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Motivation

The Kuperberg problem is to determine the maximum number

Ncyl of unit-radius infinite cylinders touching a unit-radius ball.

Ncyl < 8 [P. Braß and C. Wenk]

Cylinders =⇒ perfect tubes and ask the same question. 2



Cylinders =⇒ perfect tubes

Space curve C, piecewise of class C2: C = {r : M → R
3}; s arc

length, tangent t = dr
ds 6= 0. M is either R for an infinite curve or

S1 for a closed one.

Definition 1 Global radius of curvature is

ρG(x) = inf
y,z∈C,x 6=y 6=z 6=x

Rc(x,y, z),

where Rc(x, y, z) ≥ 0 is the radius of the smallest circle containing

x,y, z [O. Gonzalez and J. H. Maddocks].

Assume that ρG(x) ≥ ρ > 0, x ∈ C. 3



Cylinders =⇒ perfect tubes

Definition 2 ρ-tube T based on axis C: T = {x ∈ R
3, ‖x − y‖ <

ρ,y ∈ C}, and the closed ρ-tube T̄ = {x ∈ R3, ‖x − y‖ ≤ ρ,y ∈ C}.

ρ-tube is embedded in R3.

Fix the scale ρ = 1 and all but one tubes, we shall be dealing

with, are 1-tubes. We shall call them either unit tubes or just

tubes. The only exception is a P -tube.

Definition 3 Ring = tube with closed axis.

Definition 4 Bialy Y = T (C) with C the circle of unit radius

[Kusner],i.e. a bialy is a torus with no hole. 4



Definition 5 Ball of radius R with centre at z is BR(z) = {x ∈
R

3, ‖x − z‖ ≤ R}. In particular, BP ≡ BP (0) is the central ball of

radius P .

Any closed tube may be thought of as a union of balls:

T̄ =
⋃

x∈C
Bρ(x).

Sphere is SR(z) = ∂BR(z).

A unit orthogonal cross-sectional disk of a tube is

D(r(s)) ≡ D(s) = {r(s)+ν(s), ν(s) ∈ R
3, ν(s)·t(s) = 0, ‖ν(s)‖ ≤ 1}.
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Tubes touch a ball from the outside

Lemma 1 Let BP be the central ball and SR a central sphere of

greater radius R > P .

Let T be a tube with axis C = {rC(s)} touching BP in point

Q = T̄ ∩ BP .

Let A(C) be an intersection of the tube and the sphere: A(C) =

T̄ ∩ SR.

Then, for every R in the range P < R ≤ P + 2, the area of A

reaches its minimum for T = Y.
6



Lemma 1: Sketch of proof

1. Show that for any tube with non-planar centreline C, there

exists a tube with planar axis having the same area of intersection

with the R-ball. 7



Lemma 1: Sketch of proof

2. Consider planar axes for s ∈
[0, L]. Let s = 0 corresponds to

the contact with the P -ball and

s = L to a section outside the

(P + 2)-ball. The function r(s)

starts at r(0) = P + 1. Then

α(r) ≥ α0(r) = arcsin (P+2)2−1−r2

2r

for any curve with constrained

curvature.
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O
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Lemma 1: Sketch of proof

3. Show that the area A cannot be smaller then the area of

intersection of bialy and SR. 9



Theorem 1 Let tubes Ti, i = 1, . . . , n be such that

1. Ti ∩ BP = ∅.

2. Ti ∩ Tj = ∅, i 6= j.

3. T̄i ∩ BP = Qi, Qi = {qik ∈ R3, k = 1, ..., mi ≥ 1} (qik is k-th

contact point of i-th tube with the central P -ball; i-th tube

has mi contact points).

4. ∀i, k ∃σik : D(σik) ∩ BP+2 = ∅, D(sik) ∩ BP = qik, ∞ < σi0 <

si1 < σi1 < si2 < σi2 < . . . < sik < σik < si,k+1 < . . . < σi,m−1 <

sim < σim < ∞.
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Theorem 1: Claim

Then the total number of contacts is bounded:
n
∑

i=1
mi ≤ Ñ(P ),

where the function Ñ(P ) will be defined below.

If mi = 1, i = 1, . . . , n, then the alternating condition 4 is released

and the theorem claims that n ≤ Ñ(P ).

11



Theorem 1: Sketch of proof

1. Note that the intersections of tubes with any sphere SR

concentric with the central ball are disjoint because the tubes

are disjoint.

2. Consider only SR such that P ≤ R ≤ P + 2.

3. Lemma 1 implies that the minimal area of intersection of

the tube with SR is achieved when the part of the tube inside

the sphere is a fragment of the bialy centred at the (maximally

possible) distance P + 2 from the centre of the ball.
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Theorem 1: Sketch of proof

4. Fix the origin of the reference frame at the centre of the ball

with the centre of the bialy lying on the z-axis and its circular

axis being in the xz-plane. Then the bialy is described by

y2 +

(
√

x2 + (z − P − 2)2 − 1

)2
= 1. (1)

We are interested in its intersection with the sphere SR given by

x2 + y2 + z2 = R2. (2)
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Theorem 1: Sketch of proof

5. The intersection domains: 9 unit bialies touch the unit ball

and clipped with the sphere of radius R = 2 (left) and R = 3

(right).
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Theorem 1: Sketch of proof

6. The boundary of the overlapping region on the surface of the

sphere satisfies the equation

[R2 − 2(P + 2)z + (P + 2)2]2 = 4[x2 + (z − P − 2)2]. (3)

Introduce cylindrical coordinates by x = ρ cosφ, y = ρ sinφ, z =

z. Then Eq. (3) may be represented as a quadratic equation

4Uz2−4V z +W = 0 with coefficients depending on P , R and φ.

Therefore, z = z(φ) = V ±
√

V 2−UW
2U (for R ≤ P + 2, only the sign

“−” is meaningful).
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Theorem 1: Sketch of proof

7. Compute the intersection area

S =

2π
∫

0

ρ(φ)
∫

0

R
√

R2 − ρ2
ρ dρ dφ = R

2π
∫

0

(

R −
√

R2 − ρ2(φ)

)

dφ =

= 4R

π/2
∫

0

(R − z(φ)) dφ =
1

2
SR − 4RZ(P, R),(4)

where SR = 4πR2 is the entire area of SR and Z(P, R) ≡
π/2
∫

0
z(φ) dφ.

The last integral may be expressed in terms of elliptic integrals.
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Theorem 1: Sketch of proof

8. Consider function N = N(P, R) =
SR
S ,

N−1 =
1

2
− 1

πR
Z(P, R). (5)

Show that, for fixed P > ε > 0, N has a minimum in the interval

R ∈ (P, P + 2) for some R∗(P ). To this purpose, note that both

function Z(P, R) and its derivative with respect to R may be

expressed in elementary functions for R = P and R = P + 2.

The derivative ∂N−1(P,R)
∂R has different signs at the ends of the

interval [P, R + 2].
17



Theorem 1: Sketch of proof

9. Applying the Weierstrass intermediate value theorem to the

function ∂N−1(P,R)
∂R , we conclude that there exists R∗ ∈ (P, P +2)

such that ∂N−1(P,R)
∂R

∣

∣

∣

∣

R=R∗
= 0, which implies that the function

N(P, R) has a local minimum on that interval. In order to find

R∗, we solve numerically the equation

Z(P, R) − R
∂Z(P, R)

∂R
= 0. (6)
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Theorem 1: Sketch of proof

10. Thus, for given P , the number of contacts may not exceed

Ñ(P ) = N(P, R∗(P )). The function Ñ(P ) may be computed with

arbitrary precision. Numerical computation suggests that there is

only one local minimum of N(P, R) for any fixed P > 0. However,

the uniqueness property in no way affects the correctness of the

above estimate because any R-sphere may be taken. 19



Theorem 1: Sketch of proof

11. Shaded region with the boundary Ñ(P ) corresponds to for-
bidden numbers of contacts of unit-radius tubes with the ball of
radius P from the outside.
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Remark 1 If a unit bialy crossed with SR which passes through
the bialy’s centre (R = P + 2), then the intersection domain is
a pair of spherical caps, each bounded with a unit-radius circle,
and having area S = 4πR(R −

√

R2 − 1). Hence, the intersection
area is bounded from below by S and we can obtain the estimate

N− ≡ N(P, P + 2) =
P + 2

P + 2 −
√

(P + 1)(P + 3)
,

shown as the upper (blue) curve on the right graph. 21



Remark 2 Assume that there are N+ contacts. Then the tubes

must cross the (P +2)-sphere at least 2N+ times. The minimal

area of every crossing is that of a unit spherical cap. Therefore

the number N+ cannot exceed one half of the maximal number

n0 of free unit-radius circles packed on the sphere.

The latter number corresponds to the solution of the Tammes

problem which is to find a configuration of given number nT

of points on the sphere such that it maximizes the minimum

distance between any pair of points. The extremal configuration

is called a spherical code. 22



A number of upper bounds are known for the Tammes problem,

e.g. two proved by R. M. Robinson:

n0 <
12(πR2 + Σ2)

4Σ1 + Σ2 + Σ3
, for 12 ≤ n0 ≤ 24; (7)

n0 <
6(πR2 − Σ2 + 2Σ3)

2Σ1 + Σ3
, for n0 ≥ 24, (8)

where Σ1 is a spherical area of a equilateral triangle of side

2γ (with angles β1), Σ2 is a halved spherical area of a regular

quadrangle of side 2γ (with angles β2) and Σ3 is a spherical

area of a triangle with two sides equal to 2γ and included angle

2π − 4β1. 23



The right-hand sides of Eqs. 7, 8 give the upper bounds for
a number of unit circles that can be packed on the sphere of
radius R = csc γ. This implies that the number N+ of the bialies
that touch the ball of radius P = R − 2 = csc γ − 2 does not
exceed n0/2. The lower (red) curve on the graph represents the
improved upper bounds based on Robinson’s estimates.

0

10

20

30

40

50

60

70

N

1 2 3 4 5
P 24



Remark 3 The solutions of the Tammes problem are currently

known with proofs only for all nT ≤ 14 and for nT = 24.

A variety of existing numerical algorithms have produced pre-

sumably extremal configurations.

The best solutions currently known are collected and updated on

the web site www.research.att.com/~njas/packings/ for all nT ≤
130. 25



0

10

20

30

40

50

60

70

N

1 2 3 4 5
P

The discrete points on the figure were computed with the data

from www.research.att.com/~njas/packings/.

The estimate based on spherical codes approaches Ñ as the
radius P increases.

Two parts of Robinson’s bound meet each other at a point for

N = 12, which corresponds to the isolate proved solution to the
Tammes problem. 26



Example: A configuration of 9 unit bialies touching a unit ball.

N(1,2) ≈ 10.858914 < 11 means that 11 tubes cannot be in

contact with the same unit ball.

Does a configuration with 10 tubes exist or not? 27



Tubes touch the surface of a ball from the inside

Now all tubes are rings.

Lemma 2 Let SP , P > 2 be a central sphere and SR another

central sphere of a smaller radius R < P . Let T be a ring inside

of SP with axis C touching SP in point Q = T̄ ∩ SP . Let A(C) be

an intersection of the ring and the R-sphere: A(C) = T̄ ∩ SR.

Then the area of A reaches its minimum, if T = Y for P − 2 ≤
R < P . 28



Theorem 2 Let tubes Ti, i = 1, . . . , n be such that

1. Ti ∩ BP = Ti, P ≥ 3.

2. Ti ∩ Tj = ∅, i 6= j.

3. T̄i ∩ SP = Qi, Qi = {qik ∈ R
3, k = 1, ..., mi ≥ 1} (qik is k-th

contact point of i-th tube with the central P -sphere; i-th

tube has mi contact points).

4. ∀i, k ∃σik : D(σik) ∩ BP−2 = D(σik), D(sik) ∩ SP = qik, ∞ <

σi0 < si1 < σi1 < si2 < σi2 < . . . < sik < σik < si,k+1 < . . . <

σi,m−1 < sim < σim < ∞.
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Theorem 2: Claim

Then the total number of contacts is bounded:
n
∑

i=1
mi ≤ Ñin(P ),

where the function Ñin(P ) will be defined below.

If mi = 1, i = 1, . . . , n, then the alternating condition 4 is released

and the theorem claims that n ≤ Ñin(P ).
30



Theorem 2: Sketch of proof

1. Condition 4 =⇒ each tube has to enter the (P − 2)-ball

between the contacts to the P -sphere

=⇒ there should exist a cross-sectional disk belonging to this

small ball. This is always possible for P ≥ 3.
31



2. Let r(s), s ∈ M , sik < s < si,k+1 be the centreline of the

piece(s) of i-th ring inside the (P −2)-ball. Then r? ≡ min
s∈M

r(s) ≤
P − 3, because otherwise no cross-section would be immersed in

the (P − 2)-ball.

The plane of the section D(r?) passes through the origin and the

tube touches the surface of the ball of radius ρ ≤ |P − 4| for the

centreline point r?. Note that the ρ-ball lies inside of the closed

tube for 3 ≤ P < 4.

Then, since all the tubes are disjoint, it follows immediately that

only one ring has room inside of the (P − 2)-ball, i.e.

Ñ(P ) = 1, P ∈ [3,4).
32



3. Now let P ≥ 4. What is the minimal normalized area of the

intersection of the ring with SR, R ≤ P − 2?

If r? ≥ R − 1 for the piece of the ring inside SR, then Lemma 1

=⇒ the minimal area is reached when the piece is a part of the

bialy.

If the ring sinks deeper into the (P − 2)-ball, i.e. if r? < R − 1,

then nothing prevents the ring from crossing SR orthogonally and

the intersection domain is simply a pair of spherical caps.
33



4. It is sufficient to consider only the bialies with centres at SP−2,

they are in touch with the (P − 4)-ball. Then the intersection

area is given by the old Eq. (4)

S =
1

2
SR−4RZ(P, R), Z(P, R) ≡

π/2
∫

0

z(φ) dφ, z(φ) =
V ±

√

V 2 − UW

2U
,

but we should formally substitute P → P − 4 in the expressions

for the coefficients U, V, W .
34



5. Define Nin(P, R) ≡ N(P − 4, R) where N is given by Eq. (5)

N =

(

1

2
− 1

πR
Z(P, R)

)−1

.

For fixed P ≥ 4, Nin has a minimum in the interval R ∈ (P −
4, P − 2): Ñin(P ) = min

R∈(P−4,P−2)
Nin(P, R), which is an upper

bound for the number of contacts of the rings with SP .

The estimate graph in the interior case is essentially the same

as in the exterior one, only shifted along the P -axis by 4.

The duality property: the same value serves both to bound the

number of unit tubes touching the surface of the small P -ball

from the outside and of the larger (P + 4)-ball from the inside.
35



Example: A configuration of 9 unit bialies touching a sphere of

radius R = 5 from the inside. 11 tubes cannot be in contact

with the same surface. What about 10?

36



On the number of tubes touching one tube

Theorem 3 Let T0 be a tube of radius P and D0 be its section.

Let unit tubes Ti, i = 1, . . . , n be such that

1. Tλ ∩ Tµ = ∅, λ 6= µ; λ, µ = 0, . . . , n and

2. T̄i ∩ D0 = Qi, Qi = {qik ∈ R
3, k = 1, ..., mi ≥ 1} (qik is k-th

contact point of i-th tube, i = 1, . . . , n). It belongs to the

cross-sectional disk Dik with normal nik.

Then the number of touching unit tubes n does not exceed

π arcsin(P + 1)−1)−1. If each unit tube has exactly one contact

with the central one (mi = 1) and P = csc π
n − 1, then all n + 1

discs D0 and Di1 lie in the same plane. 37



Theorem 3: Sketch of proof

1. Central disk D0, the other disks Dik with centres rik, ‖rik‖ =

P + 1, i = 1, . . . , n, k = 1, ..., mi. n0 is the tangent to the axis

of the central tube and n0 · rik = 0 =⇒ the centres of all n + 1

disks lie in the same plane P0 ⊃ D0.

D0 ∩ Dik = {qik} 6= ∅ ⇒ BP ∩ B1(rik) = {qik} 6= ∅.

B1(rik) and B1(rjl) (i 6= j) have no common interior points either,

because, for any i, the interior of B1(rik) belongs to Ti and the

tubes do not overlap. 38



2. n ≤ number of the unit balls

touching the central ball, all hav-

ing their centres coplanar.

But that number, in turn,≤ the

kissing number in R2, which is

[π(arcsin(P + 1)−1)−1]

for unit circles contacting the

common central circle of radius

P .

This proves the first claim of

Theorem 3.
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3. Suppose that all the balls belong to different tubes (mi = 1)

and that P = csc π
n − 1. The coplanar points ri1 ∈ P0 lie each at

distance P + 1 from the origin and the distance between each

pair of them ≥ 2.

=⇒ they are vertices of a regular n-gon. Renumber them so that

‖∆rj‖ = 2, ∆rj ≡ rj+1 − rj, j = 1, . . . , n (rn+1 ≡ r1).

=⇒ the piece of tube, corresponding to rj touches both the

central tube and two other tubes, Tj±1.

The tangent to the centreline of j-th tube at rj is nj = the

normal to Dj.

=⇒ nj · rj = 0 and nj · ∆rj = 0

=⇒ nj is normal to the plane P0, i.e. all Dj ∈ P0. 40



Corollary Let the maximal allowed number of tubes be in a

continuous contact with the central tube whose centreline is

r0(s), s arc length.

Then the 2nd part of Theorem 3 =⇒

the vector field ∆rj0(s) ≡ rj(s) − r0(s) is relatively parallel.
41



Proof

drj(s)

ds
=

dr0(s)

ds
+ ω × ∆rj0(s), (9)

where ω = ω0n0(s)+ω1∆rj0(s)+ω2n0(s)×∆rj0(s) is an angular

velocity of rotation of the orthogonal frame {n0(s),∆rj0(s), n0(s)×
∆rj0(s)} as s varies.

Cross-product of Eq. (9) and n0(s) =⇒ ω0 = 0 =⇒
d∆rj0(s)

ds
= −ω2∆r2j0(s)n0(s).
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Example

Suppose that the centreline r0(s) is smoothly closed. Let the

other tubes be closed, too. We denote by Lk j the linking num-

ber of r0(s) and rj(s). Then the writhing number of each of the

curves r0(s) and rj(s) equals Lkj and, consequently, it is an in-

teger. This follows from the Călugăreanu-White-Fuller theorem

Lk = Tw + Wr , because the twisting number Tw = 0.
43
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Concluding remarks

• The approach may be readily extended to tubes of limited flexibility.

• H. Schiessel et al. deal with equilibria of a tubular polymer chain attracted
to a spherical organizing centre. They estimate an upper bound for the
number of contacts as of order P 3/2. This can be justified by taking into
account the limited flexibility of the polymer.

• J. R. Banavar & A. Maritan have proposed a tube model to better un-
derstand the geometry of protein folding. In view of this approach, the
estimates for the contact numbers may be useful when applied to globular
proteins to count exposed fragments of the amino acids chain.

• The estimates may serve as sterical constraints for validation of a com-
puted secondary structure of RNA.

• The property of the relative parallelism and an integer writhe (for closed
configurations) may be applied to describe toroidal conformations pro-
duced as a result of the DNA condensation, characterized by hexagonal
lattice packing (Preprint mpi-pks/0410005: E.Starostin, ON THE PER-
FECT HEXAGONAL PACKING OF TUBES) 45



Martin Held. Lebensschleife. 2003

The talk is based on the preprint

mpi-pks/0408004 and the pa-

per is to appear in Geometriae
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