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Periodic and regular motions, having a predictable functioning mode, play an important role in
many problems of dynamics. The achievements of mathematics and mechanics~beginning with
Poincare´! have made it possible to establish that such motion modes, generally speaking, are local
and form ‘‘islands’’ of regularity in a ‘‘chaotic sea’’ of essentially unpredictable trajectories. The
development of computer techniques together with theoretical investigations makes it possible to
study the global structure of the phase space of many problems having applied significance. A
review of a number of such problems, considered by the authors in the past four or five years, is
given in this paper. These include orientation and rotation problems of artificial and natural celestial
bodies and the problem of controlling the motion of a locomotion robot. The structure of phase
space is investigated for these problems. The phase trajectories of the motion are constructed by a
numerical implementation of the Poincare´ point map method. Distinctions are made between regular
~or resonance!, quasiregular~or conditionally periodic!, and chaotic trajectories. The evolution of
the phase picture as the parameters are varied is investigated. A large number of ‘‘phase portraits’’
gives a notion of the arrangement and size of the stability islands in the ‘‘sea’’ of chaotic motions,
about the appearance and disappearance of these islands as the parameters are varied, etc. ©1996
American Institute of Physics.@S1054-1500~96!00702-1#
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I. DYNAMICS OF BODY OF TWO-LEGGED
APPARATUS

One of the problems of controlling robotic devices is t
problem of developing and testing mathematical models
walking devices, including two-legged. The followin
model, among others, was proposed and developed in R
1–3. The two-dimensional problem of two-legged walki
was considered. The two-legged apparatus was modeled
rigid body equipped with a pair of two-member weightle
legs. The walking consists only of single-support pha
~only one leg provides support at any instant of time! and the
legs make a point contact with the surface. Control mome
in the knee and thigh of the supporting leg are used only
produce uniform and rectilinear horizontal motion of the s
pension point of the legs. Through the action of a momen
the knee defined in this manner the heavy body of the ap
ratus can perform various motions. What are these motio

The periodic motions of a body have been investiga
in a number of papers,4,5 sometimes together with motion
similar to these. However, a global analysis of the ph
trajectories of the problem is of considerable interest. T
first results in this respect were obtained in Refs. 6–8 and
presented below.

The motion is investigated on the phase plane by me
of a numerical implementation of the Poincare´ point map
method. Regular and chaotic motions are identified and t
evolution is traced as parameters are varied. It is found
particular, that stable periodic oscillations of the body with
center of mass that is located below the suspension p
CHAOS 6 (2), 1996 1054-1500/96/6(2)/155/12/$10.0
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~‘‘head down’’! evolve to a stable periodic oscillation of th
body, with the center of mass located above the suspen
point ~‘‘head up’’! as a parameter is varied. Chaotic motio
of the body is typical and the periodic and conditiona
periodic motions form ‘‘islands’’ in the chaotic ‘‘sea.’’

Figure 1 depicts schematically the two-legged device
ing investigated; it is shown at the moment when the s
ports are changing~from the ‘‘back’’ leg to the ‘‘front’’!. We
assume thatJ is the moment of inertia of the body~the body
weight P5Mg! with respect to its center of mass,r is the
distance from the center of mass to the suspension poin
the legs,L is the length of a step,S is the ‘‘support shift’’—
the distance of the projection of the suspension point of
legs on the support surface from the support point. We w
assume that as the apparatus moves over a horizontal sur
the suspension point of the legs moves at a constant heigh
uniformly and rectilinearly with velocityV. ~The moments of
the control forces are easily expressed in terms of the re
tion force of the support by virtue of the weightlessness
the legs.! We use the symbolq to denote the inclination of
the ‘‘suspension point—center of mass’’ axis to the axis
rected vertically upward.

We define the dimensionless timet in terms of the di-
mensioned timet by

dt5v dt, v5S Mg%

J1M%~%1h! D
1/2

. ~1!
1550 © 1996 American Institute of Physics
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156 Beletski , Pivovarov, and Starostin: Motions in applied dynamics
The dimensionless step durationt05gT, whereT5L/V, is
the dimensioned stepping period. We introduce the other
mensionless parameters,

l5L/%, a5S/L, m15M%2/@J1M%~%1h!#,

m25m1h/% , ~2!

and we assume

w~t!5t/t02@t/t0#2a, ~3!

where [z] denotes the integer part ofz.
In these notations the equation of the body oscillatio

is:1–3

~12m2 cosq1m1lw~t!sin q!
d2q

dt2

1@m1lw~t!cosq2m2 sin q#S dq

dt D 22sin q5lw~t!.

~4!

Equation~4! is nonlinear and non-Hamiltonian with period
discontinuous coefficients. It has been investigated by m
authors~see, for example, Refs. 3–5 and the bibliograph
in these papers!. These investigations, as already pointed o
were directed primarily at looking for periodic solutions
Eq. ~4! and investigating their properties. The discontinu
of the coefficients of Eq.~4! with time is caused by the
discontinuity of the single-support walking process. Equat
~4! can be written in the form

FIG. 1. A scheme of the two-legged device under study, shown at
moment of changing its supports from the ‘‘back’’ leg to the ‘‘front.’’
CHAOS, Vol. 6,
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d2q

dt2
2sin q5q. ~5!

The operator on the left side of Eq.~5! is a result of the
natural presence of a reversible pendulum in the prob
while the functionq5q(q,dq/dt,t) expresses the contro
moment at the suspension point of this pendulum, wh
provides for a given translational motion~the Vukobratovich
pre-defined synergy method9!. Equation ~4! is a five-
parameter equation. In the calculations below it is assum
thatm150.1 andm250.3. If no values are stated fora andt0,
then it is assumed thata50.5 andt051.0. Let us point out
that for aÞ0.5 the pattern of motion~or the phase portrait!
differs qualitatively from thea50.5 case. The parameterl is
the principal variable parameter; it varies from figure to fi
ure. Only the principal islands within a reasonable interva
the angular velocity, plotted along the ordinate axis, are id
tified in all of the figures cited below. The angleq ~in radi-
ans! of the deviation of the body from the vertically uprigh
direction is plotted along the abscissa axis. The point m
are drawn for the periodt0 of the duration of one walking
step.

A typical Poincare´ phase picture is depicted in Fig. 2
Here l51, which corresponds to the short step. There
many islands of regularity in the chaotic sea. The cente
the main island of regularity~q56p, q8;0.1! corresponds
to stable periodic ‘‘head-down’’ motion with a one-step p
riod. In the vicinity of this island there is an archipelago
five islands whose centers represent stable head-down
tion with a period of five steps. The large island with th
center~q50, q8'4! corresponds to regular motions in th
vicinity of a stable periodic forward rotation of the body wit
a period of one step.~Biological two-legged systems do no
have such motions, but robot systems may not impose
restriction on body rotation.! Stable forward rotations of the
body with a period of three steps are also seen. The remn
of destroyed islands near periodic reverse rotations wit
period of three steps are visible in the lower part of the fig
in the chaotic sea. Such rotations exist and are stabl
smallerl values.

e

FIG. 2. The Poincare´ map forl51, corresponding to the short step.
No. 2, 1996
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157Beletski , Pivovarov, and Starostin: Motions in applied dynamics
The phase picture shows that pendulum oscillation
fects dominate near the bottom equilibrium position. The
tational motions are arranged nonsymmetrically: forward
tations along the path of the apparatus are more likely to
regular while reverse rotations are primarily chaotic.

Figure 3 illustrates the situation for an increased s
length ofl55. Two islands of regularity are clearly visibl
in the sea of chaos: ‘‘head-down’’ oscillations and regu
forward rotations, in particular, a stable periodic rotati
~center of the island!. Bifurcation occurs with a further in-
crease ofl: the island of stable oscillations is broken up in
two. The center of the right island—periodic ‘‘head-down
forward’’ motion—is asymptotically stable within some a
traction region~or attractor!. The center of the left island—
periodic ‘‘head-down—backward’’ motion—is unstable~or
repeller!.

With an increase inl the repeller and attractor converg
~Fig. 4,l59! and the periodic ‘‘head-up—forward’’ motion

FIG. 3. The Poincare´ map for an increased step length ofl55.

FIG. 4. The repeller and attractor converge asl increases.
CHAOS, Vol. 6,
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corresponds to motion for which the forward inclination i
severe and the body is oriented nearly horizontally~the ‘‘po-
sition of a skater’’4!. The structure of this attractor is de
picted at a magnified scale in Fig. 5, where the point map
one trajectory is shown.

The subsequent evolution of the phase picture with
increase inl passes through a change in stability~l'9.18!
when both the ‘‘head-up—forward’’ and ‘‘head-up—
backward’’ motions are neutrally stable, and a stage wh
the repeller and attractor change positions. Then forl'11
the repeller and attractor merge into one neutrally stab
‘‘head-up’’ motion ~Fig. 6!. With a further increase ofl
existence is preserved and the periodic ‘‘head-up’’ motio
with a period of the duration of one step continues to rema
neutrally stable.~Attendant stable periodic oscillations with a
period of several steps can appear.!

Some conclusion about stability can be drawn by exa
ining the variation equation with respect to the solutions

FIG. 5. The structure of the attractor at a magnified scale.

FIG. 6. Forl'11 the repeller and attractor merge into one neutrally stab
‘‘head-up’’ motion.
No. 2, 1996
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158 Beletski , Pivovarov, and Starostin: Motions in applied dynamics
Eq. ~4!. Thus, in the case of a periodic oscillation of the bo
in the vicinity ofq50 the variation equation in a reasonab
approximation has the form

d2~dq!

dt2
1~m1l

2w221!~dq!50. ~6!

For a50.5 the average value (1/t0)*0
t0w2dt 5 1/12. There-

fore, the condition

m1l
2.12 ~7!

can be considered as the estimated stability condition of
riodic motion in the vicinity of q'0. For the value of
m150.1 being used this is equivalent to the conditionl.11,
and this is what is observed~Fig. 6!.

Thus far phase portraits of the problem have been c
sidered fora50.5. A deviation ofa from this value alters the
phase portrait qualitatively.

The wealth of possibilities existing as the parameters
varied is remarkable. Thus, forl59 anda50.49 all three
basic regular motions~single-periodic forward rotation an
single-periodic ‘‘head-forward’’ and ‘‘head-back’’ oscilla
tions! are asymptotically stable so that three regular attr
tors appear in the chaotic sea. Forl59 anda50.51, how-
ever, three repellers are obtained conversely: all three reg
motions are unstable~compare with the casel59, a50.5 in
Fig. 4!.

II. SATELLITE IN ORBIT. GRAVITATIONAL,
MAGNETIC, AND TIDAL MOMENTS

Figure 7 depicts a satellite in an elliptic polar orbit in th
gravity and magnetic field of the Earth. The moment of t
gravitational gradient forces and the moment of the magn
forces from the interaction of the Earth’s magnetic field w
a permanent, by assumption, magnet mounted on the sat
act on the satellite. Both of these moments are potential~and
the equations of motion can be given in Hamiltonian form!.
We also take dissipative forces into account by using

FIG. 7. A satellite in an elliptic polar orbit in the gravitational and magne
fields of the Earth.
CHAOS, Vol. 6,
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formal construction of the tidal moment to do this. This a
proach is used for investigation of the rotation of natu
celestial bodies, but in the case of artificial celestial bodie
will make it possible to determine the trends and qualitat
features of the influence of dissipative factors.

Taking into consideration the aforesaid, equation of tw
dimensional motions of the satellite, in the plane of the po
orbit, with respect to the center of mass can be written a

~11e cosn!
d2u

dn2
1@b~11e cosn!522e sin n#

du

dn

1
n2

2
sin 2u1

a

2
@cos~u1u!23 cos~u2u!#52e sin n;

u5n1v. ~8!

Heren is the true anomaly and is an independent variablev
is the constant inclination of the radius vector of the perig
of the satellite orbit with respect to the Earth’s equator,e is
the eccentricity of the orbit,n253(A2C)/B is the gravita-
tional parameter corresponding to the moment of the gra
tational forces;A,B,C are the principal central moments o
inertia of the satellite;a5ImE/Bm is the magnetic param
eter, corresponding to the moment of the magnetic forc
the magnetic field is assumed to be that of a dipole with
magnetic momentmE whose axis coincides with the Earth
axis; andm is the gravitational constant. The satellite rotat
about the axis corresponding to the moment of inertiaB; this
axis is normal to the plane of the orbit. The constant m
netic momentI of the satellite is directed along the ax
corresponding to the moment of inertiaC; this axis forms the
angleu with the running radius vector of the orbit. The mo
ment of the dissipative forces is determined by the term w
the dissipation coefficientb; as already stated, the structu
of this moment is chosen to coincide with the structure of
moment of the tidal forces.

The quantitiesn2,a,e,v,b emerge in the role of param
eters of the problem. The parameterv has no significance
since varying it does not alter the qualitative structure of
phase portrait. The statement that the orbit being conside
is polar refers only to theaÞ0 case~a magnetic moment is
present!. If a50, then Eq.~8! is valid, of course, for an orbit
with any inclination.

The following special cases of Eq.~8!, which are of
greatest interest, will be considered.

~1! a5b50, n2Þ0, eÞ0. The satellite~or any celestial
body! is revolving in an elliptic orbit due to the action o
the gravitational gradient forces. The equation for th
special case was first obtained in Ref. 10:

d52u; ~11e cosn!
d2d

dn2
22esinn

dd

dn
1n2sind54e sin n.

~9!

~2! a50, bÞ0, n2Þ0, eÞ0. The preceding case is suppl
mented by the action of the moment of tidal forces. T
equation in this form is of special interest for explainin
the capture of natural celestial bodies in resonance r
No. 2, 1996
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159Beletski , Pivovarov, and Starostin: Motions in applied dynamics
tion modes. The role of the tidal moment for this situ
tion was considered, for example, in Ref. 11.

~3! b5n25e50, aÞ0. The satellite is revolving in a circu
lar polar orbit acted on by only the moment of magne
forces. Equation~8! for this case was first introduced i
Ref. 12 in the variablesu andw, wherew is the deviation
angle of the satellite axis from the magnetic line of forc
Equation~8! in these variables is transformed to the fo
lowing:

d2w

du2
1a~A113 sin2 u! sin w56

sin 2u

~113 sin2 u!2
. ~10!

~4! b50, n2Þ0, aÞ0. eÞ0. The satellite is revolving in a
polar elliptic orbit in the gravitational and magnetic fiel
The equation in this case was obtained in Ref. 13. T
case of a circular orbit:e50, b50, n2Þ0, aÞ0, is of
special interest here.

Equation~8! in the above-stated special forms of~1!–~4!
has been investigated by many authors—primarily for
existence and stability of regular~or periodic! motions—
especially for Eqs.~9! and ~10!. Information about these in
vestigations can be found in books and reviews such as R
11, 12, 14–18. However, there have been few investigat
of the global structure of phase space, its rearrangemen
the parameters are varied, and the relations of the regular
chaotic motions. Among investigations in this area let
point out Refs. 19–22. The possibility of the chaotic moti
of Hyperion was demonstrated in Ref. 19 within the fram
work of the problem~1!; the chaotic and regular motions i
this problem were examined in Ref. 20 for several values
the parameters; the appearance of chaos via period dou
bifurcation was traced in Ref. 21 within the framework
this same problem for the solutions of Eq.~9!; the structure
of the phase space of Eq.~10! was investigated in Ref. 22.

The results of a global analysis of the phase trajecto
of Eq. ~8! in the special forms of~1!–~4! are described be
low. Some of these results are contained in the prepri23

while some are being described for the first time. Phase
traits of Eq. ~8! on theq,q8 plane are given for differen
parameter values. It is assumed thatv50, unless otherwise
stated. The phase portraits were calculated by a nume
implementation of the Poincare´ point map method. The pe
riod of the point map coincides with the orbital period.
reasonable calculation region, corresponding to moderate
gular velocities, is chosen on the phase portraits. This reg
contains modes of motion that are of interest from the vie
point of a practical implementation for artificial satellite
~orientation along the radius vector, along a magnetic line
force, etc.!. On the other hand, this region also correspon
to the greatest chaotization of motion.~By virtue of the fi-
niteness of the force moments it is quite obvious that
motion is regular for sufficiently large angular velocities.!

The accuracy with which the ‘‘regularity islands’’ ar
isolated in the ‘‘sea of chaos’’ was determined by the sa
considerations of common sense and practical expedie
islands that were too small were generally not isolated.

Figure 8 shows a typical phase picture of Eq.~9! or,
CHAOS, Vol. 6,
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what is the same thing, Eq.~8! for a5b50. The following
parameter values were chosen:e50.1 andn250.1. In other
words, magnetic and dissipative moments are absen
gravitational moment exists, and the orbit is elliptic. Th
inertia ellipsoid does not differ from a sphere~n250! by very
much. A series of ‘‘islands’’ in a ‘‘sea’’ of chaos is ob-
served, as usual. The centers of the islands correspon
stable motions:

u5
k2m

m
n1k~n!; k~n12pm8!5k~n!, ~11!

wherek,m,m8 are pairwise coprime integers. We will ca
such motion ak:m resonance. Herek denotes the number of
revolutions ~in absolute space! that the satellite performs
about its own axis duringm orbital revolutions. The type of
resonance for each ‘‘archipelago’’ is indicated in the figur
The 1:1 resonance—‘‘Earth orientation’’~similar to the
Moon!—represents periodic oscillations about the runni
radius vector; the 3:2 resonance represents a rotation like
of Mercury; the 2:1 resonance represents orientation w
respect to the magnetic line of force.

The stability of this last resonance is noteworthy. It
natural to achieve magnetic orientation by means of a m
net mounted on the satellite. As seen from Fig. 8, howev
one can even bypass this and achieve magnetic orienta
purely by means of the gravitational moment, ensuring,
particular, the existence and stability of the 2:1 resonan
among others.~However, adjustment of the magnet, o
course, improves the quality of the magnetic orientation,
creases the stability region, etc.!

We will now switch on the dissipative moment in orde
to follow the mechanism for locking in resonance motion
Point maps of the phase trajectories of Eq.~8! are depicted in
Fig. 9 fora5v50, e50.1,n250.1,b50.002. The trajectory
is calculated in such a manner that it begins at a certain le
of angular velocity (u08 5 0.8) and it continues until explicit
capture in a given resonance; then the initial angular dev
tion u0 is changed~in small increments! and the calculation

FIG. 8. The Poincare´ map of Eq.~9! for e50.1 andn250.1. No magnetic
and dissipative moments.
No. 2, 1996
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FIG. 9. Capture into resonant rotations under dissipation:e50.1,n250.1,b50.02. The points on a trajectory captured by a certain resonance are color
the same color. Blue and yellow—capture into 2:1 resonance~with different phases!. Red—capture into 3:2 resonance. Green and sky blue—capture into
resonance~with different phases!. Periodic oscillations of the orbital period are superimposed on all the above rotations. White—capture into 1:1 res
Periodic oscillations are superimposed, with the period four times larger than the orbital one.
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II.
of a new trajectory begins from the same levelu08 5 0.8, etc.
Each limiting resonance mode corresponds to its own co
in which all of the trajectories attracted to this limiting mod
are colored. The attraction of the trajectories to the 1:2 re
nance, to theT-periodic 1:1 resonance, to the 4T-periodic
1:1 resonance~T is the orbital period!, and to the 3:2 and 2:1
resonances is traced on the figure.

It is known that dissipation coefficientsb that are too
large can lead to a ‘‘smearing’’ of the resonances: the tra
tories are not captured in sufficiently high-order resonanc
In our problem the capture condition in thek:2 resonance
can be written as

b,Fk~e!
n2

uk22u
, ~12!

whereFk(e) is a completely defined function of the arg
mentse andk ~see, for example, Refs. 14 and 16!. By using
CHAOS, Vol. 6,
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theFk(e) expression for smalle values, we obtain the fol-
lowing table of capture conditions for arbitrary values ofe
and n2 ~the third column of Table I! and specifically for
e5n250.1 ~the fourth column of Table I!.

For a value ofb50.002, for which the trajectories in
Fig. 9 were calculated, capture must occur in all of the lis
resonances. This is also observed in the figure. The resul
a calculation of the fraction of the trajectories, captured i
given resonance in the numerical experiment fore5n250.1
and twob values of 0.005 and 0.002, are shown in Table

TABLE I.

k k:2 ~12! ~12!: e50.1; n250.1

1 1:2 b,en2/2 b,0.005
2 1:1 b,` b,`
3 3:2 b,7en2/2 b,0.035
4 2:1 b,17e2n2/4 b,0.004 25
No. 2, 1996
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161Beletski , Pivovarov, and Starostin: Motions in applied dynamics
It is seen from Table II that forb50.005 capture does no
occur in the 1:2 and 2:1 resonances, just as should be
case according to theoretical estimates.

While there are no low-order stable resonances forb50,
a chaotic attractor is possible in principle forbÞ0 as the
limiting motion mode. Such a case is depicted in Fig.
~a5v50, n253, e50.4, b50.005!. For the 1:1 resonance
the chosen parameter values give an instability becaus
parametric resonance. Then253 value corresponds, for ex
ample, to a dumbbell-shaped satellite. The limiting mo
~Fig. 10! has the well-known attributes of a chaoti
attractor—fractal structure, etc. 5000 points are represen
in Fig. 10.

Let us now turn to the~3! ~b50, n250, e50, aÞ0! and
~4! ~b50, e50, n2Þ0, aÞ0! cases, i.e., to the problem o
magnetic and magnetic-gravitational interaction with the s
ellite.

Everywhere below we assumeb50. In Fig. 11~a! ~e50,
n250, a50.05,v50! the case of a ‘‘magnetic’’ satellite in a
circular orbit in the absence of a gravitational moment
considered. In this case stable orientation with respect to
magnetic field is observed~the 2:1 resonance!—similar to
the orientation of a compass needle along a magnetic line
force. At the same time a large island, corresponding to
0:1 resonance, is observed somewhat unexpectedly. The
ter of this island corresponds to a periodic motion that e

FIG. 10. The Poincare´ map of Eq.~8! for a5v50, b50.005,e50.4, and
n253. Here 5000 points are represented.

TABLE II.

b

k:2

1:2 1:1 3:2 2:1 S

0.005 0.000 T:0.740 0.135 0.000 1.000
4T:0.125

0.002 0.060 T:0.680 0.190 0.020 1.000
4T:0.050
CHAOS, Vol. 6,
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sures, on the average, an orientation in absolute space p
lel to the axis of the Earth’s magnetic dipole.

The criterion for isolating the initial datau0, u08 for
stable resonance motions was proposed and confirmed
numerical experiment in Ref. 24: the points (u0 ,u08) must be
the local minimum points of the average potential of t
moments of the acting forces,

Ū~u0 ,u08!5 lim
t→`

1

t E0
t

U@u~u0 ,u08 ,t !,u8~u0 ,u08 ,t !,t#dt.

~13!

HereU is the potential of the moment of the acting force
A graph of Eq.~13! is shown in Fig. 11~b! for the case

depicted in Fig. 11~a!. Sharp minima are clearly seen for th
2:1 and 0:1 resonances.

At the same time, narrow islands of the 1:1 resonan
are seen in Fig. 11~a!. This means that the magnetic mome
in principle, can also provide for the orientation of the sat
lite along the radius vector without the action of a gravi
tional moment, but in this case the stability region is sm
In Fig. 11~b! the corresponding local minimum is not visib
for the calculation accuracy employed.

One could expect that switching on the gravitational m
ment in the situation shown in Fig. 11~a! will increase the
1:1 resonance region. This turned out to be true@Fig. 12~a!:

FIG. 11. ~a! The Poincare´ map of Eq.~8! for a50.05,v50,b50, e50, and
n250. A ‘‘magnetic’’ satellite in a circular orbit in the absence of a grav
tational moment.~b! The average potential of the acting moments for t
case of~a!.
No. 2, 1996
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162 Beletski , Pivovarov, and Starostin: Motions in applied dynamics
e50, n250.2, a50.05#. Switch-on of the gravitational mo-
ment leads to an improvement of the conditions for orien
tion along the radius vector and to an enlargement of
regularity islands of the 1:1 resonance, but also to a cha
zation of the motions in the vicinity of these islands. Figu
12~b! shows a graph of Eq.~13! for this case. It is seen from
the figure that a new local minimum, corresponding to t
1:1 resonance, appears.

Different criteria of chaotic motion are well known in
nonlinear dynamics.25 At the same time, the criteria of mo
tion regularity, such as criteria of the type~13!, are also of
interest.

Let us describe the evolution of the phase picture of
magnetic oscillations of a satellite~e50, n250! as the pa-
rametera is varied. When the value ofa is increased, the
picture shown in Fig. 11~a! varies in the following manner:
chaotization increases, and archipelagos of islands app
whose centers correspond to long-period motions. Thus,p-
and 8p-periodic oscillations are observed in Fig. 13~a50.2!.
With a small increase of the parametera the 8p-periodic
oscillations vanish: the islands retreat into the sea and t
drown in it. Bifurcation occurs fora'0.295, and 6p-
periodic oscillations are produced inside the 2:1 island~Fig.
14,a50.3!. Then, this archipelago also disappears in the s
etc. with an increase ina. The 10p-periodic oscillations pro-
duced in the vicinity of the 0:1 resonance are also visible
Fig. 15 ~a50.35!. A bifurcation of the principal 2:1 island
into two islands occurs fora'0.6. Increasing the paramete
a does not contribute to stabilization in absolute space:

FIG. 12. ~a! The Poincare´ map of Eq.~8! for a50.05,v50,b50, e50, and
n250.2. A satellite in a circular orbit under the influence of both the ma
netic and gravitational moments.~b! The average potential of the actin
moments for the case of~a!.
CHAOS, Vol. 6,

Downloaded¬20¬Jun¬2002¬to¬128.178.14.6.¬Redistribution¬subject¬t
-
e
ti-

e

e

ar,

ey

a,

n

e

0:1 island decreases in size and vanishes forever fora.0.7.
The 2:1 island also vanishes fora'0.8, and the motion be
comes completely chaotic. Then the 2:1 island reappears
its subsequent bifurcation, vanishing and appearance o
in accordance with the theory of magnetic nonlinear 2p-
periodic oscillations.16,17

To conclude this section let us give an example of
chaotic interaction of gravitational and magnetic oscillatio
in a circular orbit~e50, n253, a51!. The gravitational and
magnetic moments, separately, give either complete regu
ity ~e50, n253, a50! or an island of regularity~e50,
n250, a51!, in combination, however, they give comple
chaotization in the same portion of phase space.

-

FIG. 13. The Poincare´ map of Eq.~8! for a50.2, v50, b50, e50, and
n250. A ‘‘magnetic’’ satellite in a circular orbit in the absence of a grav
tational moment.

FIG. 14. The Poincare´ map of Eq.~8! for a50.3, v50, b50, e50, and
n250. A ‘‘magnetic’’ satellite in a circular orbit in the absence of a grav
tational moment.
No. 2, 1996
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163Beletski , Pivovarov, and Starostin: Motions in applied dynamics
III. ROTATION OF CELESTIAL BODY IN
GRAVITATIONAL FIELD OF TWO CENTERS

The model problem of the motion of a celestial bo
with respect to its center of mass due to the action of
gravitational moments from two attracting centers is cons
ered. A point massm moves along a Keplerian circular orb
of radiusR in the gravity field of the point massM ~Fig. 16!.
The center of massO of the rigid bodyK of finite size
moves aroundM along a Keplerian circular orbit of radiu
r,R. The orientation of the bodyK with respect to the ra-
dius vector of its center of mass is described by the anglb,
measured from this radius vector to one of the principal
ertia axes of the body. All of the motion occurs in one pla
and deviations of the trajectories from Keplerian circular t
jectories are ignored. The mutual angular position of the c
ter of massO of the bodyK and the pointm is described by
the anglea; sincer,R, da/dt.0.

Gravitational moments from the side of the attracti
centersM andm act on the bodyK.

FIG. 15. The Poincare´ map of Eq.~8! for a50.35,v50, b50, e50, and
n250. A ‘‘magnetic’’ satellite in a circular orbit in the absence of a grav
tational moment.

FIG. 16. Rotation of bodyK of finite size moving in gravitational field of
two centersM andm.
CHAOS, Vol. 6,
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The described model formulation will be specified f
the Earth–artificial Earth satellite–Moon and Sun–Venu
Earth systems.

The motion of the bodyK with respect to its center o
mass in this model formulation is described by

d2b

da2 1
n2

2 S 1

12l3/2D 2 sin 2b1
n2

2 S l3/2

12l3/2D e f ~a,b!50,

~14!

where

f ~a,b!5
l2 sin 2b22l sin~2b1a!1sin~2b12a!

~11l222l cosa!5/2
,

e5
m

M
; l5

r

R
; n253

A2C

B
, ~15!

andA,B,C are the principal central moments of inertia of th
bodyK, with B being the moment of inertia with respect
the axis normal to the plane of the orbit andC being the
moment of inertia with respect to the axis forming the an
b with the running radius vector~we assume for the sake o
being specific thatB.A.C!.

We introduce into the discussion the deviationx from
the possible resonance rotation

b5pa1x, ~16!

wherep is a positive or negative half-integer~or, generally
speaking, any rational number!.

For e50, Eq. ~14! is the usual equation of rotation of
rigid body in a circular orbit in the gravity field of a poin
with massM ; the term witheÞ0 describes perturbations du
to the influence of the second center of massm. These per-
turbations make it possible to expect that resonance mo
~16! can appear with functionsx~a! that are periodic with
respect toa; in this case, as follows from Kolmogorov–
Arnold–Moser ~KAM ! theory, the width of the resonanc
zone is

D r;
nl3/2

12l3/2 Aew~p!, ~17!

and the width of the ‘‘stochastic’’ layer,25 i.e., the chaotic
motion region in the vicinity of a given resonance, is

Ds;expS 2
1

D r
D . ~18!

Herew(p),1 is a function of the resonance numberp.26

It follows from Eqs.~17! and~18! that the resonance an
chaos effects increase~or decrease! with an increase~or de-
crease! in the parametersn,l,e.

Let us point out that the coefficients of Eq.~14! are 2p
periodic with respect to the independent variablea; the val-
ues ofa52pk, k50,1,2,..., correspond to the inferior con
junctions of the pointm and bodyK. If x~a! is 2p periodic
with respect toa in Eq. ~16!, then resonances with the inte
gersp correspond to those rotations of the bodyK for which
in each inferior conjunction the same side of it is turn
toward them center.
No. 2, 1996
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164 Beletski , Pivovarov, and Starostin: Motions in applied dynamics
Let us consider a satellite in the terrestrial and lun
field. We then haveM as the Earth’s mass,m is the lunar
mass, andK is an artificial Earth satellite. In this casee51/
81.3'0.0123. The upper limit ofl is determined from the
condition that the orbit of the satellite in the Earth–Moo
system is located completely outside the sphere of lunar
tivity. The model formulation being considered makes se
only in this case. Values ofl,0.83 satisfy this condition.

Figure 17 is a phase portrait of the problem~14! for
l50.7 andn250.3. In this case the perturbations are co
paratively large because of the largel value ~the satellite
periodically approaches close to the centerm!. The phase
portrait is obtained by a numerical implementation of t
Poincare´ point map method with period 2p in terms of the
independent variablea. The centers of the large regularit
islands visible in this figure correspond to a stable perio
oscillation of the satellite about the running radius vector~a
gravitational orientation of the satellite at Earth!. In terms of
Eq. ~16! this means thatp50. Numerous regularity islands
with pÞ0, located in the chaotic sea, are also visible.
characteristic feature of the phase portrait is the absenc
symmetry with respect to the sign of the resonance param
p. A resonance zone withp5p2,0 is an order of magni-
tude wider than a zone withp5p1.0, p15up2u. In other
words, ‘‘retrograde’’ rotations of the satellite are perturb
more strongly than analogous direct rotations. The cha
sea floods this region of retrograde rotations.

A fragment of the picture of Fig. 17 in the retrograd
rotation region is shown in Fig. 18. Archipelagos, corr
sponding to resonances with a multiplicity of 1/2, 1/4, 1
are visible. The resonance in the vicinity ofb8525 corre-
sponds to the value ofp525, and Venus rotates in the vi
cinity of such a resonance in the Sun–Venus–Earth syst
The value ofl in this system is close tol50.7; therefore,
the fragment depicted in Fig. 18 can be considered a
model of the ‘‘Venus type’’ and similar resonances; how
ever, the value ofe in the Sun–Venus–Earth system is se

FIG. 17. The Poincare´ map of the Earth–artificial Earth satellite–the Moo
system forl50.7 andn250.3.
CHAOS, Vol. 6,
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eral orders of magnitude smaller than here. More det
about the Venus rotation model will be given below.

Let us point out one of the results of a calculation of t
phase portrait of the problem~14!. A new feature is observed
for l50.7 andn253: two stable periodic oscillations of the
satellite~and one unstable! with respect to the radius vecto
~p50! exist rather than just one.

Let us now turn to the Venus rotation problem. Rad
measurements carried out in the first half of the 1960s m
it possible to determine that Venus rotates about its own a
which is almost normal to the plane of its orbit, backwa
with respect to the orbital motion with a period of'243
Earth days. It was pointed out in Ref. 27 that the period
close to resonance motion~16! with x~a12p!5x~a! and
with a value ofp525. In this case the exact resonance p
riod of rotation is equal to 243.16 days. This gave rise to
series of investigations of the Venus rotation pheno
enon.11,14,28,29The extremely small width of the resonanc
zone and the extremely small probability of the capture
Venus in resonance rotation, as well as other obstacles to
realization of resonances, were pointed out, in particular.

According to present-day data,30 the rotation period of
Venus is equal to 243.02260.006 Earth days. The principa
central moments of inertiaA,B,C (B.A.C) of Venus sat-
isfy the ratios

a5~B2A!/C5~8.5260.51!1026,

b5~B2C!/A5~16.7160.51!1026,

g5~A2C!/B5~8.1960.33!1026.

This means that the true rotation of Venus lies entirely o
side the resonance zone, with the discrepancy between
angular velocity of Venus and the resonance value being
order of magnitude greater than the width of the resona
zone. Several papers30–33have pointed this out.

The calculation results presented below also confirm t
fact.

FIG. 18. Magnification of the region of retrograde motion in Fig. 17.
No. 2, 1996
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165Beletski , Pivovarov, and Starostin: Motions in applied dynamics
Let us consider Eq.~14! as the model description of th
Venus rotation in the gravity field of the Sun (M ) and Earth
(m). Taking the data of Ref. 31 into account, we assume

e53.00431026, l50.723 332, n252.45731025.

These values correspond to the estimate of Eq.~17!
Dr;1025–1026. In view of Eq.~18!, this denotes the essen
tial absence of a stochastic layer; the smallness of the w
of the resonance zone causes serious difficulties in calc
ing it. Figure 19 shows the cuts of KAM tori, calculate
numerically, by the~x,dx/da! plane in the vicinity of the
resonancep525. In the region being considered the motio
of the imaging point, corresponding to successive Poinc´
maps, occurs very slowly along smooth curves. Tens of th
sands of maps~from 20 000 to 100 000! must be calculated
in order to plot one of the curves depicted in Fig. 19. Th
two vastly different time scales are present in the proble
the period of the map and the time required for the imag
point to bypass the entire smooth curve. This means
such a problem is stiff. In order to speed up the compu
tional process a special two-stage method was develope
essence it consists of the fact that the numerical construc
of the smooth curves on the secant plane is carried out on
basis of information about the vector field supplied by me
of a numerical construction of several successive Poinc´
maps at the required points of the plane.

As seen from Fig. 19, the resonance tori are very fl
tened. In the vicinity of those points of the curves where
tangent is parallel to the ordinate axis, the cross section
the tori are constructed in the usual manner by means
successive iterations of the mapping. A program based o
extrapolation method was used to calculate the individ
Poincare´ maps.

Such a two-stage approach made it possible to red
the required computational costs by two orders of magnit
compared with a direct integration for the same global er
value.

Figure 20 shows the relative arrangement of the re
nance zone being investigated and thedx/da values, corre-

FIG. 19. Phase trajectories of the Sun–Venus–Earth system in the vic
of the resonancep525. Here e53.00431026, l50.723 332, and
n252.45731025.
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sponding to modern data from observations of the pro
Venus rotation period. The boundary of the interval of me
sured values of the quantitydx/da is depicted by the dashe
lines. As seen from the figure, the distance along the ordin
axis between the resonance zone and the observed v
exceeds the width of the resonance zone by about an ord
magnitude.

In conclusion, let us mention the following fact. Res
nances with a multiplicity of12 correspond to the following
rotation periods:

p524.5,
p525.0,
p525.5,

T5307.111 Earth days,
T5243.165 Earth days,
T5201.259 Earth days.

Even though the true Venus rotation period~243.02260.006
Earth days!, as shown, lies outside the resonance zone of
p525.0 resonance, it is clearly attracted to it, being spa
from the nearest resonances of the same multiplicity b
‘‘distance’’ that is several orders of magnitude greater th
the ‘‘distance’’ from thep55.0 resonance.

This may or may not mean something. The question
the nature and origin of the retrograde rotation of Venus w
the above-stated observed period remains unanswered.34

Note added in proof.Some of the results presented ha
been published as rather inaccessible preprints of the M
Keldysh Institute of Applied Mathematics, Russian Academ
of Sciences,6,23,35,36 as well as in Refs. 7, 8, 37, and 38
These publications do not overlap the material contain
herein, nor does this review overlap the cited publication

ACKNOWLEDGMENTS

The authors acknowledge with gratitude support of
Russian Foundation of Basic Research, through Grant
95-01-00308a.

1V. V. Beletski�, ‘‘Dynamics of two-legged walking,’’ preprint No. 32, M.
V. Keldysh Institute of Applied Mathematics, Academy of Scienc
USSR, 1974.

ityFIG. 20. The relative location of the resonancep525 zone and the ob-
served rotation of Venus, according to modern data.
No. 2, 1996

o¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/chaos/chocr.jsp



nd

ce

d
-

d

ed

s

-

nu

f

n

vi-

el-
a

s
e

ia

pe

o

ce
el-

ace
the

n
t-

e

,

ody
.

J.

f

f

ic

ce

ral

of

the

-
nal
-

of

f a
-

166 Beletski , Pivovarov, and Starostin: Motions in applied dynamics
2V. V. Beletski�, ‘‘Dynamics of two-legged walking I, Izv. Akad. Nauk
SSSR; Mekh. Tverd. Tela No. 3~1975!; II, Izv. Akad. Nauk SSSR, Mekh.
Tverd. Tela No. 4~1975!.

3V. V. Beletski�, Two-Legged Walking—Model Problems of Dynamics a
Control ~Nauka, Moscow, 1984!.

4E. K. Lavrovski�, ‘‘Dynamics of two-legged walking for large motion
velocities,’’ Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela No. 4~1980!.

5V. V. Beletski� and M. D. Golubitskaya, ‘‘Stabilization and resonan
effects in two-legged walking,’’ Prikl. Mat. Mekh. No. 2~1991!.

6V. V. Beletski�, ‘‘Regular and chaotic motions of body of two-legge
apparatus,’’ preprint No. 52, M. V. Keldysh Institute of Applied Math
ematics, Academy of Sciences USSR, 1990.

7V. V. Beletzky, ‘‘Nonlinear effects in dynamics of controlled two-legge
walking,’’ in Nonlinear Dynamics in Engineering Systems, edited by W.
Schiehlen~Springer-Verlag, Berlin, 1990!.

8V. V. Beletzky, ‘‘Regular and chaotic movements of body of two-legg
apparatus,’’ inLecture Notes of the ICB Seminars on Biomechanics, ed-
ited by M. Dietrich~ICB, Warsaw, 1992!.

9M. Vukobratovich,Walking Robots and Anthropomorphic Mechanism
~Mir, Moscow, 1976!.

10V. V. Beletski�, On Satellite Libration, Colloquium: Artificial Earth Sat
ellites ~Academy of Sciences, USSR, 1959!, No. 3.

11P. Goldreich and S. Peale, ‘‘The dynamics of planetary rotations,’’ An
Rev. Astron. Astrophys.6, 287 ~1968!.

12V. V. Beletski�, Motion of Artificial Satellite with Respect to Center o
Mass~Nauka, Moscow, 1965!.

13A. A. Khentov, ‘‘Effect of magnetic and gravitational fields on oscillatio
of satellite about its center of mass,’’ Kosmich. Issled.5, No. 4 ~1967!.

14V. V. Beletski�, Satellite Motion with Respect to Center of Mass in Gra
tational Field ~University of Moscow Press, Moscow, 1975!.

15V. A Sarychev, ‘‘Questions of the orientation of artificial Earth sat
lites,’’ Summaries of Science and Engineering, Series: Space Rese
~Viniti, Moscow, 1978!.

16V. V. Beletski� and A. A. Khentov,Rotational Motion of Magnetized
Satellite~Nauka, Moscow, 1985!.

17V. A. Sarychev and M. Yu. Ovchinnikov, ‘‘Magnetic orientation system
of artificial Earth satellites,’’Summaries of Science and Engineering, S
ries: Space Research~Viniti, Moscow, 1985!.

18V. V. Beletsky, ‘‘Resonant phenomena in rotational motions of artific
and natural celestial bodies,’’ inTheoretical and Applied Mechanics,ed-
ited by F. I. Niordson and N. Olhoff~North-Holland, New York, 1985!.

19J. Wisdom, S. J. Peale, and F. Mignard, ‘‘The chaotic rotation of Hy
rion,’’ Icarus 58, 137 ~1984!.

20X. Tong and F. P. J. Rimrott, ‘‘Numerical studies on chaotic planar m
tion of satellites in an elliptic orbit,’’ Chaos, Solitons, Fractals1, No. 2
~1991!.

21V. I. Gulyaev, A. L. Zubritskaya, and V. L. Koshkin, ‘‘Universal sequen
of period doubling bifurcations of the oscillations of a satellite in an
CHAOS, Vol. 6,

Downloaded¬20¬Jun¬2002¬to¬128.178.14.6.¬Redistribution¬subject¬t
.

rch

-

l

-

-

liptic orbit,’’ Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela No. 3~1989!.
22Z. S. Batalova and N. A. Mel’nichenko, ‘‘On the structure of phase sp
and bifurcations of the equation of motion of a magnetized satellite in
plane of a circular polar orbit,’’ Kosmich. Issled.21, 512 ~1983!.

23V. V. Beletski�, ‘‘Regular and chaotic motions in satellite orientatio
problem,’’ preprint No. 53, M. V. Keldysh Institute of Applied Mathema
ics, Academy of Sciences USSR, 1990.

24V. V. Beletski� and A. N. Shlyakhtin, ‘‘Extremal properties of resonanc
motions,’’ Dokl. Akad. Nauk203, No. 1 ~1972! @Sov. Phys. Dokl.17, No.
1 ~1972/73!#.

25G. M. Zaslavski�, R. Z. Sagdeev, D. A. Usikov, and A. A. Chernikov
Weak Chaos and Quasiregular Structures~Nauka, Moscow, 1991!.

26D. V. Pankova, ‘‘On the problem of resonance rotation of a celestial b
in the gravitational field of two centers,’’ Vestn. Mosk. Univ. Mat. Mekh
No. 4, 97 ~1992!.

27R. L. Carpenter, ‘‘Study of Venus by CW radar—1964 results,’’ Astron.
71, 142 ~1966!.

28V. V. Beletski�, E. M. Levin, and D. Yu. Pogorelov, ‘‘On the question o
the resonance rotation of Venus,’’ Astron. Zh.57, 158 ~1980! @Sov. As-
tron. 24, 94 ~1980!#.

29V. V. Beletski�, E. M. Levin, and D. Yu. Pogorelov, ‘‘On the question o
the resonance rotation of Venus II,’’ Astron. Zh.58, 198 ~1981! @Sov.
Astron.25, 110 ~1981!#.

30B. G. Bills, W. S. Kiefer, and R. L. Jones, ‘‘Venus gravity: A harmon
analysis,’’ J. Geophys. Res.92, No. B10, 10 335~1987!.

31I. I. Schapiro, D. B. Campbell, and W. M. DeCampli, ‘‘Nonresonan
rotation of Venus?,’’ Astrophys. J. Lett.230, L123 ~1979!.

32A. A. Khentov, ‘‘Formation dynamics of resonance rotations of natu
celestial bodies,’’ Astron. Zh.59, 769 ~1982! @Sov. Astron.26, 468
~1982!#.

33A. A. Khentov, ‘‘On the question of interpreting the observed rotation
Venus,’’ Astron. Zh.66, 202 ~1989! @Sov. Astron.33, 105 ~1989!#.

34S. J. Peale, ‘‘Some unsolved problems in evolutionary dynamics in
Solar system,’’ Celest. Mech.46, 253 ~1989!.

35V. V. Beletski�, M. L. Pivovarov, and E. L. Starostin, ‘‘Regular and cha
otic motions in the rotation problem of a celestial body in the gravitatio
field of two centers,’’ preprint No. 128, M. V. Keldysh Institute of Ap
plied Mathematics, Academy of Sciences USSR, 1990.

36V. V. Beletski� and E. L. Starostin, ‘‘Regular and chaotic rotations
satellite in light flux,’’ preprint No. 68, M. V. Keldysh Institute of Applied
Mathematics, Academy of Sciences USSR, 1991.

37V. V. Beletsky and E. L. Starostin, ‘‘Regular and chaotic rotations o
satellite in sunlight flux,’’ inNonlinearity and Chaos in Engineering Dy
namics, edited by J. M. T. Thomson and S. R. Bishop~Wiley, New York,
1994!.
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