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INTRODUCTION

The spatial shape of biological molecules is known to be one of the important determinants of
their biochemical properties. Therefore, the specification and prediction of three-dimensional folding of
biological macromolecules is one of the most challenging and fundamental problems of molecular
biology. This work is devoted to the search of the proper technique for solution of this problem for an
important class of biopolymers: ribonucleic acids. Three-dimensional structure of large RNAs is
currently understood not so well as that of the other biological macromolecules [8], though one can
observe a significant progress in this area [1].

A problem of prediction of approximate large-scale 3D structure of an RNA molecule from its

secondary structure is considered. Both a mathematical model and its computer implementation are
presented. An RNA molecule is treated as a system of linked basic structural elements (stems and
single-stranded fragments including loops of various types) modelled by elastic rods. A numerical
procedure is developed for computation of shapes of the RNA elements and for assembling the whole
molecule.

MODEL DESCRIPTION

An approach is proposed for investigation and analysis of RNA spatial shape. It is based on
the theoretical methods well adapted to prediction of the DNA large-scale structure [6,7,12]. The
tertiary structure of RNA molecule is built from basic structural elements with pre-computed 3D shape.
These basic elements are stems, loops of various types and other single-stranded fragments.

Every loop is modeled as a closed contour consisting of a number of thin curvilinear elastic
rods linked at their ends by absolutely rigid cross-bonds simulating Watson-Crick interactions (we
assume that the cross-bond joins the central points of the paired nucleotides). The number of the rods is
equal to the number of the branches of the loop. With adequate choice of the elastic and geometrical
parameters of the model rod, its shape approximates the large-scale 3D structure of the structural
element of the RNA molecule. It would appear reasonable that, when unstressed, all the rods constitute
the helical structure of a strand of the RNA in A-form.

We consider (i) dangling ends, (ii) single-stranded fragments that only join two stems and (iii)
double-stranded parts (stems) as fixed curved and twisted rods which are in the unstressed state and
which are represented by  single  ((i) and (ii)) or double (iii) regular helices. The other single­stranded
parts of the molecule (loops of various type) are treated as stressed. A spatial equilibrium shape of a
loop is determined by finding the solution of the system of the boundary value problems (BVP)
corresponding to the rod fragments, which satisfy the geometrical constraints at theirs ends. The
application of the continuous elastic rod model to the single-stranded fragments might be justified by a
consideration that the elasticity can effectively mimic the actual properties of the chain of nucleotides
arising due to base stacking interactions [10].

Let us consider a single-stranded fragment of a loop, which is modeled as a thin elastic rod of

length L . The rod is assumed to be inextensible and unshearable. The vector function ( )r s ,

Lss ≤≤0, ,  describes the centreline of the rod and s is the arclength. Denote by 3,2,1, =iei , the

unit vectors of the principal axes of the strain tensor, where 1e  is the tangent vector and
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because of the inextensibility assumption.
Let iB  are the corresponding elastic coefficients (which are taken to be constant along the

rod), then 1B  is the torsional stiffness, and 2B  and 3B  are bending stiffnesses. iM stand for the

components of the moment )(sM ; iω  and 0
iω  are the components of the Darboux vectors ω  and

0ω for the stressed and unstressed rod, respectively. We apply the generalized Hooke law as the
constitutive relation

( ),0
iiii BM ωω −=  3,2,1=i (2)

The equilibrium of the rod fragment is governed by the following system of equations [15]:

( ) 0)()()( 0
2232

0
3323

0
111 =−−−+− ωωωωωωωω BBB

ds
d

( ) 0)()()( 3
0
3313

0
1131

0
222 =−−−−+− FBBB

ds
d

ωωωωωωωω (3)

( ) 0)()()( 2
0
1121

0
2212

0
333 =+−−−+− FBBB

ds
d

ωωωωωωωω

and

023321 =−+ FFF
ds
d

ωω

031132 =−+ FFF
ds
d

ωω (4)

012213 =−+ FFF
ds
d

ωω ,

where ),,( 321 FFFF =  is an external force applied to the ends of the rod fragment (no other external

forces and moments are taken into account). These equations include six parameters: iB , 0
iω ,

3,2,1=i . The equations are closed with respect to variables iω  ? 3,2,1, =iFi , but knowing their
values is not sufficient for the computation of the rod shape in the 3D space.

To close the system of the equations, we add an equation expressing the fact that the vectors

3,,2,1, =iei  are constant in the principal axes of the strain tensor: ide
ds

, 1, 2, 3ie iω= × = .

Since 132 eee ×= , two equations for 1=i , 2  are enough. Applying the decomposition
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We should notice that these equations are redundant as the orientation of the trihedral can be
expressed in three parameters instead of six ( 1e  and 3e ).

Search for the solution of the system (3-5) is equivalent to the minimization of the integral
elastic energy of the rod with known end constraints. It is not necessary to integrate the equations (4)
since the force F is constant in the laboratory reference frame.



Thus, the system of 12 equations (3, 5, 1) is closed and it can be integrated if the initial values
are given:

0)0( rr = , 101 )0( ee = , 303 )0( ee = , (6)

3,2,1,)0( 0 == iii ωω , 0FF = , (7)

The first three conditions (6) determine the position and orientation at the initial point (the 3’
end as applied to the RNA) of the rod. The forth and the fifth conditions (7) define the moment and the
force acting on  the initial point of the rod.

To compute the spatial shape of RNA, it is necessary to find a configuration of the rod under
the conditions on its ends. The position and orientation of both ends are defined while the forces and
the moments at the initial point are determined as a result of the solution of BVP. More precisely, the
boundary conditions are:

)0(r , )(Lr , )0(1e , )(1 Le , )0(3e , )(3 Le (8)

and the solution of the BVP means the correct choice of the quantities:

3,2,1),0( =iiω , F

Now we illustrate the formulation of the boundary conditions on an arbitrary hairpin loop.
The thin elastic rod modeling the hairpin loop is joined smoothly to the both strands of the

double helix region. Therefore the position and orientation of the principal trihedral at the initial (final)
point of the rod coincide to those at the final (initial) point of the first (second) strand of the double
helical fragment. The parameters of the double-stranded section are known and correspond to the
parameters of the A-form of RNA [16].

Fig. 1. Boundary value constraints for the hairpin loop.
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Fig. 1 demonstrates the description of the BVP for the hairpin loop. The angle θ is a rotation
angle of the principal axes of the strain tensor with respect to the Frenet trihedral for the non-stressed
rod.

To compute a spatial configuration of a multi-branched loop we have to find the equilibrium
shape of a closed contour consisting of a number of single-stranded fragments modelled by elastic rods.
Every pair of consecutive rods is joined by a rigid cross-bond. Self-interactions of remote parts of the
loop as well as of the whole molecule (tertiary interactions) are not taken into account.
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Fig. 2. Two thin elastic rods CA and BD joined by a rigid cross-bond AB.

Consider a pair of neighbour fragments of the thin elastic rods CA and BD of lengths 1L  and

2L , respectively, and let the cross-bond AB join them. The points A and B are the ends of the double
helical region that contains a cross-bond modeling the Watson-Crick bond. Let us assume for the
moment that we have found the initial conditions and integrated the equilibrium equations from point C

to point A, i.e. from 0 to 1L . Denote the force −= FLF )( 1 and the moment −= MLM )( 1 applied

to the end of the fragment (point A). Therefore, the force −− F and moment −− M  are applied to the

rigid cross-bond in the point A. Also designate −= ii L ωω )( 1 , −= ii eLe )( 1 , 3,2,1=i . These
quantities are specified by the integration. We have
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Let )( 1Lrr =−  be a position of point A in the absolute space. To calculate the shape of the
second elastic rod fragment, we need to know the initial values:

+= rr )0( , += 11 )0( ee , += 33 )0( ee , 3,2,1,)0( == + iii ωω , += FF )0( (10)

(The second fragment BD is parameterized from 0 to L_2.)
The position and orientation of the cross-bond AB can be approximated on the basis of the

following constraints:
- the cross-bond is inclined at the angle of 70º to the symmetry axis of the double helix;
- the length of the cross bound is equal to 19 Å that corresponds to the diameter of the double

helix in the B-form.
We assume that the single-stranded fragments CA and BD are joined smoothly to the strands

of the double helical region, therefore, the orientation of the principal trihedral of the second rod
fragment in the initial point B can be derived from the helix structure of the A form.

Then
−+ = ii eGe ,   3,2,1=i , (11)

where G is a known orthogonal matrix. The position of the cross-bond BA=ρ in the axes of the
principal trihedral can be represented by

−−− ++= 332211 eee ρρρρ  (12)

and the initial position of the second fragment is

ρ+= −+ rr (13)

In our model the components iρ  as well as the matrix G  are calculated from the geometry of
the A-form.



To complete the initial conditions for the second fragment, it is necessary to find

, 1, 2, 3,i iω + =  and +F . Actually we should find the force +F  and the moment +M , applied in
the point B of the rigid cross-bond. To write out the equilibrium equations for the cross-bond, it is
essential to equate all the forces and moments in the point B to zero. For the forces we have:

0=+− +− FF ,
or

−+ = FF (14)

The moments with respect to the point B include the moments in the points A ( −− M ) and B

( +M ) as well as the moment of the force in the point A relative to point B ( )()( −−×− Fρ ). If we
equate the sum of these vectors to zero we shall get the second equilibrium equation for the cross-bond:
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Therefore the expressions (14-16) allow us to find the initial data for the equilibrium
equations of the second fragment.

As the multi-branched loop is described as a set of several elastic rod fragments joined by
rigid cross-bonds modeling Watson-Crick interactions, it is now straightforward to write out a BVP for
the equilibrium shape of the loop in the same way as it was stated for the hairpin loop.

Let the multi-branched loop have n  single-stranded fragments with the lengths iL . To
compute its 3D shape we should find the shape of the rod chain with known position and orientation at
the initial point (3’ end) of the first fragment and at the terminal (5’ end) point of the last fragment
though the forces and the moments at the initial point are unknown. Both forces and moments are
supposed to be calculated in the process of the BVP solution. More precisely, the boundary conditions
are presented by (10).

The BVP above is solved numerically by the shooting method. Its solution depends on the
elastic coefficients of the model and on the geometric properties of the unstressed state.

To sum up, the shape of a loop is determined by its boundary conditions, namely, by the
position and the orientation of the principal trihedral in the initial (3') and terminal (5') points of the
strands of the double-stranded fragment of the A-form of RNA in that place where the last Watson-
Crick bond passes before the loop. These constraints are applied to the corresponding ends of the rods
modelling the loop. Also, we accept a simplification that the Watson-Crick bond may be represented as
a rigid constraint connecting the central points of the complementary nucleotides.

COMPUTATION OF FINAL 3D SHAPE

The procedure of computation of 3D structure has two stages.
At the first stage the 3D shapes of basic elements (stems, loops, dangling ends) should be

calculated. Only elements that are present in the secondary structure of given RNA are processed. The
shape of any loop is a result of the solution of the corresponding BVP. Stems and dangling ends are
fixed. The stem is treated  as a pair of interwound cross-bound rods in a relaxed state while the loop’s
rods are in the stressed state.

At the second stage the whole structure of the molecule is assembled by means of successive
addition of basic elements. Since the boundary conditions correspond to A-form and the double helices
of stems are also in A-form, the elements are glued smoothly that means that all stem rods and loop
rods constitute one rod with continuous tangent. The ends of this composite rod correspond to the 3'
and 5' ends of the molecule. As it has been already mentioned above, the cross-bonds are treated as



absolutely rigid and their position and orientation with respect to the rod are fixed. Therefore, the shape
of the composite rod is completely identical to the shape which is taken on by one continuous rod of
the same length that gives a solution of the BVP. The latter involves all the constraints that arise due to
the cross-bonds.

RESULTS

We applied the above procedure to two different types of RNA. The numerical values of the
parameters were chosen as follows.

In the simplest case we can try 321 BBB ==  that corresponds to the ....

0.02 =ω , 002549074.73 −= eω , 002942040.21 −= eω  [rad/Å]
In particular, we computed the structures of the Yeast Phenylalanine Transfer RNA (Fig. 3a,

3b). Its tertiary structure was determined by X-ray analysis (Fig. 3c) and described in detail in [14]. In
the figures the view direction is chosen approximately perpendicular to the “plane” of the molecule.

      
               a                                                      b                                                             c

Fig. 3. Yeast Phenylalanine Transfer RNA.

The comparison of this RNA with the computed shape shows that even such a simple model allows one
to get some qualitative resemblance of the overall conformation. Namely, the result of modelling
catches the following experimentally confirmed features of the molecule’s conformation:
- the molecule as a whole is somewhat flattened;
- it has an L-shape conformation;
- the acceptor stem is at an approximately right angle to the anticodon stem;
- the two other stems are in the position that facilitates the tertiary interactions between nucleotides

of their hairpin loops.
The secondary structures of RNAs in Figs. 4-6 are taken from [9,11].
It should be noted that these features are more or less common to short transfer RNAs  (Fig. 4-6).
A ribosomal RNA is shown in the last Fig. 7.

                                                            

Fig. 4. tRNA: Arginine Cenorhabdi. Elg.



                                                        

Fig. 5. tRNA: Asparagic Acid Asterina Pectini.

                                               

Fig.6. tRNA: Leucine   Eugelna Gracilis.

                          

Fig.7. 5S rRNA of human.

CONCLUSION

The elastic rod model can be applied to prediction of an approximate 3D shape of not only
DNAs but RNAs, as well.

It should be noted that the secondary structure may be affected by tertiary interactions [5]. In
this respect, a means for the fast computation of a rough three-dimension configuration may be
possibly used in the iterative procedure for the search of the optimal secondary and tertiary structures.
It is our belief, that the approach described may eventually provide such a means. Besides, the
presented elastic rod model may serve as an initial approximation for a more elaborated procedure of
the shape computation at the base (or even atomic) level.

The significant advantage of the model proposed is a small number of the parameters defining
the structure of the molecule. At the same time it is a priori clear that this model may produce only
large-scale approximation of real polynucleotide chains because, among other things, it does not take
into account effects of tertiary interactions between distantly located bases, in particular, in fixed stems



and dangling ends. Now we are working on further development of the model by taking into account
the heterogeneity of nucleotide chains and on verification of the results against input data and testing
the robustness of the model relative to uncertainty of the parameter values.
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