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Abstract—We consider a simple example of a dynamical billiard consisting of a mass point moving in
a circle under the influence of a homogeneous gravitational field. The point reflects by the mirror
elastic law when it encounters the circular boundary. The problem is integrable between one collision
and another, and also when the particle moves on the bounding circle. This makes it possible to
build the conditions of existence and stability (in a linear and, at times, in a nonlinear sense, too) of
the families of basic periodic trajectories determining the phase space topology for a fixed energy
level. The numerical implementation of the Poincaré mapping offers a means of describing the phase
pictures with regular and chaotic regions in more detail as well as their evolution as the energy
changes. In a weak gravitational field, numerical experiments reveal only periodic trajectories that
are symmetric about the vertical diameter of the circle. An analytic proof is given that the imposition
of a weak gravitational field causes the disappearance of nonsymmetric two-, three-, four-, and
six-link trajectories. The phenomenon arises from the superposition of two factors: the gravitation
and the perfect symmetry of the circular billiard. We also consider motion evolution in the special
case of the perfectly inelastic reflection law. Copyright © 1996 Elsevier Science Ltd

1. THE SUBJECT OF STUDY AND THE PROBLEM FORMULATION

The problems of present-day mechanics often lead to model tasks on ‘dynamical billiards’.
They constitute a class of dynamical systems describing motion of a mass point in force
fields on an additional condition that there are impact reflections of the mass point from a
bounding surface. An orbital probe suspended by the elastic tether or a vehicle jumping on
the surface of Phobos (the satellite of Mars) are examples of such dynamical systems. In
[1], another billiard in a gravitational field is considered. The uniformly accelerated mass
point undergoes elastic collisions with two intersecting planes. This plane model relates to
the one-dimensional self-gravitating system which has its origin in astrophysics. It describes
stellar motion perpendicular to the galactic plane in very flat galaxies.

It is profitable to use rather simple models for developing an approach to investigation of
such systems with collisions.

A simple example of a dynamical billiard is the mass point that moves in a homogeneous
gravitational field inside the sphere of a fixed radius which is reflected by the mirror elastic
law when it strikes against the surface.

The plane version of this problem is considered in this paper. In standardized variables’,
the problem is described as follows:

@

=—e, |rj=<1, v,=v_—~2v_n)n, (1)
dr?

"The dimensional radius vector R, the velocity V and time T are related to the dimensionless r, v and ¢ by the
formulas R = Ir, V = V/(Ig)v and T = V/(I/g)t, where [ is the circle radius and g the gravity acceleration.
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where r is the radius vector of the mass point measured from the centre of the circle; e is
the unit vector against the gravity force: v_ and v, are the velocity vectors respectively
before and after an elastic collision with the surface; n is the unit vector, normally and
inwardly directed with respect to the surface (in the problem under consideration it is

directed to the centre of the circle n = —r/|r|).
The energy conservation integral exists:
W +y = h, 2)

where y is the vertical coordinate of the mass point.

The problem given by equation (1) is piecewise integrable (from one collision to another,
and also when the mass point moves on the bounding circle |r| = 1). This makes it possible
to build the conditions of existence and stability (in a linear and, at times, in a nonlinear
sense, too) of the families of basic periodic trajectories determining the phase space
topology for a fixed energy level. The numerical implementation of the Poincaré mapping
offers a means of describing the phase pictures with regular and chaotic regions in more
detail as well as their evolution as the energy level & changes. The computation of the
Lyapunov exponents allows conclusions concerning to what extent the trajectories are
chaotic. The results of the implementation of this investigation program for the problem (1)
are described below.

2. THE BASIC ALGORITHMS OF INVESTIGATION

The phase space of the problem (1) is four-dimensional, but it reduces to three
dimensions for a fixed energy level due to the invariant (2). It is convenient to consider a
phase trajectory only at the instants when it enters the constraint |r| = 1. Then the phase
space degenerates to two-dimensional and the motion can be described by the appropriate
Poincaré mapping.

Let the centre of the circle |r| =1 be the origin of the Cartesian coordinate system
(x, y), the x- and y-axes being directed horizontally and upright, respectively. Denote the
phase coordinates at the beginning of the n-th segment of the trajectory by {x,, y,, %,,
V,}. Starting values of the coordinates are supposed to lie on the circle |r| = 1 and starting
values of the velocities are calculated by using the perfectly elastic collision law.

A consecutive algorithm of determination of the starting data for the (n + 1)-th segment
from the starting data for the n-th segment begins with the computation of a time interval
7 of the flight duration for the n-th segment as the minimal root of the cubic equation

= 49,7+ A+ YL = ya)T 8, + 3,9,) = 0. (3)
Then the coordinates and velocities are evaluated sequentially by the following formulas:
Xpat = E,TF Xpy Yau1 = <30 5T Y )
Xpep = xn(yiﬂ - x::-1+1) = (Fn — D2%01Y et
Vst = 2% 1Vuetkn = (Fn = DVnsr = Xia)):

Equations (4) and (5) are obtained by the integration of equation (1) with the formula
for the change of the ve1001ty at the moment of a collision. Equation (3) is derived from
the condmon x2, 4 y%.. =1 by substitution of the right-hand sides of (4) with regard to
r,, + y,, =1.

The trajectories (4) and (5) have only a discrete set of points on the circle |r| = 1. The
trajectories that contain segments of continuous pendulum-like motion along the circle are
not formally considered. By numerical solution of the problem (3), (4) and (5), the
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The pendulum as a dynamical billiard 1147

segments of motion along the circle coming off inwards from it are approximated by
motion along a chain of an arbitrarily large number of arbitrarily small parabolic arcs.

To study the existence and stability of periodic solutions it is useful to eliminate time 7
from equations (4) and (5) and to introduce the polar coordinates: x = rsina,

y = —rcosa. The polar angle « is measured counter-clockwise from the gravity force
direction; —r<a <+ 7.
Introducing the designations a = &, b = —#, we obtain, instead of (4) and (5), the

following equations:
A, 1COS &y + b,Sine,,; = a,cosq, — b,singa,, (6)
%(biﬂ - ai+1) SiN20,41 + @y410p1100820, = SIN @,y
= %(bi - a’)sin2a, — a,b,cosa, — sina,, (7)
H@per + bhar) = cos @y = 3(ay + by) — cos a,. ®)

Equations (6) to (8) link implicitly the coordinate angle « and the velocities a and b at
the n-th and (n + 1)-th points on the circle r = 1. Then (8) represents a discrete form of
the energy conservation invariant (2).

Along with equations (6) to (8), we consider their linearized form. We introduce the
following abbreviations for variations of the angle and the velocities:

6, = d6a,, p,=0ba, q,=0b,.
Variation of equations (6) to (8) yields

dn+1 qn

Here, the matrices P and () are given by

6r1+1 6n
Pn+1(an+la An+1s bn+l) Pn+1 = Qn(wn’ a,, bn) Pn |-

—asina £ bcosw cos & *sin
(b?> — a*)cos2a F 2absin2a — cosa  —asin2a + bcos2a  *acos2a + bsin2a |,
sin & a b

the upper signs corresponding to the matrix P and the lower ones corresponding to the
matrix Q.

Definition. A periodic solution is called a k-link if it is described by & points of the
Poincaré map of the plane («, &) (4 fixed).

Stability or instability of a k-link periodic motion is determined by the eigenvalues A of a

matrix €2, which are the roots of the characteristic equation
det||Q — AE|| = 0, ©)
where the matrix Q is given by
Q = Py Qi PiliQiz - P1' Qo
Note that
det||P[| = det{|Q]| = b,  det||Q|| = by'by_ibili - by = 1.
The characteristic equation (9) can be brought into the form

(1 — M)A + 254 + 1) = 0. (10)
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The roots of equation (10) satisfy || = 1 if |s| < 1. The periodic solution under considera-
tion is then stable in the linear sense [2]. There is an instability for |s| > 1. Thus, we need
to evaluate s. Sometimes this can be done analytically and sometimes numerically. The
presence of the root A =1 in equation (10) is associated with the existence of the energy
conservation invariant. By virtue of its existence the periodic trajectories described below
are not isolated but they form groups of one-parameter families.

In order to investigate the existence, stability and other properties of periodic trajec-
tories, it is sometimes useful to introduce auxiliary billiards (the vertical semi-circle with
the vertical diameter as a wall etc.). Some results below were obtained by using such
approaches.

3. PERIODIC SOLUTIONS, THEIR PROPERTIES AND STABILITY

In what follows some one-parameter families of periodic motions and their properties are
presented. The initial value of the angle a = &, on the circle » = 1 for a periodic solution
may be taken as a parameter. Then the starting components of the velocity will be
functions of the angle a; and, hence, the energy & = hA{ay). Another type of family has a
fixed initial value ay = a,, the parameter being one of the components of the initial
velocity and consequently the energy level h itself. In either case, it is convenient to
consider curves A(a,) on the plane (ap, h), 0< &y <w, —1=< h < o, that correspond to
periodic solutions and to mark intervals of stability and instability on these curves (Fig. 1,
the stability intervals are drawn bold). Note that, due to the symmetry properties of the
homogeneous gravity field, any periodic trajectory with «, is accompanied by a trajectory
from the same family with —ay.

The energy conservation (2) implies the region of possible motion on plane («, &)

36> —cosa< h, h=4xas+b})—cosayg, ay=cy by=—F. (11)

The sign of equality in (11) corresponds to the pure pendulum-like motion # =0 along the
circle » =1 with given A. Such motions are not considered (unless otherwise explicitly
stated). Inequality (11) implies that the region corresponding to real motions is s =
—cos &, in the plane (g, A) (Fig. 1).

2.5
33/ 2.1
J/4.4
4.1
’3,,1 . - _
T
- -~
RSO
-— — Boundary
~--- Unstable
Stable
| | |
120 150 180

g (deg)

Fig. 1. The diagram of periodic solutions and their stability.
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We will describe the families of periodic trajectories in order of increasing number of
their links.

Definition. The phase coordinates of the trajectory on the circle r = 1 at the beginning of
the i-th segment are called the i-th node u; = («;, a;, b;).

Each family is indexed k.m, where k is the number of links, m the serial number among
the set of families with k links. The corresponding curve on the plane (ay, k) (Fig. 1) as
well as images of trajectories (Fig. 2) are labelled with the same index. The description of
each family will be presented according to the following plan: the nodes (the symbol U:),
the existence conditions (the symbol 3:), the stability conditions (the symbol St:), the
characteristic properties of the trajectories of the family (the symbol A:), the graph of the
trajectory and the sketch of the Poincaré map on the plane («, &) for this trajectory.

Recall that the Poincaré map gives the phase variables «, & at the moments of successive
bounces from the circle r = 1, an energy level h being fixed.

The linear theory of stability does not answer the question about the size of ‘stability
islands’, the centres of which are the phase plane points that represent a stable periodic
solution. Therefore, the stability islands (the islands of regular motions in the chaotic sea)
are drawn in the schematic pictures only symbolically—by small vicinities of periodic
points. A more precise picture may be obtained by detailed numerical computation of the
Poincaré sections (see Section 5).

1. One-link trajectories

1.1. Vertical bounces at the lowest point of the circle without reaching the upper part of
the bounding circle (1.1 in Fig. 2).

U:  uy=(a9=0, ay=0, by # 0—the parameter).

3 a=0,-1<h<l.

St: The parameter of the characteristic equation (10) s = 2bj — 1. This implies that, for
—1< h < -0.5, the bounce is stable to a first approximation and unstable for
-0.5< h <1 [3, 4] (Fig. 1).

A: (a) This is the only family of one-link trajectories.

(b) The bounce with h = —0.625, stable to a first approximation, is resonant in the
sense that the roots of the characteristic equation (10) A, = cosm * isinir cor-
respond to the rotation of the phase space of the variables 8, p, g through 27/3 about
the eigenvector e, = (0, 0, 1) which associates with the third root A; = 1. Three such
rotations result in an identity transformation of the phase space (A} = A; = 1). This
singular case corresponds to a bifurcation (Fig. 1) with a birth of two subfamilies of
stable three-links 3.7 and two subfamilies of unstable three-links 3.2 (see below).

(c) The bounce with & = —0.75, stable to a first approximation, is resonant in the
sense that the roots of the characteristic equation (10) A,, = cos(7/2) * isin(7/2),
s =1 fit the resonant relationship A; = A,. The phase space of the variables &, p, gq
transforms identically into itself by the four rotations through the angle 7/2 about the
axis g. This singular case corresponds to a bifurcation (Fig. 1) with a birth of a
subfamily of stable four-links 4.7/ and a subfamily of unstable four-links 4.2 (see
below).

2. Two-link trajectories

All two-link periodic trajectories are reduced to three families 2.7, 2.2, 2.3 listed below.
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2.1. The jumps along the vertical diameter with bounces at the lowest and topmost points
of the circle (2.1 in Fig. 2).

U ug= (0,0, by), u; = (m, 0, by = V(bs — 4).

A a=m, h>1.

St: In equation (10), s = 7 — 2bob,(by — b,)*. This implies instability for 1 < 4 < 1.25 and
stability to a first approximation for & > 1.25 [3, 4] (Fig. 1).

2.2. The motion along the parabolic arc symmetric about the vertical diameter (2.2 in
Fig. 2).

Us up= (g, 0, by = cos " o), u; = (—aqg, 0, by).

A 0<ay<(m2), h=(2cosay)' — cos ay.

St: In equation (10), s =1 —2(1 — cos 2, — cos*2ay)*. This implies stability to a first
approximation for 0 < &g < a,, and a, < a, < (7/4), where @, = jarccos>(\/(5) — 1),
and instability for (m/4) < ay<(m/2); ay=a, and a,=(7/4) are critical cases
(Fig. 1).

A: (a) For ag= oy, A, =1, 4, = A3 =—1. At that ap, the four-link 4.6 is born. For
ay = (7/4), Ay = 4 = A; = 1 and the two-link 2.3 is born at that a.

(b) The period of motion T = 41/(cos a).

2.3. A two-link that consists of one grazing and one plunging parabola (2.3 in Fig. 2).

uo = ((m/4), ay, by = (a% + \/2)1/2): uy = (—(m/4), aq, by).

a=(m/4),0< h<(10 - V2)/8 = 1.073.

St: In equation (10), s = (8\/2)ag — 1. This implies stability to a first approximation for
0< h2< \/2/8 = 0.177 and instability for \/2/8 < h < (10 — \/2)/8 (Fig. 1).

A:  h=a,.

The motion is counter-clockwise for gy >0 and clockwise for ay, <0. This means
that the discussed family of trajectories contains two subfamilies: with direct and
reverse motions.

If an angle ¢, is introduced between the initial velocity vector v, and the direction
to the centre of the circle then |tan | <3 for stable trajectories of the family under
consideration. This means that the angle between the grazing and plunging segments
of a stable trajectory does not exceed the value =37°, to the nearest degree.

we

3. Three-link trajectories

Three-link trajectories are rather difficult to analyse and we have no complete proof
available that the three-link trajectory class is reduced to the families considered below.
However, numerous computations of the Poincaré sections for the problem as well as the
approximate analytic investigation (see Section 4) do not reveal any other three-link
trajectories.

This allows us to make, with a sufficiently high degree of assurance, the following
conclusion: all three-link periodic trajectories are reduced to four families 3.1, 3.2, 3.3, 3.4
listed below. Numerical algorithms were mostly used to determine the existence and
stability conditions for the three-link trajectories.

3.1. A nonsymmetric with respect to the vertical diameter, h-shaped periodic trajectory
(3.1 in Fig. 2). The mass point moves in a segment of a vertical chord and a
nonsymmetrically located parabola.
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Ug = (a’o, ayp, bo), U, = (CVI, a, bl)7 Uy = (CVZ =&y, @) = —4ay, b2 = b1)9 where g i,S the
parameter. The dependence «;(a,) is determined by the equation

(sin &, — sin ;) sin (g + 2a;) — 2(cos &g — cos ;) sin &g sin2a; = 0 (12)

and is shown in Fig. 3. The real motion inside the circle r = 1 corresponds to the
values of a, within the limits 0 < o =< 122° (to the nearest degree). For o, > 122°, the
vertical segment of the trajectory goes beyond the circle. (There exists another branch
of the formal solution of equation (12), but it does not correspond to a real motion.)

Now we introduce the designations: x, = sinag, yo= —C0Say, X, =sina;, y, =
—cosay, ko= —cotay, k;=—cotay, x,={(kixo— kox))/(ki— ko), a,= (ki— k¢)/
(2(xg — x1)), %o = —(2a*)_1/2, Yo = (¥ — x0)/%, T=(x; — x0)/%0.

Then

ay =0, by= —XoXg = Yo¥o» a1 = —Xo¥1 + (Yo — DXy,

. . 13
by = Xox; + (Yo — Dy1- (13

Equations (12) and (13) enable the nodes of the trajectory to be computed as
functions of the natural parameter a.

0 < ap < 122°(—0.625 < h < 0.989).

For 0 < a < 42°(~0.625 < h < —0.347), there is a stability to a first approximation
and an instability for other values of «; corresponding to real motions (Fig. 1).

(a) We obtain the second subfamily of this family as mirror images of the h-shaped
trajectories with respect to the vertical diameter. Each stable subfamily possesses an
archipelago of three islands in the Poincaré section and both the subfamilies have a
chain of six islands.

(b) The family is born from the resonant bounce 1.1 with the parameter b, = \/3/2
(h = —5/8 = —0.625) and it becomes the bounce in the limit o — 0.

0
sk
)
(%)
2 .10f-
)
-154
20
25 ! L | 1
0 30 60 90 120
ag (deg)

Fig. 3. The dependence «a; (a,) determined by equation (12) for the h-shaped periodic trajectory 3.7 in Fig. 2.
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3.2. A symmetric three-link (3.2 in Fig. 2).
U ug = (ay, ag, by), uy = (—a, ay = ag, by = bg), u; = (0, ay, by).
We introduce an auxiliary parameter

2sin ay(2 — cos ay)

(9 — 16cos ap — 16cos® oy + 32cos’ a0)1/2 + 2cos’ay + 4cosap — 3 .
Then by = [sin ap/(3(1 — p*)sin2ap + pcos2ay)]?,  ag= —pby, > = agcos ap +
bysin &y, b, = aysin oy — by cos ay + (sin a;)/as,.
1 0< oy <a, <(m/d) (—0.625< h < h,), the angle a, is determined as a root of the
equation

Fag) = &(2n + §0)* - 8n =10, (14)

112

where £ = sin &y, & = —3(aqcos ag + bgsin ag)~? and

) ) _ aysin a, — bycos oy
n = sin ay(aq cos ay + bysin ap) ™2 +

agcos ay + bysin ag '
The numerical solution of (14) yields «,, = 41°56’10", h = h, = 0.951. To the nearest
degree, o, = 42°, which coincides with the stability boundary for the three-link family
3.1.

St:  All the trajectories 3.2 are unstable and s —» —1 as a — 0 and s —> —® as a — (7/4).

A: The family consists of two subfamilies with opposite directions of motion. The
limiting case a =0 leads to the bounce 1.1 with b, = V3/2 (h=-5/8 = —0.625),
stable to a first approximation. Thus, any arbitrarily small vicinity of the resonant
bounce with b, = \/3/2 contains an unstable trajectory 3.2.

3.3. A curvilinear triangle with one vertex at the lower point of the circle, symmetric
about the vertical diameter (3.3 in Fig. 2).

Us  ug = (ay, ag, by), uy = (—ap, a; = ap, by = by), uy = (0, ay, by).
We introduce an auxiliary parameter

2sin ay(2 — cos ay)

VW2 — 2cos’ g — dcosag + 3

(9 — 16cos @y — 16cos? oy + 32cos® ay
Then b, = [sin a,/(3(0* — 1) sin 2 — pcos2a;)]¥?, ag = pby, ay = agcos ay + bysin ay,
bz = Qg sin &y — bO COS oy + (Sin ao)/az.
I (13) < a, < ap < 3w, the limiting value a, = a, is a root of the equation

F(ay) = (agsin ay + bycos ap)’ — 2(1 + cos ap) = 0, (15)

the numeric solution of (15) yields o, = 66°54'41".

St: To a first approximation, stability for 72°51'46” < o < 75°33'36" (0.7977 = h = 0.7775)
(Fig. 1). Instability for all other values of &, from the existence region.

A: In the limit a)— %r, the motion with |v| = ® along an equilateral rectilinear triangle
inscribed in the circle and with one vertex at its lower point.

3.4. A curvilinear triangle with one vertex at the upper point of the circle, symmetric
about the vertical diameter (3.4 in Fig. 2).

U:  up = (ap, ao, bo), uy = (=, a; = ag, by = by), u; = (0, a,, by).
We introduce an auxiliary parameter
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2sin ay(2 + cos ay)

(9 + 16cos ay — 16cos® ay — 32cos® a)? — 2cos’ ay + dcos oy + 3
Then by = [sin ay/(5(1 — p?)sin2ay + pcos2ag)]V?,  ag = —pby, a,= —agcosa, —
bysin &y, b, = —aysin a; + by cos a, + (sin ag)/a;-
(1/4) < @y < (1/3) (1.073 = (10 = V(2))/8 < h < ).
Stability for (7/4) < a, < &g < (7/3), a, = 48°33'16” (1.4803 < h < ). Instability for
(7/4) < oy < a,, and s — 1 as @y — @, and s — —1 as ay— (7/3).
The limiting case &, = (7/4) yields an unstable two-link 2.3, the plunging parabola
which is tangent to the circle at its upper point. The limiting case a, = (7/3): the
motion with |v| = « along an equilateral triangle with one vertex at the upper point
of the circle.

4. Four-link trajectories

4.1.

A four-link trajectory consisting of two parabolic arcs symmetric about the vertical

diameter (‘ticks’ 4.1 in Fig. 2).

U:

d:
St:

4.2.

ug=(ap, ag=0, by= 1/\/2), up=( =0, a;=—bgsineg, b= \/2 — by cos ap),
Uy =(ay=—ap, a; =0, b, =by), us = (a3 =0, a3 = —ay, by = by).

O0<ay<m, h=3—cosay.

The parameter in the characteristic equation (10) is

s =1—2(6 — 7cos ay — 8cos® &, + 8cos® ay)*/(2 — cos ay)’.

This implies: an instability for 37 < &y < (w/2) + arcsin ((V17 — 1)/4) = 141°20, a
stability, to a first approximation, for 0< ap<3m (—0.75< h < —0.25) and for
(m/2) + arcsin (V17 — 1)/4) < &y <7 (1.031 < h < 1.25) (Fig. 1).

(a) The family is born from the resonant, stable to a first approximation, bounce /.1
with by = 1//2 (h = —0.75) and transforms into it as a;, — 0.

(b) As ay— m, the family transforms into the bounce 2./ with the value of the
parameter b, =3/\/2 (h =1.25), which is on the boundary between stable and
unstable bounces 2.1.

(c¢) The family is isochronal: all the trajectories have the same initial velocity
v = 1/\/2 and the same period T = 4//2.

A four-link w-shaped trajectory consisting of a parabolic arc symmetric about the

vertical diameter and two vertical chord segments of the same height (4.1 in Fig. 2).

U:

3:

St:

A

4.3.

Uy = (ap, ag, bo), 1 = (@, ay = —ag, by = by), U, = (— &y, a; = —ay, b, = by),

us = (=, as = ay, by = by), ay = sin ap(2 cos ay cos 20,) "2,

by = cos ay(2 cos oy cos 2a,) "2,

0< ay < vy < (7/4), a,, = arccos [3(5 + (1/V/2))]2 = 39°01",

h = 1/(4cos acos2a;) — cos .

All the trajectories 4.2 are unstable and s— —1 as a;—0 (and s— —x as
&g — (77'/4)).

The limiting case a, =0 yields the bounce 1.1 with b, = 1/y/2. The trajectories 4.2
are born together with 4.7 from this resonant bounce.

A curvilinear quadrangle with vertices at the lower and upper points of the circle,

symmetric about the vertical diameter (4.3 in Fig. 2). Periodic solutions of this family exist
and they are stable for all sufficiently large values of the energy constant i > i, =~ 1.621.
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The value A = h, is bifurcational (the period-doubling bifurcation). For A < h,, the
discussed four-link trajectories are unstable, but stable symmetric eight-link trajectories,
close to the four-link ones, come into being. These eight-link trajectories have a rather
small region of stability.

A more detailed information about the family 4.3 is as follows:

U:

4.4.

uy = (a0, ag, by), uy = (ay =, ay, b)), uy = (a, = — &, a, = aq, b, = by),
us = (a3 = 0, a3, bs),
4 = sin & , = 1+ (1 — 4cos? ap)"? ,
[2cos ag(1 — 4cos? o) 2]V [8cos ay(1 — 4 cos? ap) 2]
a, = —agcosay + bysina, a; =aycosay + bysinay, by = aysinay + bycos oy —

(sin &g)/a,, bs = agsinay — bycos ay + (sin ay)/as.

@, < ay <(@2) (1.152 < h < @), a, =~ 66°55'.

o, < ap < 73°48’ (1.152 < h < 1.621)—instability.

73°49" < @y < 90° (1.621 < h < o) —stability.

For a = «,, the four-link 4.3 transforms into the three-link 3.3 with tangency at the
upper point of the circle (b, = 0).

A curvilinear quadrangle with vertices that are pairwise symmetric about the vertical

diameter (4.4 in Fig. 2).

U:

3:

St:

St:

5.

The nodes uy = (ay, ay, by), u; = (ay, a;, b;), ... cannot be expressed by simple
formulas.
25°38" < ay < 45° (80°21’ < ar; < 135°, respectively). The dependence h(a;) is shown
in Fig. 1.

Stable for 27°22' < ay < 27°57' (86°43' < o, < 88°50"), i.e. for 1.038 < h < 1.045, and
unstable in the rest of the existence region.

For ag = 45° (a; = 135°)—motion along an inscribed square with infinite speed (the
Birkhoff billiard).

An exotic self-intersecting four-link (4.5 in Fig. 2).

29°29' < @, < 45°, respectively, 45° < a, < 80°40' (0.177 =~ /2/8 < h <1.032). Both
the dependences 4(a,) and h(a,) are shown in Fig. 1.

Stable for 41°22' < a;, < 45°, respectively, 45° < @, <49°22' (\/2/8 < h<0.2). Un-
stable in the rest of the existence region.

For a, = 45° it transforms into the two-link 2.3 on the boundary between regions of
stable and unstable trajectories 2.3.

An exotic self-intersecting four-link (4.6 in Fig. 2).

3°12' < a < a,, = 3arccos (/5 — 1)/2 = 25°55', respectively, o, < a, <42°04' (—0.34
< h < —0.95). Both the dependences /(a,) and h(«,) are shown in Fig. 1.

Stability for 16°3' < a;, < a, respectively, o, < a, <33°33' (-0.34 < h < —0.28).

For ay = «,, it transforms into the resonant case of the two-link 2.2.

Five-link trajectories

Five-link trajectories have not been studied closely. However, extensive numerical
computations have revealed the following five-link trajectories presented in Fig. 2:
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5.1. Nonsymmetric m-shaped trajectories with two parabolic arcs (chord—arc-arc). They
exist and are stable for some negative values of the energy 4.

5.2. Trajectories consisting of three symmetrically placed arcs and two more arcs, also
symmetric. They exist for some 7 < 0 and are unstable.

5.3. Pentagons with a vertex at the upper point of the circle. They exist and are stable for
some sufficiently large positive 4.

5.4. Pentagons with a vertex at the lower point of the circle. They exist for sufficiently
large & > 0 and are unstable.

5.5. Five-pointed stars with a vertex at the upper point of the circle. They exist and are
stable for sufficiently large 4 > 0.

5.6. Five-pointed stars with a vertex at the lower point of the circle. They exist for
sufficiently large 4 > 0 and are unstable.

6. Six-link trajectories

Of six-link trajectories we distinguish the family:

6.1. This family of trajectories consist of three arcs placed symmetrically about the
vertical diameter (6.1 in Fig. 2). These six-links significantly affect the phase portrait of the
problem. The curve h(«) for this six-link is presented in Fig. 1. The stability interval is
0 < o< 62°. However, for a = 53°17’, the stability parameter s = 1, and this corresponds
to the critical case and bifurcation (families of stable and unstable twelve-links are born).

4. ON THE SYMMETRY OF PERIODIC TRAJECTORIES

As h— o, the gravitational billiard considered approaches the Birkhoff billiard in a
circle. The latter allows for a continuum of periodic trajectories. Each of them may be
rotated as a whole through an arbitrary angle around the centre of the circle giving birth to
a new periodic trajectory. However, this property does not hold when a weak gravitational
field is switched on (which is equivalent to the case of rather large values of 4 for a field of
a limited force). Numerical experiments show the presence of only periodic trajectories
symmetric about the vertical diameter of the circle. This is also true for low energy levels
except for h-shaped trajectories with various numbers of links. No other nonsymmetrical
periodic trajectories have been found. Thus we can say that the gravity field acts selectively
eliminating nonsymmetrical periodic trajectories. We shall now examine this phenomenon.

In a weak gravitational field g, take £= —3ig, |g/ << 1. One link of a trajectory is
described by the equation

y + cosay = e(x — sinay)?® — cot(ap + @p)(x — sin &), (16)

where ap is an angular coordinate of the collision point, and ¢, is the reflection angle,
-2 < @y < m/2.

For the Birkhoff billiard, ¢ = 0 and a trajectory link is a segment of a straight line. The
reflection angle ¢ is an invariant and the mapping of the phase cylinder boundary is given
by the formulas

Hpyp = @, + 2(;0n -7, Po+1 = Pns n= Oa 1, 2a e e (17)
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A necessary and sufficient condition of a trajectory periodicity is the commensurability of
the invariant ¢ = ¢, with 7, namely:

o= (pg)n, p-q=2k, Ipl<lql, p,q kel (18)

In a weak gravitational field (|| < 1), we search for the mapping (&, @) — (ay, ¢;) in
the form

o =ay+ 2@, — 7+ 8 + B +0(%), @ =@ + ey + & + 0.
By using (16) and the equation for the angle of incidence

d
Y = —cot(a; — @),
dx X=xq

we obtain
8 = —4cos gsin® (g + @),
B; = 8cos @ysin’ (ap + @p)[2cos (ag + @) cos gy — sin ggsin (ag + @g)],
71 =0,
n = —4cos gosin® (ap + @) sin2(ay + ). (19)

In a similar way, by constructing the mapping (a3, @) = (a2, ¢,), and so on, we have
after ¢ mappings

q q
@, =g+ 2qq — qm + €25 + £3(B; + 2(q — Dx) + ¢°0(2),

i=1 i=1
q
@y = @ + 5223&' + q0(&’).
i=1
We search for ¢, of a periodic trajectory in the gravitating billiard in the form
P = @+ £y + Eqrn + O, (20)

where ¢ is determined by the trajectory periodicity conditions (18) for the Birkhoff billiard.
The periodicity conditions for the gravitating billiard are as follows:

o, = ay + 21k, @, = . (21)
The first equation of (21), in view of (20}, implies

1< 13 .
Pn = —— 2.6, @ =——2(B + 2(q — D)x).
2q i=1 2q =1
The second equation of (21) yields the only necessary condition of periodicity:
q
>k =0. (22)
i=1

After replacing the index 1 by i, and 0 by i — 1 in the last equation of (19), insert the
expression for y; into (22). Also substitute the initial approximations for «;_;, ¢;_; from the
theory of the Birkhoff billiard according to equations (17) and (18). Then, we obtain (22)
in the expanded form:

g-1
4cos? (%3)2 sin* (ao + %ﬁ + irrﬂ) sin (2&0 + 7l + 2i77£) =0, (23)
q/i=o0 q q q q
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which is equivalent to the condition
q-1
> >sin (c + 2i17—p—) — sin (2c + 4i7r£) + 1sin (3c + 6i77£)] =0, (24)
i=0 q q q

where ¢ =2 + 7p/q.
It can be shown that

-1 -
Y sin2ri— =0, melZ, 25
i=0 q
and
ol m | g ifm/g =],
>, cos2mi— = m,jelZ, (26)
i=0 q 0,if m/q # j.

By developing the sines of the sums in (24) and taking into account equations (25) and
(26), we find that (24) is always met identically for any c, except in the following
essentially different cases:

Lp=0,g=2 IlLp=+1,g=3 Ilp=+2qg=4 IV.p=14 q=6.
(27)

The negative values of p correspond to time-reversed motion. We shall now consider these
cases.

I. p=0, g=2. The unperturbed trajectory is a diameter of the circle. Inserting the
values of p, g in (23) yields sin* aysin2a, = 0 and so a, = (7/2)n, n € Z. Thus, among all
possible two-link trajectories, the gravity selects only two symmetric trajectories, which are
born from the vertical and horizontal diameters (recalling that we are dealing with a weak
field).

II. p==*1, g=3. The unperturbed trajectory is an equilateral triangle. Inserting the
values of p, g in (24) yields sin6a, =0 and so ay =(7/6)n, n € Z. Only triangles, one
vertex of which lies at the lower or upper point of the circle (the first group) or at the
intersection of the horizontal diameter with the circle (the second group), are selected. The
numerical experiment revealed similar three-link trajectories from the first group only.
These trajectories are symmetric about the vertical diameter. Recall that the condition (23)
(or (24)) is merely the necessary condition for periodicity of a trajectory.

III. p==*2, qg=4. Squares in the unperturbed motion. Equation (24) yields sin4a, =0
and so ag = (7/4)n, n € Z. These are generating trajectories—either squares with vertices
at the intersections of the horizontal and vertical diameters with the circle (the first group)
or squares with horizontal and vertical sides (the second group). The numerical computa-
tion discovered the trajectories of both the groups.

IV. p=*4, g=6. Regular hexagons in the unperturbed motion. Equation (24) yields
sin6a, = 0 and so ay = (7/6)n, n € Z. This condition selects two groups of hexagons: those
with a pair of vertical sides (the first group) and those with a pair of horizontal sides (the
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second group). The trajectories belonging to either group were found during the numerical
computation.

Thus, we have shown that imposing the weak gravitational field leads to the disappear-
ance of nonsymmetric two-, three-, four-, and six-link trajectories. The five-link trajectories
are not covered by the theory in the approximation considered and they remain arbitrarily
orientated. It seems likely that the selection of the five-links as well as the trajectories
having seven and more links may be carried out by taking into account the expansion terms
of higher powers of &.

The theory developed can be called quasi-linear in the sense that the trajectories under
study consist of near-straight links. In the essentially non-linear cases, it is also sometimes
possible to demonstrate the selective properties of the gravitational field (the selection of
symmetrical trajectories).

We will show this by the example of the two-link trajectories 2.2—the motion back and
forth along the parabolic arc. Denote the angular deviations of the points of the collision
with the circle from the vertical downwards direction by o and —f, & >0, > 0. For the
existence of such a trajectory, it is necessary to put ay, = a; = 0 in Equations (6) to (8).
Then, it follows from these equations that

bysinf = bysin, —3ibisin2f + sin f = 3bgsin2a — sina,
1,2 1,2 (28)
sb1 — cosf3 =3by — cos a.

This implies the existence of the symmetric trajectory 2.2:
a=p b =by= (cosa) ¥
We seek for the nonsymmetric trajectory

a# B, 7>a>0, 7>p>0, by > 0, b, > 0.

Resolving the first and third equations of (28) with respect to by, b, we have

+ - . + ~ .
a ﬂcosw ﬂ=sm2ﬂ, b%cosa( ﬁcosa ﬁ=s1n201.

b%cos
2 2 2

Substituting the expressions for b§ and b3, obtained from the equations above, into the
second equation of (28), we bring this equation to the form:

sin (o + B)/2) _
1+ cos(a + /J’)]—————COS (@ = B)2) 0

which cannot be satisfied because of the essential positiveness of the left-hand side. The
desired non-symmetric trajectories do not exist.

Note that the principle of the symmetry of the periodic trajectories derives from the
superposition of the two factors: the gravitation and the perfect symmetry of the circular
billiard. For example, the elliptic gravitating billiard with the boundary x = Asina,
y = —cos &, 0 < A <1, allows for the non-symmetric two-link trajectory with the nodes

oy = —TT-, ay = O, = A ’
2 V@2 - AHVa - AY)
@ = —arcsin( 4 ), a,=0, b= va _43A2) :
2-A° V(2 - ADHV(A - 4%
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5. THE POINCARE SURFACES OF SECTION

The performed analysis of the existence and stability of the periodic trajectory families
makes it possible to represent the main features of the phase portrait for a fixed energy
level. This is carried out by accumulation of ‘archipelagos’ that correspond to the particular
stable periodic motions existing on a given energy level. Then the numerical implementa-
tion of the Poincaré mapping is used, which enables us to describe surfaces of section in
more detail, including chaotic seas and archipelagos of regular motions.

We now turn our attention to Fig. 1. The region of the parameters definition in the
plane (&, h) is h > —cos . The boundary of this region is marked in Fig. 1. A fixed
energy level kg is corresponded in the phase plane (a, &) by the motion existence region
defined by the inequality 3d* — cos @< hy,. On the boundary 3d* —cosa = h, of this
region, depending on the value A, there is either a continuous pendulum-like motion on
the constraint » =1 or a motion on this constraint until the moment of leaving it (see
Section 6).

Now we describe the Poincaré surfaces of section and their main features for various
energy levels.

1. —1.0<h=<-0.75. 1t is clear from Fig. 1 that, for this interval of the energy values,
among stable periodic trajectories with a rather small number of links, there exist only
stable vertical bounces 1.7 at the lower point of the circle. They correspond to the stable
origin (centre) on the Poincaré phase plane. The absence of other periodic motions in the
vicinity of the origin provides a high degree of regularity (a rather small stochasticity).
Indeed, the Poincaré section is shown in Fig. 4 for # = —0.75, where one can clearly see all
that has been noticed above. Only closer to the boundary are located the archipelagos of 6

h=-.75

LI I B O U B o 2 o T T

Fig. 4. Surface of section for & = —0.75. The stable origin (centre) corresponds to stable vertical bounces 1.1 at
the lower point of the circle. Weak stochasticity.
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and 8 islands, the centres of which correspond to the six- and eight-link stable periodic
motions. (These are of oscillatory type: with change of the sign of &, the motions proceed
back and forth along the chain of the parabolic arcs.)

2. —=0.75<h=<—-0.625. The preceding picture is superimposed by the four-link archipe-
lago, which corresponds to the four-link periodic trajectory 4.1. This archipelago is located
closer to the origin than the six-island one; the stochasticity makes itself evident (Fig. 5).

3. —=0.625 <h=<-—0.5. 1Itis clear from Fig. 1 that, on these energy levels, the Poincaré
section is characterized, as one increases the distance from the origin, by the islands that
correspond to the motions 1.1, 3.1 and 4.1. The archipelago associated with the three-link
trajectories consists of a pair of symmetrically located three-island archipelagos. The
stochasticity is already quite significant. The Poincaré plane contains, apart from the
above-listed archipelagos, a number of multi-link ones including a six-link chain that
consists of rather large islands (lying nearer to the boundary of the possible motion region).
One can see in Fig. 6 that all this is also typical for the limiting energy level (h = —0.5).
Here, the islands of the three-link archipelagos are of significantly smaller sizes than those
of the six-link.

4. —=0.5<h=<-0.347. 1t is obvious from Fig. 1 that there exists no island with its centre
at the origin (the vertical bounce is unstable). An archipelago of two islands (the two-link
2.2) evolved from it as a result of the bifurcation. Further, as one increases the distance
from the origin, there are three-links 3./ and four-links 4.7. The islands are decreasing in
size, the stochasticity is growing. This situation is shown in Fig. 7 for & = —0.4.

-
o

-
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Fig. 5. Surface of section for 4 = —0.625. A four-link archipelago arises that corresponds to trajectory 4.1,
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h=-.5
-1.
~1. o
Fig. 6. Surface of section for # = —0.5. Stochasticity develops. There are a number of multi-link chains of islands.

Fig. 7. Surface of section for £ = —0.4. There is no island with its centre at the origin (the vertical bounce is
unstable). A chain of two islands (the two-link 2.2) evolves from it as a result of the bifurcation. Other islands
decrease in size.
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5. —0.347 <h=< —0.25. The stable three-links disappear. The families 2.2 and 4.1 re-
main. In Fig. 8 for h= —0.25, the family 4.1 is on the verge of the bifurcational
disappearance. In Fig. 8 one can see virtually no other archipelagos, which are flooded
with the chaotic sea.

6. —0.25<h=<0. The numerical implementation of the Poincaré mapping revealed
strong stochasticity. According to Fig. 1, the islands must remain that correspond to the
two-link 2.2. In Fig. 9 (h =0), these islands are on the verge of the bifurcation—the
transformation into a pair of two-island archipelagos, associated with the family 2.3.

The value A,,, of the maximal Lyapunov exponent may serve as a measure of
stochasticity. For regular motions A,, =0 and A,, grows as the motion increases
stochasticity.

Presented in Fig. 10 are the results of A, evaluation as a function of the number of
collisions for the energy level & = 0. The precise value of Ay, is determined as a limit as
n— o« [5]. A rapid convergence Ay, — 0 is observed along a regular trajectory A, — 0.
Two computation variants are presented with different initial conditions. For both of them,
the convergence to the limiting value A, =~0.591 is seen, which corresponds to the
significant stochasticity.

7. 0<h=<0.175. A pair of two-island archipelagos in the chaotic sea, they are associated
with the two-links 2.3 with the motion of the rotatory type (the angular velocity does not
change its sign; see Fig. 11 in which 4 = 0.1). The islands are quite small and it is hard to
detect them in the chaotic sea.

8. 0.175<h=<1.031. There is a global chaos, and a pair of three-island archipelagos arise
only in the very small subregion of the parameter values that correspond to the family 3.3.

h=-.25

T T T

T T T T T T T T

T
-1. 8. 1. o

Fig. 8. Surface of section for 4 = —0.25. The stable three-links disappear. The families 2.2 and 4.1 remain. The
family 4.1 is on the verge of bifurcational disappearance.
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T
-1. a. 1. o

Fig. 9. Surface of section for k& = 0. Strong stochasticity. The two-link 2.2 islands are about to bifurcate into a pair
of two-island archipelagos associated with the family 2.3.
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Fig. 10. Convergence of the maximal Lyapunov exponent for the energy level £ =0 and for different initial
conditions.

The islands are quite small and it is hard to detect them in the chaotic sea (Fig. 12,
h =0.78).

9. 1.031 <h=<1.25. In the chaotic sea the gaps come into view. There is an archipelago
corresponding to the family 4.7 (Fig. 13).
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Fig. 11. Surface of section for 2 =0.1. A pair of small two-island archipelagos in the chaotic sea. They are
associated with the two-links 2.3 with motion of the rotatory type.

o ]
1.
8.
_1—:
] h=0.78
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Fig. 12. Surface of section for 4 = 0.78. Global chaos. A pair of tiny three-island archipelagos correspond to the
family 3.3.
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h= 1.2
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Fig. 13. Surface of section for # = 1.2. In the chaotic sea the gaps come into view. There is a chain corresponding
to the family 4.1.

10. 1.25 <h=<1.48. The family 4.1 transforms into 2.1 (Fig. 14).

11. 1.48<h <. Apart from 2.1, the archipelagos of the three-link trajectory family 3.3
come into being (Fig. 15, & = 1.5). For h > 1.621, the four-link archipelagos emerge, then
the five-link ones and so on. This is already clearly seen in Fig. 16 (4 = 2.0). Further
increase of A leads to more regularity of motions (Fig. 17, A =2.5) and, in the limit
h — , the phase maps describe the Birkhoff billiard in the circle (the sets & = constant in
the plane (a, &)).

We now sum up our investigation of the phase map evolution as & changes, somewhat
simplifying matters in order to give an overall description.

1. =1 < h <0. There are oscillatory motions with a high degree of regularity and barely
noticeable stochasticity up to h =~ —0.75, with developing chaos and number of
archipelagos as A further increases. There is a strong stochasticity for —0.25 < h <0.
One two-link archipelago virtually remains.

2. 0<h <1. There is a very strong global stochasticity of motion with barely noticeable
exceptions.

3. 1< h. There is a transition to rotatory motions, and the appearance of a large number
of regular motion archipelagos in the chaos sea as 4 increases and there is a high degree
of regularity for & > 2.5.

Notice that in order to make the presentation more concise, many interesting details are
omitted, such as the period-doubling bifurcation as s decreases (for the three-link
trajectories for £ = 1.4803, for the four-link trajectories for # = 1.621 and so on) and the
analysis of the birth of multi-link trajectories in the vicinity of ones with a small number of
links (as in Fig. 15, A = 1.5).
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Fig. 14. Surface of section for £ = 1.35. The family 4.1 transforms into 2.1.
-1.
h= 1.5
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Fig. 15. Surface of section for 4 = 1.5. Chains of the three-link trajectory family 3.3 come into being.
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Fig. 16. Surface of section for 2 = 2. The multi-link archipelagos emerge.
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Fig. 17. Surface of section for 4 = 2.5. Further increase in 4 leads to more regularity of motion.
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6. CONSTRAINED MOTIONS AND CONSTRAINT BREAKING

The constrained motion r =1, 7 =0 proceeds in the phase space along the integral
curves
36 —cosa = h (29)
only if
& + cosa > 0. (30)

As the inequality (30) is violated, the mass point leaves the constraint and comes off inside
the circle. Shown in Fig. 18 are the phase curves (29) and the leaving region, satisfying the
opposite sign in the inequality (30), is cross-hatched. It can be seen that the oscillatory
motion, for any 4 in the range —1 < A <0, and the rotatory one, for any 4 > 1.5, proceed
without leaving the constraint. For 0 < 4 < 1.5, the motion inevitably comes off the
constraint and, most likely, to a chaotic trajectory of the gravitating billiard. The
stochasticity of the motion after leaving the constraint seems to be probable because (a)
there are no billiard trajectories with the initial condition 7 =0 among the periodic ones
discussed above, and (b) the range 0 < & < 1.5 for values of / corresponds to a very strong
stochasticity of motion, as is seen from the preceding.

However, there exist periodic trajectories that consist of segments of pendulum-like
constrained motion and others consisting of parabolic motion in the interior of the circle.
The transition from the constrained motion to the parabolic one occurs on the condition
that r = 1, 7 = 0. One such trajectory is presented in Fig. 19a. The initial conditions at the
leaving point are &, = 120°, &, = 1/0.5. There also exist periodic trajectories of similar type
with larger numbers of links (Fig. 19b). However, they are all likely to be strongly
unstable; the slightest change in the initial conditions leads the motion towards chaos.

7. MOTION EVOLUTION ON PERFECTLY INELASTIC CONTACT WITH THE CONSTRAINT

The billiard formulation of the problem made the hypothesis of perfectly elastic contact
with the constraint. A partly elastic collision is closer to reality. Of interest is the other

Fig. 18. The phase curves (29) of constrained motion. The leaving region is cross-hatched.
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Fig. 19. The periodic trajectories consisting of segments of pendulum-like constrained motion and those consisting
of parabolic motion in the interior of the circle. (a) & = 0.75. The initial conditions at the leaving point are
&g = 120°, &o = V(0.5). (b) & = 1.207. The trajectory with larger numbers of links.

extreme (limiting) case of perfectly inelastic contact with the constraint. During such a
collision, the velocity normal component 7 is cancelled completely, while the tangent
component & is conserved.

It is clear from the phase map in Fig. 18 that if, after the collision with the constraint,
the energy level falls within one of the intervals —1 <A <0 or h>1.5, then the
subsequent motion will be of the pendulum-like nature (7 = 0), oscillatory in the first case
and rotatory in the second. If, after the perfectly inelastic collision, the motion energy falls
within the range 0<h < 1.5, then an evolution of motion is possible, of leaving the
constraint another time, meeting it again and so on. Let us follow this evolution. In
equation (3), by virtue of the constraint leaving conditions, the constant term and the 1
first-order term are equal to zero. Therefore, the instant of subsequent meeting with the
constraint is given by T = 4y,. The phase coordinates at this moment are

X =xg+ 4y, k=1, y=yo—4y5, ¥ =-3%.

"The results presented below were verified again by students R, Oparina and T. Sitnova from M. V. Lomonosov
Moscow State University.
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Fig. 20. The energy k. after the perfectly inelastic collision vs the energy %, before.

The radial (cancelled) velocity v, and the tangential (conserved) velocity v, are evaluated
at this moment from the formulas

o, =8yi,  vr=xi+ yi+ 8yi(l - 8y).
The difference of the energies h, after the second collision with the circle and 4, at the
instant of the initial escape of the constraint is computed as

h, — hy = =32y, (31)
But y, may be expressed in terms of 4, as follows:
¥ = 5ho(1 = 3hy). (32)
By substituting (32) in (31), we finally have
he = ho = =3ho(1 = 5hi). (33)

The dependence h,(h,) given by (33) is presented in Fig. 20. This picture allows us to
construct successive maps #, — h,.; of the energy from n-th to (n + 1)-th collision in the
energy evolution region. It is obvious that the motion can approach the level /=0 as a
limiting cycle, i.e. the pendulum-like motion with an amplitude equal to /2. Alternatively,
the motion becomes, after one or more collisions, oscillatory with a fixed value of A from
the range h, < h <0, h, = —0.982.
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