for my = 1 and m; = 2. The cross points of the curves with the bisectrix | = ~d
correspond to the jump discontinuities of the function ®(d).

where B is the stiffness matrix of the =~d.
Consider the case of an initially curved and/or twisted rod. Let w be the Darboux vector
for the rod in the relaxed state. Then Equation (4) is replaced by

M+ 4w xM+AN)=PT1x7. ©)
The vector A is determined by
A = —Buwy.

The system of equations (6), (5) allows for three invariants:

vl =1
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(the geometrical identity),

which means that the projection of the moment M + X on the direction of the end force (the
end moment value) is constant L, and

M-w-2Pvy-1=2H, (8)

where H has the sense of the elastic energy density along the rod.

Thus, the problem of the curved and twisted elastic rod is described by the equations that
formally coincide with the equations of a heavy gyrostat [11]. If the rod is initially straight
and not twisted then its equations are analogous to those governing the motion of the heavy
rigid body about a fixed point in the Lagrange case (the Kirchhoff analogy). The invariants
(7) and (8) are analogs of the integral of angular momentum and the integral of energy in the
problem of rigid body rotation about a fixed point. The difference from the rigid body or the
gyrostat is in conditions which the components of the matrix B have to satisfy.

Now assume that the cross section is coincident with the elastic symmetry plane of the rod
(Bi; = 0,7 # 7) and the principal bending stiffness coefficients are equal (B, = Bs3).

Assume next that the rod is initially straight: w§ = w§ = 0, but it may be twisted with
some wY, as it takes place for the DNA molecule.

Taking into account the above assumptions, write Equations (6) in the coordinate form in
the principal axes of bending and twisting:

dwl
By — =

1t dS 07

dw; 0- _
Bzz—d—s— + Briws(w) — wy) — Bpwiws + P§ = 0,

9

dw _

Bzz—d?3 + Bpwiw, — Biiwa(w — w?) - Py = 0,

where v = (7,%,%)7, T denotes the transpose.
Clearly, it is assumed that always By # 0, By; = B3z # 0.
The first Equation (9) implies immediately

Wy = wj = const. (10)

This means that the twisting rate of the rod in the stressed state is constant along the rod.
However, it is not necessary to be egual to the initial value in the relaxed state.
By introducing parameters b = 4 and p = ZB%ZE rewrite the two remained Equations (9)

By
in the dimensionless form

dUJ2 * 0 P= _ dw3 _ * 0 ]_)__ _
E—+w3 ((b—l)wl —bwl) —57_0, T w2 ((b 1w] bw1)+27~0.
Correspondingly, the integrals (7) and (8) transform to

b(wi — W)y + T+ T =1, an
[ = —£—, and to

By
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Wi +wi+py=h, (12)

_ (28 - Buwp?)

h
B

The parameters p and [ are the normalized end force and end moment values, respectively.
The parameter A is a characteristic of the normalized bending component of the strain
energy density, which is to be constant along the rod.

3.2. SOLUTION OF THE EQUATIONS. THE SHAPE OF THE CENTRAL AXIS

The forces applied to the rod end that corresponds to the initial value of the arc coordinate
s can be brought to the central line. Introduce a coordinate system £, £,£3 fixed in space and
align axis £; with the direction of the end force P~.

The attitude of the principal axes of bending and twisting z;z,z3 with respect to the
coordinate system £1£2£3 is given by the three Euler angles 1, ¢, 9 (Figure 4). Hence,

= cos,
¥ = sin?dsin ¢, (13)
¥ = sin¥ cos .

The vector w specifies the angular velocity of rotation of the axes z,z,z3 with respect to
the fixed coordinate system. An analog of the Euler kinematic equations is valid

_dp | dy
w) = s + e cos 9,
dy . . dv
_w v 14
wy = = sind sin + 1 o5 (14)

d dd
w3 = d—fsinﬂcosgo— Egsingo.

The integrals (11) and (12) can be written, in view of (13) and (14), as

dy
SRV Puk A 15
yd+ (1 -7 )ds l (15)
where d = b(w} — w)), and
dy\? (dﬂ)z
VAN — =h 16
respectively.

The parameter d is proportional to the difference between twisting numbers in the relaxed
and stressed states. It also depends on the Poisson ratio of the rod.

By eliminating the derivative %‘f from (15) and (16) and using the first formula of (13), a
differential equation for vy can be obtained:

(&Y' < o, an

where f(7) = (h — py)(1 = 7%) - (I - dy)%
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Clearly, f(£1) <O0.

Without loss of generality, it may be thought that p > 0 (if p = O then this is an analog of
the Euler-Poinsot case of the motion of the rigid body with a spheroid as the inertia ellipsoid;
it can be shown that then no non-trivial closed configurations exist [6] in this case). For p > 0,
the function f — +oc as v — +oo. Therefore, the cubic polynomial f() has at least one
real root y3 > 1. By the first equation of (13), only the interval | v |< 1 is of interest. Since

ds
in this interval: —1 <y <y, < 1.

Bring Equation (17) to the form

2
(511) must be non-negative for real solutions, the polynomial f(y) must have two real roots

2
(g) = p(v = 1)y = 2)(7 ~ 13- (18

By introducing a new variable v given by
Y =74 (12— M

Equation (18) may be recast to

d 2
(:5) = Qz(l - vz)(l -~ kvz), 19)

where 02 = B(y3 — ), > 0, and k2 = LB OLkL L
Integration of Equation (19) leads to

F(v, k) = Q(s — ), (20)

where F(v, k) is the elliptic integral of the first kind of the modulus k:

F(v, k

r v
)= O/ V1 =T2)(1 - k22)

Equation (20) has the solution v = snQ(s ~ s ), which gives for v

7 =7+ (v2— 71) s0® Qs — s0). @21
The derivative % can be obtained from Equation (15) as a function of y. After some
manipulations, the following equation is obtained

dp _ 1-d 1 [+d i

= R 22
ds 2(1—71)1—nlsn2Q(s—so)+2(1+71)1—n25n29(s—30) (22)

where ny = 122 p, = 2U=]2

=102 = S
Integration of Equation (22) yields
b= o= =L T (am(Q(s — s0)), 1, K) +
2(1 — )92

[+d
ST e (m(@s = s0), 2 k)
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where II(v, n, k) is the elliptic integral of the third kind:

v

v
M{v,n, k)= .
( ) 0/ (1 - n22)y/(1 ~ )1 - k22?)

Now from the first Equation (14)

de . _d¢
ds 1T 74gs

which yields after integrating

¢~ o = (Wi — d)(s — s0) + ﬁﬂ (am(Qx(s — o)), 1, k)
d+1
T @m(s — s0)).na k).

Up to this point the consideration has been carried out within the framework of the
traditional approach to investigation of the Lagrange top. However, a knowledge of the
orientation of the principal axes of bending and twisting is not enough to determine the rod
shape. Therefore, the equations by Ilyukhin {20] will be used for the cylindrical coordinates
p, o, ¢ of the central axis of the rod (Figure 5)

P = ﬁ P (23)
da Ly —(M;+ X))
ds M? ’ 24
d¢
where M2 = [[M + \||* - L2
In the dimensionless form, Equation (23) appears as
2V/d2 =12+ h—~
)= vV th-p 26)
P
and Equation (24) as
da p(ly — d) @7

ds A2 P+ h—py)

By substituting the solution (21) into the last equation and integrating it, a formula for the
angle « is obtained

I(d*> =124+ h) — pd

- 2Q(d2 — 2 4+ h— p’)’])H (am(Q(s - 30))7”? k) ) (28)

l
a—aozi(s—so)

pPlz=7)
d?> =12+ h —pm

where n =
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Finally, after substituting (21) and integrating, the third coordinate ( can be found from
(25)

¢ = Co = ya(s — sg) — 2y | BP=11 . LE (am(Q(s — s0)), ), (29)

where E(v, k) is the elliptic integral of the second kind of the modulus k:

k2T
E(v, k) /1k

The following formula [21] was used to derive (29):

/sn2udu: %(U—E(amu,k)).

The three Equations (26), (28), and (29) determine entirely the shape of the central axis of
the rod.

3.3. EQUILIBRIUM EQUATIONS OF A CLOSED MOLECULE OF DNA

Now a problem is set to find an equilibrium shape of the looped DNA molecule. The model
rod is supposed to be straight and possibly twisted in the relaxed state when its ends are not
closed. We assume that no external forces or moments act on the molecule.

The problem statement requires that the model elastic rod is smoothly closed into a circle.
By this is meant that its ends coincide with each other and an orientation of the principal axes
of bending and twisting and the Darboux vector are the same at the both ends. Without loss of
generality, the rod length may be put § = 1 and sy = 0. The corresponding boundary value
problem results in

plo=p 1, a o= e |; (mod27), Clo= (i,
Y o= 9 |y (mod27), ¥ lo= ¢ |1 (mod27), ¢ lo= ¢ |1 (mod2m), (30)
wj l(): wih, 1=1,2,3. 31

Notice that the integrals (10), (15), (16) and Equations (14) imply immediately that the last
conditions (31) are fulfilled automatically, if the conditions (30) are satisfied.

We choose Q = 2moK(k), where mg = 1,2,..., and K (k) = F(,k) is the complete
elliptic integral of the first kind of the modulus k. Then, as it can be readily seen from solution
(21) and from (26), the periodicity conditions for ¥ and p are met. Moreover, in this event
the tangent vectors to the central axis of the rod have the same direction — this follows from
the view of the right sides of (26), (28), (29). Therefore, only the last condition from (30) is
enough to remain.

Thus, in order to solve the above formulated problem it is necessary to find such values of
the parameters h, p,{ and w] that satisfy the system of four nonlinear equations:

Q:2m0K(k), mo=1,2,..., (32)
l(d2 _ 2+ h)~ pd
— 24+ h—pm

I(n, k) = 4rmy K(k), m; =0,%£1,+£2,..., (33)
13K(k) = (3 ~71)E(k) =0, (34)

[K(k) —
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I—d I+d .
P 1 H(n1,k‘)+ ’7’1—+T H(’I’Lz,k‘) = 2K(k) (271'77?/2 + (d— w,)) s

ms=0,+£1,4£2,..., (35)

where E(k) = E(3, k), II(n, k) = II(5, n, k) are the complete elliptic integrals of the second
and third kind, respectively.

Equation (33) corresponds to the periodicity condition in «, Equation (34) — in (, and
Equation (35) — in . Equations (32)—(34) determine the shape of the central axis of the
molecule (hence, its writhing number), while Equation (35) corresponds to the proper closure
of the chains of complementary nucleotides (hence, its solutions correlate with the twisting
number).

The four Equations (32), (33), (34), and (35) contain three arbitrary integers mg, my, and
my. Giving various values to them one can take different solutions. The integer m; counts the
number of turns around the fixed axis £; and the integer my is the number of supercoils. The
integer my is responsible for the twist.

It is convenient for the following to represent Equation (35) in the form

®(d) = w? + ad, (36)
where
1 l~d l+d
(P(d) = 2K(k) (1 . H(nl,k) ~ 1*+—71H(TIQ, k‘)) + 27my. 37N

The function ®(d) may be considered as a function of d on the assumption that the three other
unknowns (i. e., h, p, and [} are chosen to satisfy the first three Equations (32)~(34).

In addition to h, p,! and w}, two more parameters appear in Equations (32)~(35): b = a]?
(recall that the Poisson ratio o is a characteristic of the elastic properties of the molecule)
and w?, which is, within a constant factor, the twisting of the molecule in the relaxed state:

0
Twy = % Instead of the parameter w{, which determines the twisting in the stressed state:

Tw = 3L, it is convenient to take d = b(w} — w?) as an independent parameter.

Discontinuity of the function ®(d). For | = —d the polynomial f(-y) in (17) has the root
v1 = —1 and the second summand in (37) is indeterminate. Consider the vicinity of this point
by letting [ = —d + ¢ with | ¢ |« 1. Then it may be shown that

€2

= —14+ ——— +0(),
Y + 2t p) (€)
p+h+dF\/(p+h+d?)? - 4p(h - d?)
723 = \/ 2 + O(¢) (38)

and the parameter n, allows for the following approximation:
ny = =2(h+ p)(1+72)e”% + O(1),

ny < 0 since v > 1.
Now the integral II(nz, k) may be estimated by using the formula

M(n, k) = T]— K(k)+

—n
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\/(k,z — n;(n =) (g + (K(k) — E(k)) F(en, k') — K(k) E(en, k’)) (39)

(see [21] for more formulas for elliptic integrals). Here, e = sin™'(1 — n)‘% and k' is the
comodulus to k, k2 + k"2 = 1.
In the case considered (39) gives

_T | ¢
2 V2(htp)(T+m)

Now the second summand in (37) may be estimated

H(n27k + 0(62).

- ——1(ny,k) = — signe + Ofe). 40
2K T T gy | 2 g BT OO “
Therefore, the function ¢(d) has a finite discontinuity at d = —/ if m, is constant. After some
manipulation the jump value A¢ can be obtained by using (32), (38) and (40)

AP = 21my. 41

It follows from (27) that for d = —/ the projection of the central axis on the plane {7 has
cusp points for ¥ = ;. For d > —! this curve has loops and a(s) is monotonic when d < —1.

Since the function ®(d) is defined with a precision of 27m; in (37), its jumps may be
compensated by an appropriate change of m,.

3.4. PLANE SOLUTIONS

Before proceeding to general spatial configurations of the rod, consider two exact plane
solutions of the above BVP (32)-(35) [8].

Plane ring. Let Equation (17) have a solution 4 = 0, then

= =0 —12+d2>1
Y1T=72=4, Y3 = 2ld .

The parameters have to satisfy the relationships
h=103 p=2ld.

Equation (25) implies ( = (o = const, Equation (26) — p = I—}I , and Equation (27) —
o = ls 4+ ag. By integrating Equation (15) obtain ¥ = [s + . Finally, from the Euler first
kinematic equation (14), ¢ = w}s + @o. The periodicity conditions are satisfied if

| =27my, my = +1,£2,...,
and
w] = 2mmy, my =0,+1,+2,....
Thus, the rod central axis is a plane circle of radius p = ﬁ covered | m; | times.

8-figure shape. We search for a closed configuration with [ = 0, d = 0. The condidion (33) is
then met. Two cases are possible:
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MHh<p,n=-1,m= %, v3 =1, Kk = % (% + 1) . The condition (34) transforms
into
K(k) = 2E(k),

which yields the modulus value k£ = 0.9089, and the parameters h and p have to satisfy the
condition h =2 0.6522p.
From (21)

h P
7 P V2
and the condition (32) is

P = 2my K(k‘),

V2

from which the value of p may be found.

-1
@Dh>pn=-L,n=1,mn="5k=2 (% + 1) . The condition (34) transforms
into

(2 - K K(k) = 2E(k),

which has no solution.

3.5. SOLUTIONS WITH SELF-INTERSECTIONS

The plane 8-figure has a self-intersection point. There may exist different non-planar solutions
with self-intersection points. We search symmetrical solutions with self-crossings at the origin.
Then for such points p = 0 and Equation (26) implies

P +h-py=0 for v=m

since p > O and 71 < 7 £ 72. Then the parameter n introduced in (28) isn = 1 and ly; = d.
For v # 7, the polar angle « is a linear function of s because the second term in (28) vanishes.

When v = 7;, the solution passes through the origin and the angle « jumps by +7 (the sign

corresponds to the sign of m ). The length of the arc between intersection points is As = —-

mo
and the change of @ i1s Aa = 27 % From (28) we have

Aa = %As + 7 sign my,

which gives the value of

{ = 2m(2my — mgsign my). (42)
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Figure 12. The shape transformation of the closed equlibria with change of the parameter d for mo = 2, A-sequence.
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3.6. PERTURBATION ANALYSIS

In order to obtain nonplanar solutions of the system (32)-(35), a parameter continuation
approach is proposed. The plane circular ring may be taken as a solution to be perturbed. The
ring may be traced many times.

By using the perturbation analysis it is possible to find relations between the parameters of
the ring for which periodic solutions are born.

Let

h=17+¢, p=2ld+ e,

where 0 < € < 1and 3 is an unknown coefficient. We search for the approximate expressions
for the roots of the equation f(-y) = O in the form

2 ’+d 2
72=7116+0(¢%), 7y3= g T et O(€).

Omitting some intermediate manipulations, the final expressions for coefficients is presented:

1
= (* +d*)3, 731 = 0.

Obtain the expansions for the modulus &

w=— 0@, (43)
2+ )}
and for the frequence
12, 2l ld 2
== e : 44
Q 2(l +d)2+2(12+d2)€+0(€) (44)

To expand the complete elliptic integrals K and E into the series use the formulas [21}:

mm:30+;ﬁ+wﬁo,

ﬂﬂ:%@—;ﬁ+mﬁv.

Substituting (43) into the last formulas yields
Id

T s 2
= — 4+ ——— ¢+ 0(¢), (45)
K(k) 2+2(lz+d2)%€+ (€)
O Id 2
= - ————— ¢+ 0(¢%).
E(k) ) 7y d2)%€ + O(€%)

Now insert the expansions (44) and (45) into the periodicity condition (32). By equating
the coefficients by the powers ¢® and ¢! an equation is obtained for the parameters / and d:

i(l2 + dz)% = 2wmy. (46)
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It is easy to check that the condition (34) is satisfied, at least correct to the terms linear in

The expansion of the parameter n may be obtained
41
n = ——
d(1? + d?)2
Then the following expression is valid for II(n, k)
, 1(20% 4 3d?

H(n’ k.) — f + E-(___—*____B)_
22 d(12 + d?)2

Substitute the expansions (47) and (45) into the condition (33), equate the coefficients by

the powers € and ¢! and take into account (46). Then (33) is satisfied if the parameter [ takes
the following values:

e+ 0(é).

€+ 0(e). (47)

[ =2rmy, my =0,+1,%£2,.... (48)
By using (48) the formula for d may be obtained from (46)
d = +27(m} - m%)%, (49)

which implies | mg |>]| mq |.
Thus, the quantized values are found which the parameters / and d must take to provide a
possible birth of a non-planar solution.

3.7. THE SPATIAL SHAPE OF THE CLOSED MOLECULE OF DNA

The numerical procedure is implemented as follows. The parameter d is taken as a continuation
parameter. Continuous change of the parameter d may be interpreted either as the natural twist
variation for the DNA in solution, or as the variation of the elastic properties of the molecule
(hence, the Poisson ratio). Both cases are experimentally accessible. Experimentally, it is
found that the ethidium bromide affects the natural twist of the looped DNA ([3].

Having chosen a set of the integers mg, mj, and my, the starting values of the parameters
are calculated according to the above formulas: [ and d are from (48) and (49), respectively,
and h = {2, p = 2ld. Then the value of d is made slightly different and the system (32)—(34)
is solved by the Newton iteration with respect to h, p, and [. These three equations completely
determine the shape of the central axis, and, hence, the writhing value. Now the function
®(d) may be evaluated and substituted into (36), from where the initial twisting w{ is easily
evaluated.

Figure 6 explains how this is carried out. Only two curves for mo = 2 are plotted. They
are shifted by 47 from each other along the ordinate axis. The curves ®(d) represent the left
side of Equation (36). Intersections of them with a linear function of d in the right side give
roots. In the case presented, there are two, marked d; and d,. Having known their values one
can easily find the twisting:

where T'wy = 27rw(1) is the initial twisting.
Now consider concrete examples of solutions in more detail.
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Figure 16. The linking, twisting and writhing numbers as functions of the parameter d for mq = 3.

Figures 7-10 show the graphs of the functions ®(d), h(d), p(d), and [(d), respectively.
The curves are marked with two numbers: the first indicates mg, the second — m; (its value is
given for starting non-perturbed solutions). Two series of closed conformations are presented
for mi = 1 and m; = 2. All the curves ®(d) are shown continuous on the graphs since
the number m; was just changed appropriately at { = —d. The displacement by 2rm, gives
infinite number of the branches of ®(d).

mg = 2. This is the simplest case of non-planar conformations. To begin with there is the
plane ring marked Al in Figure 6:

[ = -2rm, d= —271'\/5, h = 4r?, p= 8123 (mo =2, m =-1).
Then the function ®(d) takes the form:
&(d) = d + 2mm,.

B1 is another example of the plane ring with the same parameters, but with different twist.

As the parameter d increases, the molecule begins to writhe (A2) until it forms the 8-figure
atd = 0, [ = 0 (A3). At this moment, the self-intersection must occur. However, the model
under consideration allows for self-penetration of the molecule. At a single self-intersection
only the topological invariant Lk changes from O to 2 (Figure 11) and the central axis shape
deforms but little. From the basic relationship (1) it follows then that the writhing number must
also change two. We can follow the same branch of the curve ®(d) and observe configurations
Ad to A6 with Lk = 2. Alternatively, the linking number may be fixed Lk = 0 and the switch



260  Eugene L. Starostin

n
o
wes |
-o07
o1 e
0.17 ~on? a3 043 ¢

d=—16.4; (=-18.7 d=-15.8; 1=-18.3
Lk=-12 Lk==12
d) e) 5
n n n
[ AN 3 203 0.13 4
. il
; \ N [
008 /,__l S a0 . | i 203 A
: ! I ™ —
: N < N ——r = —§>‘—3
3 7 T / ) ;
cor "\ /." ~0.07 k/ ~am U
oG 007 36 PRES ¢ R\ Sar £ ¢35 ¢ v YY) i 513
¢ ¢ ¢
ans 134 013 ]
©.93 I/.___X_\ wo1 (_‘><> o083 /—‘>¢<ﬁ)
N N, - .
-q07 ~0.07 -ﬂb']

Sl o7 083 (XA ¢ I %67 .63 513 ¢ hiAve Y2 36 FAFS
Tg=4; M, =-3; Mmy=—4 Mo=4; M;==3; My=~4 Mme=4; M, =1; me=—4
d=—10.6; l1=-14.9 d=—7.4; 1==12.6 d=-0.5; =—7.
Lk=—12 Lk=—12 Lk=0

c)

007+
1
-o--'i.
017 007 o8 ils :
¢
5
EAN
a0y
= — =4
—o0?
e1? .
17 o7 ks 278 3

Me=4; m,=—3; my=—4

Figure 17. (cont.)

%

me=4; m,==3; mey=—4

€1y
/ ~.
T
ou' {/}i/ }\
.y ;
: N
09?7 \"/
.t —
e T T 13
¢
ﬂ.'-:j
o.ps
CEEEETED
-c‘71
Ty <07 rrig CXEAN

e

3



Three-dimensional Shapes of Looped DNA 261

9) h) i)
n n "
—
213 013 LALE
i
003 203 4 < (s
-007] 0074 \ T
iy Y 1Y a3 ¢ gy Toer ek T g NI o o LR ¢
¢ ¢ ¢
134 013 .13
cos a0 ] - ae1
OO OO0 S
_p07 ] ~ag7 ] o7 4
_u"dbwhwfﬁ o ¢ ey b7 o5 oIS ¢ A A “ooy ads a1s ¢
me=4; m,=1; my=—4 mo=4; Mm,=1; me=0 me=4; My=1; ms=0
d=3.8; l=-4.4 d=14.6; =2.7 d=23.1; 1=6.0
Lk=0 Lk=0 Lk=0
7
n
013
nos
087 4
Iy ~0.07 0d3 013 ¢
¢
ol 4
v08 i
~001d
~0.17

~017 007 0.0y ¢

LI
me=4; m,=1; my=0
d=24.3; 1=6.3
Lk=0

Figure 17. The projections of the central axis for various values of the parameter d for mo = 4.



262  Eugene L. Starostin

— Lk
-—-—-Tw
------ Wr

(6]

O

|
(&3]

N
(@]
O Lt by v e a e by gy bayaaag Lecsvisrsaal)

|
o

-15

|
]
7

=20 -10 0 10 20 30 d

Figure 18. The linking, twisting and writhing numbers as functions of the parameter d for mo = 4.

to the lower branch of ®(d) occurs (B4). Note that in both cases the number m; changes for
mp — Mg s1gnms.

For mg = 2 the intersecting configuration coincides with that for which the function ®(d)
with fixed m;, has the jump discontinuity (! = —d = 0). In order to make the curve ®(d)
continuous, the number m; must be changed by the value of mp = 2 (41) for the shape A4.
Otherwise, the lower branch with unchanged m; = 0 is to be followed. The transformation
proceeds further in the reverse order and eventually another plane ring is obtained with the
following parameters:

l=2r, d=2rV3, h=4r% p=8r"3 (mg=2,m =1).

Both A6 and B6 are examples of the plane ring, but with different twists.

Small pictures in Figure 6 are zoomed in Figure 12 (A-sequence) and in Figure 13 (B-
sequence) to show a transformation of the molecule in space more clearly. It is easy to see
that the B-sequence is a mirror reflection of the A-sequence. Values of the parameter d are
indicated under pictures.

All these transformations can readily be demonstrated by using the model made of a rubber
hose. Since it is not easy to change the natural twist of such a model, the angle ¢ continuity
condition should be abandoned, or more simply, two ends of the hose are to be joined together
and slowly rotated around its central axis. The change of the angle of their mutual turn then

simulates change of the natural twist value.
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Figure 20. The linking, twisting and writhing numbers as functions of the parameterd formo = 5, m; = —4 — 1.

mg = 3. The situation in this case is rather similar to the previous one. Two branches of the
curve ®(d) are shown in Figure 14. Change of the central axis form may be observed in
Figure 15 (a) to (j). Two projections of it are presented for different values of d. The values of
my and Lk under pictures are given for the lower branch of the curve ®(d) while the values
of other parameters and the projections are the same for the both curves. Only the case for
m; = —2 — 1 is shown; the second possible case m; = —1 — 2 is just a mirror refiection.

Unlike the previous case mq = 2, here the jump discontinuity of ®(d) and self-intersection
occur at different values of d.

Figure 15 (e) corresponds to the conformation with triple self-intersection. The writhing
and the linking change by 3+3=6 (Figure 16). The conformation is essentially spatial, but the
computation shows that all its three loops may be considered planar and the writhing number
may be easily evaluated by taking into account only the vicinity of the origin. The approach
suggested in [8] for plane loops is readily extended to symmetrical shapes with multiple
intersections at the origin.

The projection with three cusp points is shown in Figure 15(g). It corresponds to the change
of m; in order to prevent the jump of ®(d).

The sequence (a)—(j) starts and finishes with plane rings. The circle (a) is traced twice
while the circle (j) is simple. The circles have different diameters, because the total length of

the rod is fixed.

mg = 4. This case is presented in Figure 17 (a) — (j). The multiple self-intersection occurs for
I = —4r (see (42)). The projection of the central axis on the plane {7 has 8 crossing points
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Figure 21. The projections of the central axis for various values of the parameter d for mg = 5, m1 = =3 — 2.
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Figure 22. The linking, twisting and writhing numbers as functions of the parameter d for mg = 5, m; = —3 — 2.

Figure 23. Stereo view of a closed molecule for d = 8.6665,1 = 2.1132, h = 221.68, p = 310.16, mp = 3,
my = 1, my = 25. The linking number Lk = 25, writhing Wr = 1.08, and twist Tw = 23.92.

before the self-intersection (d) and 4 crossing points after it (f). As m) changes its sign, the
direction of counting of the polar angle is opposite for (d) and (f) pictures. Therefore the

linking number must change by 8 4+ 4 = 12 (Figure 18).
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Figure 24. An example of the closed conformation for larger mg; d = —0.8,1 = —29.8, h = 3537.6,p = 2583.0,
mp = 10, m, = 1, my = 20, and Lk = 30.

Figure 25. An example of the closed conformation for larger mo; d = 22.6,1 = —7.1, h = 3207.8,p = 1756.1,
mg = 10, m; = 1, m2 = 30,and Lk = 30.
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As in the previous case, the sequence (a)—(j) starts and finishes with plane rings. The circle
(a) is traced three times and the circle (j) once. The diameter of the ring (a) is one third of the
diameter of (j).

mg = 5. There exist two essentially different cases. The corresponding sequences of the

central axis projections are presented in Figures 19 (m; = ~4 — 1) and 21 (m; = -3 — 2).
The linking, twisting and writhing numbers as functions of d are plotted in Figures 20 and 22,
respectively.

Both sequences (a)—(j) start and finish with plane rings, but the circle 19 (a) is traced four
times while the circle 21 (a) three times. The ending circles 19 (j) and 21 (j) are traced once
and twice, respectively.

The simplest families of configurations were considered. The behaviour of others with
larger mg is more complicated.

The plots presented together with Equation (36) also allow for the possibility to see how
the equilibrium shape of the closed molecule changes as the ratio of its twisting to the
bending stiffness (the parameter b) slowly changes. This may be caused by the influence of
the environment.

The proposed approach provides computation of spatial closed shapes starting with an
arbitrary plane ring. As an example, Figure 23 shows a stereo view of a closed molecule for
the following values of the parameters: d = 8.7, [ = 2.1, h = 221.7, p = 310.2, my =
3, my = 1, mp = 25. Its linking number Lk = 25, writhing Wr = 1.08, and twist
Tw = 23.92. (Note that much larger values of numbers m; may be taken, in particular
my of order 10%, which corresponds to real molecules, but then the picture would be less
comprehensible.)

In order to give insight into the shapes of the molecule for larger mg, two more intricate
conformations are shown in Figure 24 (d = -0.8, 1 = ~29.8, h = 3537.6, p = 2583.0,
mo = 10, my = 1, my = 20) and Figure 25 (d = 22.6,{ = 7.1, h = 3207.8, p = 1756.1,
mo = 10, m; = 1, my = 30). For both shapes, Lk = 30.

4. Concluding Remarks

An infinite number of families of essentially non-planar closed shapes were found for a closed
DNA molecule modelled at large as a thin elasic rod. Necessary conditions on the parameters
were obtained that allow one to find bifurcation points of non-planar equilibrium shapes from
the plane ring. The method proposed provides effective means to compute a molecule shape
in space for an arbitrary set of parameters and to analyze transformations as the parameters
change. It is shown that the equation for the twist is decoupled from the equations determining
the shape of the central axis of the molecule.

The approach may be extended to rod models with a non-symmetrical cross section ( By, #
Bs3) and initially curved. Although they are not integrable, the parameter continuation method
may be applied starting with solutions of the integrable problem of the symmetrical and
initially straight rod. Another problem to be solved is an investigation of stability properties
of equilibrium conformations.

Investigation of DNA tertiary structure is important for understanding of DNA packing in
bacteriophages and chromatin as well as of DNA functioning. However, the elastic rod model
can be applied not only to DNA but to other long polymer molecules such as RNA and a-helix
of protein as well. Also there exist many examples of stressed slender structures in different
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fields of science and life and their intricate shapes can often be approximated by using rather
simple mechanical assumptions.
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