Regular and chaotic motions in applied dynamics of a rigid body
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Periodic and regular motions, having a predictable functioning mode, play an important role in
many problems of dynamics. The achievements of mathematics and mectiz@gasning with
Poincar¢ have made it possible to establish that such motion modes, generally speaking, are local
and form “islands” of regularity in a “chaotic sea” of essentially unpredictable trajectories. The
development of computer techniques together with theoretical investigations makes it possible to
study the global structure of the phase space of many problems having applied significance. A
review of a number of such problems, considered by the authors in the past four or five years, is
given in this paper. These include orientation and rotation problems of artificial and natural celestial
bodies and the problem of controlling the motion of a locomotion robot. The structure of phase
space is investigated for these problems. The phase trajectories of the motion are constructed by a
numerical implementation of the PoinCaoeint map method. Distinctions are made between regular
(or resonance quasiregulafor conditionally periodif, and chaotic trajectories. The evolution of

the phase picture as the parameters are varied is investigated. A large number of “phase portraits”
gives a notion of the arrangement and size of the stability islands in the “sea” of chaotic motions,
about the appearance and disappearance of these islands as the parameters are varietldgc. ©
American Institute of Physic§S1054-150(06)00702-]

I. DYNAMICS OF BODY OF TWO-LEGGED (“head down”) evolve to a stable periodic oscillation of the
APPARATUS body, with the center of mass located above the suspension

One of the problems of controlling robotic devices is thepomt( head up”) as a parameter is varied. Chaotic motion

problem of developing and testing mathematical models OPf t.he. body'ls typlcalugnd th? .perlodlc anq Sondlytilonally
walking devices, including two-legged. The following penodm motlons' form |slanQS in the chaotic “sea. '
model, among others, was proposed and developed in Refs. Figure 1 depicts schematically the two-legged device be-
1-3. The two-dimensional problem of two-legged walking "9 mvestlgateq; it is shown at the moment when the sup-
was considered. The two-legged apparatus was modeled byPQts are chapglng‘rom the “back” leg to the “front”). We
rigid body equipped with a pair of two-member weightlessassume thal is the moment of inertia of the bodshe body
legs. The walking consists only of single-support phasegveight P=Mg) with respect to its center of mass,is the
(on|y one |eg provides support at any instant of firapd the distance from the center of mass to the suspension point of
legs make a point contact with the surface. Control momentthe legsl is the length of a stef§ is the “support shift”"—
in the knee and thigh of the supporting leg are used only téhe distance of the projection of the suspension point of the
produce uniform and rectilinear horizontal motion of the susdegs on the support surface from the support point. We will
pension point of the legs. Through the action of a moment imssume that as the apparatus moves over a horizontal surface,
the knee defined in this manner the heavy body of the appahe suspension point of the legs moves at a constant hieight
ratus can perform various motions. What are these motionsiniformly and rectilinearly with velocity. (The moments of
The periodic motions of a body have been investigatedhe control forces are easily expressed in terms of the reac-
in a number of papers} sometimes together with motions  tion force of the support by virtue of the weightlessness of
similar to these. However, a global analysis of the phasgnhe legs) We use the symbob to denote the inclination of
trajectories of the prOblem is of considerable interest. Thqhe “Suspension point_center of mass” axis to the axis di-
first results in this respect were obtained in Refs. 6—8 and argcted vertically upward.
presented below. We define the dimensionless timein terms of the di-
The motion is investigated on the phase,plane by meang,ensioned time by
of a numerical implementation of the Poincgreint map
method. Regular and chaotic motions are identified and their
evolution is traced as parameters are varied. It is found, in

. .. . . . /
particular, that stable periodic oscillations of the body with a dr=ow dt. o= Mge vz e
center of mass that is located below the suspension point ' J+Mp(p+h)
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FIG. 2. The Poincarenap forA=1, corresponding to the short step.

d* in 9= 5
3 sin 9=q. (5)

The operator on the left side of E¢) is a result of the
By n e natural presence of a reversible pendulum in the problem
. | while the functiong=q(¥,dd/dr,7) expresses the control
) moment at the suspension point of this pendulum, which
FIG. 1. A scheme of the two-legged device under study, shown at theprov'de_S for a given translational motl_(éﬂne Vu'_(ObratO_V'Ch
moment of changing its supports from the “back” leg to the “front.” pre-defined synergy meth%)d Equation (4) is a five-
parameter equation. In the calculations below it is assumed
that u,=0.1 andu,=0.3. If no values are stated farand 7,
i , ) . then it is assumed that=0.5 and7,=1.0. Let us point out
The dimensionless step duratiog=1yT, whereT=L/V, IS a; for 0.5 the pattern of motiofor the phase portrait
the dimensioned stepping period. We introduce the other d'differs qualitatively from thex=0.5 case. The parameteiis

mensionless parameters, the principal variable parameter; it varies from figure to fig-

X

i -

A=Llg, a=SIL, wu;=Me?[IJ+Mg(e+h)], ure. Only the principal islands within a reasonable interval of
the angular velocity, plotted along the ordinate axis, are iden-
ma=pihle, (2 tified in all of the figures cited below. The angik(in radi-
and we assume ang of the deviation of the body from the vertically upright
direction is plotted along the abscissa axis. The point maps
¢(r)=rl19=[7/70] - @, () are drawn for the period;, of the duration of one walking
where [z] denotes the integer part af step. )
In these notations the equation of the body oscillations A typical Poincarephase picture is depicted in Fig. 2.
ig:1-3 Here A=1, which corresponds to the short step. There are

many islands of regularity in the chaotic sea. The center of
the main island of regularityd==*1r, ' ~0.1) corresponds
T to stable periodic “head-down” motion with a one-step pe-
do\ 2 riod. In the vicinity of this island there is an archipelago of
+[ i @(7)COS I — ey Sin 19](_) —sin d=\o(7). five islands whose centers represent stable head-down mo-
T tion with a period of five steps. The large island with the
(4) center(9=0, ¥'~4) corresponds to regular motions in the
Equation(4) is nonlinear and non-Hamiltonian with periodic vicinity of a stable periodic forward rotation of the body with
discontinuous coefficients. It has been investigated by mang period of one stegBiological two-legged systems do not
authors(see, for example, Refs. 3—-5 and the bibliographieshave such motions, but robot systems may not impose any
in these papejsThese investigations, as already pointed outrestriction on body rotatioin Stable forward rotations of the
were directed primarily at looking for periodic solutions of body with a period of three steps are also seen. The remnants
Eq. (4) and investigating their properties. The discontinuity of destroyed islands near periodic reverse rotations with a
of the coefficients of Eq(4) with time is caused by the period of three steps are visible in the lower part of the figure
discontinuity of the single-support walking process. Equationn the chaotic sea. Such rotations exist and are stable at
(4) can be written in the form smaller\ values.

2

o
<

(1—py COST+ pih@(7)SIN V) =

o
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FIG. 3. The Poincarenap for an increased step length)of5. FIG. 5. The structure of the attractor at a magnified scale.

f_corresponds to motion for which the forward inclination is
fects dominate near the bottom equilibrium position. The ro-S€vere and the body is oriented nearly horizontéthg “po-

. 4 . .
tational motions are arranged nonsymmetrically: forward ro-Sition of a skater”). The structure of this attractor is de-
tations along the path of the apparatus are more likely to b8/Cted at a magnified scale in Fig. 5, where the point map of

regular while reverse rotations are primarily chaotic. one trajectory is shown. _ _ )
Figure 3 illustrates the situation for an increased step The subsequent evolution of the phase picture with an

length of \=5. Two islands of regularity are clearly visible NCréase in\ passes through a change in stability=9.18
when both the “head-up—forward” and ‘“head-up—

in the sea of chaos: “head-down” oscillations and regular N )
forward rotations, in particular, a stable periodic rotationP@ckward” motions are neutrally stable, and a stage when
the repeller and attractor change positions. Then\fed1

(center of the island Bifurcation occurs with a further in- -
crease of: the island of stable oscillations is broken up into the repeller and attractor merge into one neutrally stable
“head-up” motion (Fig. 6). With a further increase ok

two. The center of the right island—periodic “head-down— " , e . .
forward” motion—is asymptotically stable within some at- existence is preserved and the periodic “head-up” motion

traction region(or attractoy. The center of the left island— with a period of the duration of one step continues to remain
periodic “head-down—backward” motion—is unstabler neutrally stable(Attendant stable periodic oscillations with a
repelle) period of several steps can appegar.

With an increase i the repeller and attractor converge . . >°Me conclusion about stability can be drawn by exam-
(Fig. 4,\=9) and the periodic “head-up—forward” motion ining the variation equation with respect to the solutions of

The phase picture shows that pendulum oscillation e
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FIG. 6. ForA=11 the repeller and attractor merge into one neutrally stable
FIG. 4. The repeller and attractor convergexasicreases. “head-up” motion.
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formal construction of the tidal moment to do this. This ap-

_ proach is used for investigation of the rotation of natural

) 1 celestial bodies, but in the case of artificial celestial bodies it

\9 will make it possible to determine the trends and qualitative
features of the influence of dissipative factors.

Taking into consideration the aforesaid, equation of two-

s dimensional motions of the satellite, in the plane of the polar

orbit, with respect to the center of mass can be written as

¢ de
1+ecosv) —5+[B(1+e cosv)®—2e sin v] —
( dv® dv

2

n a
+ > sin 26+ 5 [cog8+u)—3 cog6—u)]=2e sin v;

u=r+ w. 8

FIG. 7. A i - . o . Herewvis the true anomaly and is an independent variable,
. 7. A satellite in an elliptic polar orbit in the gravitational and magnetic . . . . .
fields of the Earth. is the constant inclination of the radius vector of the perigee
of the satellite orbit with respect to the Earth's equatois
the eccentricity of the orbin?=3(A—C)/B is the gravita-
Eq.(4). Thus, in the case of a periodic oscillation of the bodytional parameter corresponding to the moment of the gravi-

in the vicinity of 9=0 the variation equation in a reasonable tational forcesA,B,C are the principal central moments of

approximation has the form inertia of the satellitea=I|ug/Bu is the magnetic param-
d2(59) eter, corresponding to the moment of the magnetic forces;
?ﬂm)\z 2_-1)(69)=0. (6)  the magnetic field is assumed to be that of a dipole with the
;

magnetic momeni,e whose axis coincides with the Earth’s
For a=0.5 the average value (71]”80902‘17 = 1/12. There- axis; andu is the gravitational constant. The satellite rotates

fore, the condition about the axis corresponding to the moment of inetishis
) axis is normal to the plane of the orbit. The constant mag-
pak">12 () netic momentl of the satellite is directed along the axis

can be considered as the estimated stability condition of pecorresponding to the moment of iner@a this axis forms the
riodic motion in the vicinity of 9~0. For the value of angled with the running radius vector of the orbit. The mo-

1,=0.1 being used this is equivalent to the condition11,  ment of the dissipative forces is determined by the term with
and this is what is observegFig. 6). the dissipation coefficienB; as already stated, the structure
Thus far phase portraits of the problem have been conof this moment is chosen to coincide with the structure of the
sidered fora=0.5. A deviation ofx from this value alters the moment of the tidal forces.
phase portrait qualitatively. The quantitiem?, a,e,0, emerge in the role of param-
The wealth of possibilities existing as the parameters ar€ters of the problem. The parameterhas no significance
varied is remarkable. Thus, for=9 and @=0.49 all three since varying it does not alter the qualitative structure of the
basic regular motiongsingle-periodic forward rotation and Phase portrait. The statement that the orbit being considered
single-periodic “head-forward” and “head-back” oscilla- is polar refers only to ther#0 case(a magnetic moment is
tions) are asymptotically stable so that three regular attracpresent If a=0, then Eq(8) is valid, of course, for an orbit
tors appear in the chaotic sea. For9 anda=0.51, how-  With any inclination.
ever, three repellers are obtained conversely: all three regular The following special cases of E¢8), which are of
motions are unstable&ompare with the case=9, =0.5in  greatest interest, will be considered.
Fig. 4). (1) a=B=0, n?#0, e#0. The satellite(or any celestial
body) is revolving in an elliptic orbit due to the action of
Il. SATELLITE IN ORBIT. GRAVITATIONAL, the gravitational gradient forces. The equation for this
MAGNETIC, AND TIDAL MOMENTS special case was first obtained in Ref. 10:

Figure 7 depicts a satellite in an elliptic polar orbit in the d2 ds
gravity and magnetic field of the Earth. The moment of the6=26; (1+e cos v)ﬁ— 2esinva+ n2siné=4e sin v.
gravitational gradient forces and the moment of the magnetic 9)
forces from the interaction of the Earth’s magnetic field with
a permanent, by assumption, magnet mounted on the satellit8) =0, 8#0, n>#0, e#0. The preceding case is supple-
act on the satellite. Both of these moments are potefaiad mented by the action of the moment of tidal forces. The
the equations of motion can be given in Hamiltonian form equation in this form is of special interest for explaining

We also take dissipative forces into account by using the the capture of natural celestial bodies in resonance rota-
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tion modes. The role of the tidal moment for this situa-
tion was considered, for example, in Ref. 11. T

(3) B=n?=e=0, a+0. The satellite is revolving in a circu- T eI 2
lar polar orbit acted on by only the moment of magnetic
forces. Equatior(8) for this case was first introduced in
Ref. 12 in the variables and ¢, whereg is the deviation
angle of the satellite axis from the magnetic line of force. 9" ]
Equation(8) in these variables is transformed to the fol-
lowing:

d2
d_L:§+a( V143 sirf u) sin ¢=6

(4) B=0, n>#0, a#0. e+0. The satellite is revolving in a
polar elliptic orbit in the gravitational and magnetic field. %
The equation in this case was obtained in Ref. 13. The

. . _ — 2 .
Case. Of.a circular orbite=0, =0, n°#0, a#0, is of FIG. 8. The Poincarenap of Eq.(9) for e=0.1 andn?=0.1. No magnetic
speC|aI interest here. and dissipative moments.

sin 2u

(1+3sirf u)?” (10

Equation(8) in the above-stated special forms(&j—(4)
has been investigated by many authors—primarily for the
existence and stability of reguldor periodio motions—  Wwhat is the same thing, E¢8) for «=$=0. The following
especially for Egs(9) and (10). Information about these in- parameter values were chos@s:0.1 andn®=0.1. In other
vestigations can be found in books and reviews such as Ref#/ords, magnetic and dissipative moments are absent, a
11, 12, 14—18. However, there have been few investigationgravitational moment exists, and the orbit is elliptic. The
of the global structure of phase space, its rearrangement égertia ellipsoid does not differ from a spheré=0) by very
the parameters are varied, and the relations of the regular afduch. A series of “islands” in a “sea” of chaos is ob-
chaotic motions. Among investigations in this area let usserved, as usual. The centers of the islands correspond to
point out Refs. 19—22. The possibility of the chaotic motionstable motions:
of Hyperion was demonstrated in Ref. 19 within the frame-
work of the problem(1); the chaotic and regular motions in 0=
this problem were examined in Ref. 20 for several values of
the parameters; the appearance of chaos via period doublingherek,m,m’ are pairwise coprime integers. We will call
bifurcation was traced in Ref. 21 within the framework of such motion &:m resonance. Here denotes the number of
this same problem for the solutions of H§); the structure revolutions (in absolute spagethat the satellite performs
of the phase space of E(LO) was investigated in Ref. 22. about its own axis duringn orbital revolutions. The type of
The results of a global analysis of the phase trajectoriesesonance for each “archipelago” is indicated in the figure.
of Eq. (8) in the special forms ofl)—(4) are described be- The 1:1 resonance—"Earth orientation(similar to the
low. Some of these results are contained in the prefrint Moon)—represents periodic oscillations about the running
while some are being described for the first time. Phase poradius vector; the 3:2 resonance represents a rotation like that
traits of Eq.(8) on the 9,9 plane are given for different of Mercury; the 2:1 resonance represents orientation with
parameter values. It is assumed that0, unless otherwise respect to the magnetic line of force.
stated. The phase portraits were calculated by a numerical The stability of this last resonance is noteworthy. It is
implementation of the Poincagmint map method. The pe- natural to achieve magnetic orientation by means of a mag-
riod of the point map coincides with the orbital period. A net mounted on the satellite. As seen from Fig. 8, however,
reasonable calculation region, corresponding to moderate awhe can even bypass this and achieve magnetic orientation
gular velocities, is chosen on the phase portraits. This regiopurely by means of the gravitational moment, ensuring, in
contains modes of motion that are of interest from the view-articular, the existence and stability of the 2:1 resonance,
point of a practical implementation for artificial satellites among others.(However, adjustment of the magnet, of
(orientation along the radius vector, along a magnetic line otourse, improves the quality of the magnetic orientation, in-
force, etc). On the other hand, this region also correspondsreases the stability region, etc.
to the greatest chaotization of motiofy virtue of the fi- We will now switch on the dissipative moment in order
niteness of the force moments it is quite obvious that theo follow the mechanism for locking in resonance motions.
motion is regular for sufficiently large angular velocitles.  Point maps of the phase trajectories of E).are depicted in
The accuracy with which the “regularity islands” are Fig. 9 fora=w=0, e=0.1,n?=0.1, 3=0.002. The trajectory
isolated in the “sea of chaos” was determined by the samas calculated in such a manner that it begins at a certain level
considerations of common sense and practical expediencgf angular velocity §; = 0.8) and it continues until explicit
islands that were too small were generally not isolated. ~ capture in a given resonance; then the initial angular devia-
Figure 8 shows a typical phase picture of Ef) or, tion 6, is changedin small incremenfgsand the calculation

v+k(v); k(v+2mm’)=k(v), (11
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FIG. 9. Capture into resonant rotations under dissipater0.1,n?=0.1, 8=0.02. The points on a trajectory captured by a certain resonance are colored in
the same color. Blue and yellow—capture into 2:1 reson&wdé different phases Red—capture into 3:2 resonance. Green and sky blue—capture into 1:1
resonancéwith different phases Periodic oscillations of the orbital period are superimposed on all the above rotations. White—capture into 1:1 resonance.
Periodic oscillations are superimposed, with the period four times larger than the orbital one.

of a new trajectory begins from the same leggl= 0.8, etc.  the ®,(e) expression for smak values, we obtain the fol-
Each limiting resonance mode corresponds to its own colodpwing table of capture conditions for arbitrary valueseof
in which all of the trajectories attracted to this limiting mode and n? (the third column of Table)land specifically for
are colored. The attraction of the trajectories to the 1:2 resoe= n2=0.1 (the fourth column of Table)!

nance, to thel-periodic 1:1 resonance, to thel$eriodic For a value of3=0.002, for which the trajectories in
1:1 resonancéT is the orbital period and to the 3:2 and 2:1 Fig. 9 were calculated, capture must occur in all of the listed
resonances is traced on the figure. resonances. This is also observed in the figure. The results of

It is known that dissipation coefficien{8 that are too a calculation of the fraction of the trajectories, captured in a
large can lead to a “smearing” of the resonances: the trajecgiven resonance in the numerical experimentdem?=0.1
tories are not captured in sufficiently high-order resonancesand twog values of 0.005 and 0.002, are shown in Table II.
In our problem the capture condition in the2 resonance tagLE .
can be written as

) k k2 (12) (12): e=0.1;n?=0.1
n
B<D(€) =7, (12 1 1:2 B<er?2 $<0.005
lk=2| 2 11 B< B<o
where®,(e) is a completely defined function of the argu- 3 3:2 p<Terrl2 £<0.035
4 2:1 B<17&n?l4 3<0.004 25

mentse andk (see, for example, Refs. 14 and)1By using
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TABLE II.
k:2
.1
B 1:2 1:1 3:2 2:1 py
0.005 0.000 T:0.740 0.135 0.000 1.000 g 2:1
4T:0.125 )
0.002 0.060 T:0.680 0.190 0.020
4T:0.050 1:1

It is seen from Table Il that fo3=0.005 capture does not i
occur in the 1:2 and 2:1 resonances, just as should be the
case according to theoretical estimates.

While there are no low-order stable resonancessfet, E T ot T 314
a chaotic attractor is possible in principle f8#0 as the (a) 9
limiting motion mode. Such a case is depicted in Fig. 10
(a=w=0, n®=3, e=0.4, B=0.005. For the 1:1 resonance T
the chosen parameter values give an instability because of
parametric resonance. Tié=3 value corresponds, for ex- . . 1/
ample, to a dumbbell-shaped satellite. The limiting mode T 1
(Fig. 10 has the well-known attributes of a chaotic o -
attractor—fractal structure, etc. 5000 points are represented I L
- by - brii
in Fig. 10.

Let us now turn to the3) (5=0,n*=0,e=0, a#0) and [ 11 (a The Poincarenap of Eq.8) for a=0.05,0=0, 4=0, =0, and
(4) (B=0, e=0, n?#0, a#0) cases, i.e., to the problem of n?=0. A “magnetic” satellite in a circular orbit in the absence of a gravi-
magnetic and magnetic-gravitational interaction with the sattational moment(b) The average potential of the acting moments for the
ellite. case of(a).

Everywhere below we assune=0. In Fig. 1Xa) (e=0,
n?=0, =0.05,w=0) the case of a “magnetic” satellite in a
circular orbit in the absence of a gravitational moment is
considered. In this case stable orientation with reSpeCt to thgureS, on the average, an orientation in abso|ute Space para|_
magnetic field is observetthe 2:1 resonange-similar to |g| to the axis of the Earth’s magnetic dipole.
the orientation of a compass needle along a magnetic line of  The criterion for isolating the initial data, 6; for
force. At the same time a large island, corresponding to thgtaple resonance motions was proposed and confirmed by a
0:1 resonance, is observed somewhat unexpectedly. The cefmerical experiment in Ref. 24: the pointéy( 5) must be
ter of this island corresponds to a periodic motion that enthe |ocal minimum points of the average potential of the

moments of the acting forces,

_ 1 (t
Ult0,05)=lim ¢ [ UL0(06,05.0,0'(00,09.0 iat
0
13

I
t—oo
HereU is the potential of the moment of the acting forces.

A graph of Eq.(13) is shown in Fig. 1(b) for the case
depicted in Fig. 1da). Sharp minima are clearly seen for the
2:1 and 0:1 resonances.

At the same time, narrow islands of the 1:1 resonance
are seen in Fig. 1(&). This means that the magnetic moment,
in principle, can also provide for the orientation of the satel-
lite along the radius vector without the action of a gravita-
tional moment, but in this case the stability region is small.
In Fig. 11(b) the corresponding local minimum is not visible
3T e =58 g 1 for the calculation accuracy employed.

04 One could expect that switching on the gravitational mo-
FIG. 10. The Poincarenap of Eq.(8) for a=w=0, 8=0.005,e=0.4, and ment in the situatipn Sho.Wn in Fig. @ will increase the
n?=3. Here 5000 points are represented. 1:1 resonance region. This turned out to be {iftig. 12a):
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sty TSy ) 57 T4 A e 5765 757 314
(a) 9 04
. FIG. 13. The Poincarenap of Eq.(8) for =0.2, w=0, =0, e=0, and
D . n2=0. A “magnetic” satellite in a circular orbit in the absence of a gravi-
o, . *ccs® %oy g0 oty o Cone o, ooe p tational moment.
°e:>o > . .0.' . o
ot |t s . (9’
1% 0 o - (o]
|
(b) 0:1 island decreases in size and vanishes forevetfb.7.

o The 2:1 island also vanishes far~0.8, and the motion be-
FIG. 12. (a) The Poincarenap of Eq.(8) for «=0.05,w=0, 8=0, e=0, and letelv chaotic. Th the 2:1 island d
n?=0.2. A satellite in a circular orbit under the influence of both the mag—fzomeS complete y ¢ ao_ IC. er_] _e -+ Island reappears an
netic and gravitational momentéb) The average potential of the acting itS subsequent bifurcation, vanishing and appearance occur
moments for the case ¢&). in accordance with the theory of magnetic nonlinear 2
periodic oscillationg®’
To conclude this section let us give an example of the

e=0, n?=0.2, a=0.05]. Switch-on of the gravitational mo- - . o . -
ment leads to an improvement of the conditions for orienta.chaotic interaction of gravitational and magnetic oscillations

tion along the radius vector and to an enlargement of thd" @ circular orbit(e=0, n?=3, a=1). The gravitational and
regularity islands of the 1:1 resonance, but also to a chaotfagnetic mgments, separately, give either complete regular-
zation of the motions in the vicinity of these islands. Figureity (€=0, n“=3, «=0) or an island of regularity(e=0,
12(b) shows a graph of Eq13) for this case. It is seen from N°=0, a=1), in combination, however, they give complete
the figure that a new local minimum, corresponding to thechaotization in the same portion of phase space.

1:1 resonance, appears.

Different criteria of chaotic motion are well known in
nonlinear dynamicé> At the same time, the criteria of mo-
tion regularity, such as criteria of the ty[§&3), are also of
interest.

Let us describe the evolution of the phase picture of the
magnetic oscillations of a satellii@=0, n=0) as the pa-
rametera is varied. When the value af is increased, the
picture shown in Fig. 1) varies in the following manner:
chaotization increases, and archipelagos of islands appeas,,
whose centers correspond to long-period motions. Thits, 2
and 8r-periodic oscillations are observed in Fig. (3=0.2).

With a small increase of the parameterthe 8m-periodic

oscillations vanish: the islands retreat into the sea and they

drown in it. Bifurcation occurs fora~0.295, and -

periodic oscillations are produced inside the 2:1 isldrd.

14, a=0.3). Then, this archipelago also disappears in the sea, L

etc. with an increase in. The 107-periodic oscillations pro- A e e e 314

duced in the vicinity of the 0:1 resonance are also visible in 9

Fig. 15 («=0.35. A bifurcation of the principal 2:1 island o

into two islands occurs for~0.6. Increasing the parameter T.C: 14 The Poincarenap of Eq.(8) for «=0.3, =0, 5=0, =0, and
. . . n“=0. A “magnetic” satellite in a circular orbit in the absence of a gravi-

a does not contribute to stabilization in absolute space: theytional moment.
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FIG. 15. The Poincarenap of Eq.(8) for a=0.35, =0, 8=0, e=0, and
n?=0. A “magnetic” satellite in a circular orbit in the absence of a gravi-
tational moment.

Ill. ROTATION OF CELESTIAL BODY IN
GRAVITATIONAL FIELD OF TWO CENTERS

The model problem of the motion of a celestial body
with respect to its center of mass due to the action of th
gravitational moments from two attracting centers is consid-

ered. A point mass moves along a Keplerian circular orbit
of radiusR in the gravity field of the point madd (Fig. 16).
The center of mas®© of the rigid bodyK of finite size
moves aroundM along a Keplerian circular orbit of radius
p<R. The orientation of the bodi with respect to the ra-
dius vector of its center of mass is described by the afgle

163

The described model formulation will be specified for
the Earth-artificial Earth satellite—Moon and Sun—Venus—
Earth systems.

The motion of the bodK with respect to its center of
mass in this model formulation is described by

d2,8 n2 1 2 2 3/2
W"‘?(ﬁ_)\:;z) Sin 26"’? 1_)\372>6f(a,ﬁ)=0,
(14)

where

.  \?sin 28—2\ sin(28+ a)+sin(28+2a)

()= (1+X%—2\ cosa)®? ’

_m _p. 5, AC

Ve )\—R, n<=3 B (15

andA,B,C are the principal central moments of inertia of the
body K, with B being the moment of inertia with respect to
the axis normal to the plane of the orbit a@dbeing the
moment of inertia with respect to the axis forming the angle
B with the running radius vectgwe assume for the sake of
being specific thaB>A>C).

We introduce into the discussion the deviatigrfrom

éhe possible resonance rotation

B=paty, (16)

wherep is a positive or negative half-integéor, generally
speaking, any rational number

For €=0, Eq.(14) is the usual equation of rotation of a
rigid body in a circular orbit in the gravity field of a point
with massM; the term withe+0 describes perturbations due

measured from this radius vector to one of the principal in{0 the influence of the second center of massThese per-
ertia axes of the body. All of the motion occurs in one planeturbations make it possible to expect that resonance modes
and deviations of the trajectories from Keplerian circular tra-(16) can appear with functiong(a) that are periodic with

jectories are ignored. The mutual angular position of the cent€SPect toa; in this case, as follows from Kolmogorov—

ter of mas<0 of the bodyK and the pointn is described by
the angleq; sincep<R, da/dt>0.

Gravitational moments from the side of the attracting

centersM andm act on the bod.

Arnold—Moser (KAM) theory, the width of the resonance
zone is

n)\3/2

(17)

ArNW Vee(p),

and the width of the “stochastic” layér, i.e., the chaotic
motion region in the vicinity of a given resonance, is

A 1
s~ €eX _A_r .

Here ¢(p)<1 is a function of the resonance numigef®

It follows from Egs.(17) and(18) that the resonance and
chaos effects increager decreasewith an increasdor de-
creasg in the parametera,\,e.

Let us point out that the coefficients of E{d.4) are 27
periodic with respect to the independent variabjehe val-
ues ofa=2wk, k=0,1,2,..., correspond to the inferior con-
junctions of the pointn and bodyK. If x(«) is 27 periodic
with respect tax in Eqg. (16), then resonances with the inte-
gersp correspond to those rotations of the bd€lfor which
in each inferior conjunction the same side of it is turned
toward them center.

(18

FIG. 16. Rotation of bodK of finite size moving in gravitational field of
two centersM andm.
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FIG. 18. Magnification of the region of retrograde motion in Fig. 17.

FIG. 17. The Poincarenap of the Earth—artificial Earth satellite—the Moon
system forx=0.7 andn?=0.3.

eral orders of magnitude smaller than here. More details
. L . about the Venus rotation model will be given below.
Let us consider a satellite in the terrestrial and lunar . .
) , . Let us point out one of the results of a calculation of the
field. We then haveM as the Earth’s massn is the lunar h it of th bl f is ob d
mass, anK is an artificial Earth satellite. In this cage=1/ D o0 portrait of the problei4). A new eatur_e IS ObServe

' ' for A=0.7 andn®=3: two stable periodic oscillations of the

ggﬁ?j%it%?\l;s;t -[::: grpbﬁ)te :)f"rt?:(ta- Osf;t'j"Sgt?;n:;]geg;:?hnil\tﬂhoeon satellite(and one unstablawith respect to the radius vector
(p=0) exist rather than just one.

system is located completely outside the sphere of lunar ac- Let us now turn to the Venus rotation problem. Radar

g\:Ity.ir-lr?ﬁismc%dszl f\c;;rﬂjuelztglgeéggszzzgdtirizdcgﬁfgsnsens%easurements carried out in the first half of the 1960s made
y : ‘ ' it possible to determine that Venus rotates about its own axis,

Figure 17 is a phase portrait of the problefid) for which is almost normal to the plane of its orbit, backward

_ 2_ ; ; _
)\;rgiz\/;ndlgr S'Séégutgf (;atsﬁet?aer p;g‘ﬂg?:'ﬁ;i;ai?gm with respect to the orbital motion with a period &f243
P y 1arg g Earth days. It was pointed out in Ref. 27 that the period is

porirai 5 obtaned by & numercal mplementation of tneCOSS 10 TESONANGe MOUOALE with y(at2m —x(a) and
Poincarepoint map method with period72in terms of the W'th a value_ ofp=—5. In this case the exact resonance pe-
independent variable. The centers of the large regularity rIOd. of rotation Is qual t0 243.16 days. This gave rise to a
islands visible in this .figure correspond to a stable periodicse”efl S‘fzslgg\)/est@auons of the Ve'."”S rotation phenom-
=29 The extremely small width of the resonance

oscillation of the satellite about the running radius vector enon.
itati i i ; zone and the extremely small pr ili f th re of
gravitational orientation of the satellite at Egrtin terms of one and the extremely small probability of the capture o

. - Venus in resonance rotation, as well as other obstacles to the
Eq. (16) this means thap=0. Numerous regularity islands R . . )
) . . o realization of resonances, were pointed out, in particular.
with p#0, located in the chaotic sea, are also visible. A

characteristic feature of the phase portrait is the absence Q}enﬁgﬁgrgmg to present-day dafathe rotation perlpd .Of
. . gual to 243.0220.006 Earth days. The principal

symmetry with respect to the sign of the resonance paramet%[antral moments of inertia,B,C (B>A>C) of Venus sat-
p. A resonance zone witp=p_<0 is an order of magni- isfy the ratios Y
tude wider than a zone with=p,>0, p,=|p_|. In other
words, “retrograde” rotations of the satellite are perturbed a=(B—A)/C=(8.52+0.5110 ¢,
more strongly than analogous direct rotations. The chaotic
sea floods this region of retrograde rotations. B=(B—C)/A=(16.71+0.51105,

A fragment of the picture of Fig. 17 in the retrograde
rotation region is shown in Fig. 18. Archipelagos, corre- y=(A—C)/B=(8.19+0.3310°.
sponding to resonances with a multiplicity of 1/2, 1/4, 1/6,
are visible. The resonance in the vicinity 8f=—5 corre-  This means that the true rotation of Venus lies entirely out-
sponds to the value gf=—5, and Venus rotates in the vi- side the resonance zone, with the discrepancy between the
cinity of such a resonance in the Sun—Venus—Earth systenangular velocity of Venus and the resonance value being an
The value of\ in this system is close ta=0.7; therefore, order of magnitude greater than the width of the resonance
the fragment depicted in Fig. 18 can be considered as aone. Several papéfs33have pointed this out.
model of the “Venus type” and similar resonances; how- The calculation results presented below also confirm this
ever, the value ot in the Sun—Venus—Earth system is sev-fact.
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FIG. 19. Phase trajectories of the Sun—Venus—Earth system in the vicinitg)g 20. The relative location of the resonange —5 zone and the ob-
of ?257';?;8[‘?”%‘):_5- Here €=3.004x10°° \=0.723332, and  gerved rotation of Venus, according to modern data.
n2=2, :

sponding to modern data from observations of the proper
Venus rotation period. The boundary of the interval of mea-
sured values of the quantity/d« is depicted by the dashed
lines. As seen from the figure, the distance along the ordinate
€=3.004x10° %, A=0.723332, n?=2.457x10 °. axis between the resonance zone and the observed values
exceeds the width of the resonance zone by about an order of
magnitude.

Let us consider Eq.14) as the model description of the
Venus rotation in the gravity field of the SuM( and Earth
(m). Taking the data of Ref. 31 into account, we assume

These values correspond to the estimate of ELyY)
A,~107°-10"°. In view of Eq.(18), this denotes the essen- . . .

tial absence of a stochastic layer; the smallness of the width In con_clusmn, I?t us mention the following fact. R_eso-
of the resonance zone causes serious difficulties in calculaf:2"®®s W'th a r.nuIt|pI|C|ty of; correspond to the following
ing it. Figure 19 shows the cuts of KAM tori, calculated rotation periods:

numerically, by the(y,dy/d«) plane in the vicinity of the p=-4.5, T=307.111 Earth days,

resonance=—5. In the region being considered the motion p=-—5.0, T=243.165 Earth days,

of the imaging point, corresponding to successive Poincare p=—55 T=201.259 Earth days.

maps, occurs very slowly along smooth curves. Tens of thou- . )

sands of mapg&from 20 000 to 100 000must be calculated Even though the true V_enus ro_tatlon peri@d3.022-0.006

in order to plot one of the curves depicted in Fig. 19. Thus,Farth days as shown, lies outside the resonance zone of the
two vastly different time scales are present in the problemP =20 resonance, it is clearly attracted to it, being spaced
the period of the map and the time required for the imagind"®™ the nearest resonances of the same multiplicity by a
point to bypass the entire smooth curve. This means tha‘tdlstarjce” that is several orders of magnitude greater than
such a problem is stiff. In order to speed up the computat® “distance” from thep=5.0 resonance. ,
tional process a special two-stage method was developed. [n 1S may or may not mean something. The question of
essence it consists of the fact that the numerical constructio'® Nature and origin of the retrograde rotation of Venus with
of the smooth curves on the secant plane is carried out on tH8€ above-stated observed period remains unanswered.
basis of information about the vector field supplied by means ~ NOte added in proofSome of the results presented have
of a numerical construction of several successive Poincar@€€n Published as rather inaccessible preprints of the M. V.
maps at the required points of the plane. Keldysh Institute of Applied Mathematics, Russian Academy

; ,23,35,36 H
As seen from Fig. 19, the resonance tori are very flatof Sciences; as well as in Refs. 7, 8, 37, and 38.

tened. In the vicinity of those points of the curves where thel N€S€ publications do not overlap the material contained

tangent is parallel to the ordinate axis, the cross sections i€réin, nor does this review overlap the cited publications.

the tori are constructed in the usual manner by means of

successiv_e iterations of the mapping. A program bqseq 0N 3RCKNOWLEDGMENTS

extrapolation method was used to calculate the individual . .

Poincaremaps. The authors acknowledge with gratitude support of the
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the required computational costs by two orders of magnitud®5-01-00308a.

compared with a direct integration for the same global error
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