Acta Astronautiea Vol. 19, No. 3, pp. 201-213, 1989
Printed in Great Britain. All rights reserved

0094-5765/89  $3.00 +0.00
Copyright © 1989 Pergamon Press plc

PLANAR LIBRATIONS OF A GRAVITY-ORIENTED
SATELLITE UNDER THE INFLUENCE OF SOLAR
RADIATION PRESSUREf}

V. V. BeLersky and E. L. STAROSTIN
U.S.S.R. Academy of Sciences, Intercosmos, 14 Leninsky Prospekt, Moscow, US.S.R.

(Received 18 February 1988; received for publication 20 September 1988)

Abstract—Satellite oscillations about its centre of mass in the circular orbit plane are dealt with.
The satellite is assumed symmetrical about a plane permanently coinciding with the orbit plane.
A gravity-gradient torque and a torque of solar radiation pressure on an unshadowed flat plate—a part
of the satellite—are taken into account. The centre of pressure is supposed to belong to the principal axis
of inertia. Effects of entering the Earth’s shadow are neglected. A simplification that the orbit lies in the

ecliptic plane is adopted. Under the assumptions made, the satellite motion is described by a non-
autonomous differential second-order equation. A problem is to find symmetrical and nonsymmetrical
periodic motions of orbital period and to determine their stability. For the case of small radiation

disturbance, the Krylov—Bogolyubov asymptotic approach is used in the analysis. The libration in the
vicinity of the main resonance has been elaborated. For the satellite dynamically resembling a sphere the
investigation is treated with the Volosov-Morgunov averaging method. A resonant value of the radiation
torque parameter has been found. A question of periodic motions bifurcation is cleared up. For the
satellite with an arbitrary tensor of inertia under non-small radiation disturbance the problem has been
solved numerically. The main results are represented as a chart graphically demonstrating regions of
existence and stability of possible periodic librations of the satellite on parametric plane.

1. INTRODUCTION

A possible way to the passive stabilization of arti-
ficial satellites is to use the gravity gradient of a
planet, due to which the torques arise and turn a
satellite. It seems expedient to use such a system
of passive stabilization also for spacecraft or objects
that have a rather large area of surface reflecting
and absorbing the solar radiation. For example,
these are communication and meteorological satel-
lites, transmitting antennae of future solar energy
satellites, various space platforms, etc. However, if
the orbit is high enough and a satellite is large, one
should take into account the torques arising due
to the solar radiation pressure onto different parts of
the satellite. This factor may result in the attitude
instability of the gravity-oriented satellite, though it
may also be used for passive stabilization of the
satellite[1].

In this paper for the simplest model of a symmetric
satellite in a circular orbit which undergoes an effect
of the gravity and light torques, an attempt was
made to study the librational motion and stability of
periodic oscillations as functions of the basic par-
ameters. A similar problem was solved inf2], where an
effect of the light torque upon the gravity-oriented
symmetric plate in an elliptic orbit was studied. In
this paper a different model is taken to imitate the

tPaper IAF-87-352 presented at the 38th Congress of
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umbrella-like satellites whose main reflecting surface
in the regime of gravitational orientation is approxi-
mately orthogonal to the line directing to the gravity
centre. For this model the zones of parametric
instability of oscillations in the satellite’s orbit plane
are established when the gravity torque stabilization
regime is violated due to the effect of the solar
radiation pressure torque. Appearance of such an
instability should be taken into consideration in
designs of spacecraft that possess the above proper-
ties as well as in designs of the gravity torque stabili-
zation systems.

2. MODEL AND THE MOTION EQUATIONS

Let us consider a symmetric satellite in a circular
orbit (Fig. 1). For simplicity we assume that the orbit
lies in the ecliptic plane. We restrict ourselves to
studying the motion of the satellite about its centre of
mass in the orbital plane. Let us take into consider-
ation an effect of the gravity torque caused by a
gradient of the planet’s central gravity field as well as
an effect of the solar radiation pressure torque.

In Fig. 1, the satellite’s centre of mass is designated
by O, and its central major axes of inertia by Ox and
Oy with the inertia moments A and B, respectively.
The third axis of inertia, Oz with the moment C is
perpendicular to the orbital plane (Fig. 1). An angle
between the radius vector EO of the satellite and the
axis Ox is designated by 9.

We shall take into account an effect of the light
pressure only upon a part of the satellite—the opaque
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Fig. 1. Symmetric satellite in a circular orbit,

plate S the normal to which is collinear to the axis Ox.
It is assumed that the surface area of other parts is
negligibly small. Effects of mutual obscuration and
entering the Earth’s shadow are ignored. The latter
can be justified because a relative value of the light
torque becomes significant in high orbits where the
shadowing time is small. The plate S is assumed to be
symmetric with respect to the plane Oxy, the pressure
centre D being on the axis Ox.

Using the formulas and results from[3] the equa-
tion of the satellite oscillations can be written in the

form
sin(% + oc)

X cos(—(g—}—o'c) =0. (1)

Here ¢ = 26; o is the angle between the direction
to the Sun and a tangent to the satellite orbit;
@’ =3(B — A)w}/4Cw? is the parameter that deter-
mines the gravitational torque (w, is an absolute
angular velocity of the satellite’s centre-of-mass
motion along the orbit, w, is the angular velocity
of the satellite’s centre of mass with respect to the
Sun); 4 = p.S(1 —€)7r/4Cw? is the parameter that
determines the light torque [p. is ‘a constant of
the solar radiation pressure, in the Earth’s orbit
P.=464x107°Pa, ¢(0<e. <1) is the reflection
coefficient which is the same on both sides of the plate
surface, the area of each side is designated by S];
r =|OD| is a distance between the centre of mass and

the centre of pressure. A mirror law of reflection is
assumed. ’
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In eqn (1) the term corresponding to the light
torque is proportional to the absorption coefficient
equal to (1 —¢,). It can be explained by the accepted
properties of the satellite’s symmetry.

The model described above approximates a rather
wide class of physical objects, in particular, a satellite
consisting of an antenna disk and an orthogonal
central bar.

In the absence of the light torque (h = 0) and with
@?>0 eqn (1) allows the stable solution & =0, it is
the so-called gravity torque stabilization regime[3].
For small s 3£ 0 the satellite will generally perform
small oscillations about its position. These oscilla-
tions will be stable for all possible values w?> 0 and
small 4 except for those which get into regions of
parametric resonance. In the linear approximation
the zones boundaries of parametric resonance for the
trivial solution of eqn (1) coincide with such for the
equation

2
pcis 4[w? + h(sgn cos a) cos 2a] ¢ =0, (2)
which is called the Mathieu-Meissner equation since
it represents a combination of the Mathieu equation
(the harmonic excitation) and the Meissner equation
(excitation of meander type)[4].

Boundaries of the parametric resonance zones in
the plane of parameters w?, 4 for eqn (2) are deter-
mined from the condition |tr4 *| = 2[5), where A* is
the matrix of monodromy of eqn (2) the period of
which is 27. In order to determine approximately
the matrix of monodromy approximate solutions
of eqn (2) should be constructed. It can be done by
using an asymptotic Krylov-Bogolyubov method([6).
Expressions for the boundaries of the first two insta-
bility zones in the linear approximation are:

_l_igﬁ Zziiéﬁ,

16 = 3n’ 16— 5n

w?

)

3. FORCED OSCILLATIONS

We studied small oscillations of the satellite in the
vicinity of main resonance, i.e, for w? being close
to 1/4. We shall assume that oscillations are near
harmonic, and write eqn (1) in the corresponding

form:
sin(% -+ oc)

dz—¢+4a)2¢ = —8h
X cos(%ﬁ— oc)+4co2(¢ —sin¢) =f(a, ¢). (4)

da?

By assuming that f is small and following the
Krylov-Bogolyubov method[6] we shall search for
the solution of eqn (4) in the vicinity of main
resonance as the first approximation in the form:

d=2acosy, Y =a+uv.
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The amplitude a and the phase v are determined
from the system of equations:

da

'&_a' =A ((1, U)a
de
P =2w — 1+ By(a,v), 5)

where 4, and B, are particular periodic-in-v solutions
of the system

oA 2n
$2w — 1) = — 40aB, = | frcosway,
dv 2n 0

OB 1 (%
2w — 1)a— +2wA, = — — i
Qw Ya pw + 2mwA, 7 L fosinydy,

Sfo=fGy —v,2acosy). (6)

Developing f, as a Fourier series we calculate
integrals in the right-hand side of (6). In the expres-
sions for them we shall keep only harmonics not
higher than the first. After that instead of eqn (6) we
obtain the system

84,

1w — 1)—— —4waB,

= ——1—6h-[J (a) — Jy(a)] cosv

+ 4w3[a — J, (2a)],
OB
Qw — 1)a—a—vl +2wA,

=22 @) + Jp@l sino. %

Here J;, (x) is the kth order Bessel function of the first
kind.

Obtaining the periodic-in-v expressions for A4,
and B, from (7) we shall give the system (5) in the
form:

da _ 16k [Jy(@) (60 = 1) + (@) (20 + 1)]

de 3= 6w —1DNC2w +1)
x sinv = 109
T ko’
dv 16h
Ho—c——w-1+ J,(2a)+———
o o@) (60 — 1) — Jy(a)2w + 1)]
a(6w —1NQw +1)
100
=—— 8
X COS Vv % 3a ®
Omitting the calculations we shall give the

expressions for the integrating factor k& and the

function @ with an accuracy to a*:
® =2a [32h ((60) -1D)—Qw +1) 2)
x cosv + 2w +1)
X a<(6cu —1DQRw —1)
—Qw*+ 3w —1) %;)],

= (2w + Da[2(6w —1)

+ Qo — 1) a?),
d(a,v,w,h)=P(—a,v +7,0,h),
k(a,w)= —k(—a,w). ®

Equations (8) have the primitive integral ¢ = @, =
const. Figures 2 and 3 show the integral curves in
the plane a, v for & =0.05, w =0.51 and @ = 0.60,
respectively. For the case in Fig. 2 there is one stable
stationary periodic regime for v =0, for the case in
Fig. 3 there are additionally stable and unstable
stationary regimes for v = .

Let us dwell on the stationary periodic regimes. But
first let us note that in a sufficiently wide neighbour-
hood of the resonant point @ = 0.5 and for not very
large values of amplitude a #0, the factor k does
not vanish. Stationary regimes of motion correspond
to critical points of function &, which are given by
the system & /dv = 0, 8@ /da = 0. In order to satisfy
the first of these equations it is sufficient to put
v = nn, n € Z. By using the symmetry property of @
we restrict ourselves to consideration of the case
v =0. The critical amplitude is determined by the
equation

0d(a,0, w, h)

= =0. (10)

The form of critical manifold M (10) in the space
a, w?, h in the vicinity of singular critical point a =0
is shown in Fig. 4. Two parameters w and A provide
a universality of deformation of function @ in the
vicinity of the cusp point a = 0[7]. This singularity of
@ is structurally stable, hence it is justified to reject
terms of the order a° and higher in expansion (5).

The curve S in Fig. 4 is a singular set (where
0*®/0a* = 0), whose projection onto the plane of
parameters w?, h forms a bifurcation curve. It is
constructed in Fig. 5 and marked by B’. Here, for
comparison, the bifurcation curve B obtained by
numerical integration of the original equation is given
[see (3)]. As it is seen, curve B’ rather well approxi-
mates the curve B even for relatively large A, which
proves an adequacy of the approximate method. To
the left of curve B'(B) (Fig. 5) there is one 2z -periodic
solution of eqn (1) (cf. with Fig. 2), and to the
right—three such solutions (cf. with Fig. 3).

Crossing the critical manifold M by the planes & =
const gives a set of amplitude—frequency responses
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Fig. 2. Integral curves at w?=0.26, & = 0.05.

some of which are given in Fig. 6 for 4 varying from
0 to 0.025. The dashed lines correspond to unstable
regimes.

4. PERIODIC SOLUTIONS

By introducing a new independent variable
t =0 +n/2 we write eqn (1) in the form

2
——itqj cos(%)-i— t)
X sin(%+ t) =0. (11)

For eqn (11) whose period is 27 we shall put the
boundary value problem of searching for periodic
solutions with the same period:

d¢
5 0=

+4w?sin ¢ + 8h

do
dr
Additionally, if we require that the periodic solu-

tions be odd, the boundary value problem (12) will
become equivalent to:

$(0)=¢(n)=0. (13)

It follows from the fact that eqn (11) is invariant
with respect to the simultaneous change of signs at ¢,
¢ and d*¢/ds2,

.If h =0, the solution of problem (11) and (13)
exists for any w?([8]. As it is noted in[9], in this case
only one solution, ¢, =0, is allowed by (11) and (13)
f'or —3< <!, and there are three solutions for
is wr<d: $1= —2arcsin (k ‘sn2wt), ¢, =2arc
sin(k -sn2wt), ¢, =0, where k? = 1/16w*(d¢ /de)2_,.
These solutions can be considered as generating for
eqn (13) if 4 20,

¢0)=9@2n), @2n). (12)

The solutions of the boundary value problem (11)
and (13) are plotted in Figs 7 and 8 for two pairs
of values of w?, h. These solutions are obtained
numerically. Figure 7 corresponds to w?= — 0,048,
h =0.964, while Fig. 8 to w?=0.063, A4 =0.01l.
Below it can be seen from the stability chart that the
first pair of values refers to a stable solution, while the
second pair is located in the region of parametric |
instability.

It seems interesting to find the regions of stable
and unstable periodic solutions generated by ¢,
¢, and @ in the plane of determining parameters
w?, h, and not only for small A. It is possible by
using the following numerical algorithm. First, for
a certain pair of w?, h we solve problem (11) and
(13). Then, integrating numerically the equation
in variations for (11) on an interval [0, 27t] we obtain
the monodromy matrix A for this equation. After
this, the function R(w?, h) =|trd1-2 can be calcu-
lated. By using the Newton method we determine
@?, h such that R (w?, h) =0, i.e. the values belong-
ing to the boundary of stability zone[5). Further,
we construct the boundary curve by applying some
step. The periodic solution is stable in the first
approximation if R(w?, h) <0, and it is unstable if
R(w?,h)>0. The necessary conditions for stability
of periodic solutions of (11) that are obtained in the
first approximation case, are also sufficient for nearly
all w?, A.

Let us consider the stability chart for solutions ¢,
and ¢;. The solution ¢, exists in the entire region
of varying w? and at least for 4 given in Fig, 9.
The solutions ¢, and ¢, exist for the w? that exceed
the ones on the bifurcation curve B, and the solution
¢, is unstable (cf. Fig. 6).
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For the given orbit, the values of w? that are
physically feasible lie in the band |w?| < 3w}/4w?.
It follows from validity of the inequality:

Il+I2>I3 (Il,Iz,I3E{A, B, C}).

For overwhelming majority of existing and future
satellites w, &~ w,, so a range of different w? varying
up to 1 in Fig. 9 seems to be quite sufficient from the
viewpoint of practical applications.

The first zone of parametric resonance (solution

Fig. 3. Integral curves at w?=0.36, & = 0.05.

¢,) begins at the point w?=1;, h =0; in the linear
approximation its boundaries aré described by the
first formula of (3). It is interesting to note the
transition of stability zone into the region of negative
w?.

The second zone of parametric instability (solution
¢,) begins at the point w? = %, h =0. For large A its
boundaries intersect, which is typical for the stability
diagram of the Meissner equation. In the linear
approximation for small & the zone boundaries are
described by the second formula of (3).

Fig. 4. Critical manifold M in the vicinity of the singular critical point.
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Fig. 5. Approximate bifurcation curve B’ in compar-
ison with bifurcation curve B obtained by numerical
integration.

The straight line # = w? has a sense of equality
between maximal values of gravitational and light
torques. It is interesting to note that the intersection
points of the second zone boundaries lie nearly on the
straight lines & = w?/2 and & = 2, and the straight
line h = w?is “tangent” to the boundary of instability
zone of solution ¢,.

Calculation of the bifurcation curve B was carried
out by using the numerical algorithm different from
that described above. It is as follows. First, for some
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a | I | L i [

Fig. 6. Amplitude-frequency responses for light parameter
h varying from 0 to 0.025. The dashed lines correspond to
unstable regimes.

¢’ the values of w2, A are obtained by the Newton
method such that ¢ (0) = 0, d¢/dz(0) = ¢’ determine
the odd 2z-periodic solution of (11) with these w?, A
The monodromy matrix A * is calculated for the equa-
tion in variations. After this by using the Newton
method the zero of function is S(¢") = |trd|—2 is
searched for. When it is found the corresponding
values of w?, h determine the point of the bifurcation
curve. Finally, the construction of this curve is per-
formed with a certain step. This algorithm can be used

Fig. 7. The stable odd solution of the boundary value problem (11) and (13) at w? = —0.048, h = 0.964.

0.02~
0.01

] 0.00 ! ! 1 !

=0.01
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Fig. 8. The unstable odd solution of the boundary value problem (11) and (13) at w? = 0.063, 4 = 0.011.
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Fig. 9. Stability chart for odd solutions ¢, and ¢,.

also instead of the above algorithm for determining
the boundaries of parametric resonance zones.

For the operation of numerical integration, the
fourth order Runge-Kutta method was used. An
absolute error of computations of tr4 was as a rule
1074,

Let us widen a class of periodic solutions
under considerations and study any solutions of
the boundary value problem (11) and (12). Before
this we shall establish the symmetry properties of
eqn (11). It is invariant with the following replace-
ments:

N t ¢ w

1 —1 —¢ ?

2 t+§ ¢ —n —w? h
3 t ¢ +2n w? —h
4 t+n P +2n w? h
5 t+2n ¢ w? h
6 t ¢ +4n w? h

The first three replacements generate the symmetry
group of eqn (11). For example, property 4 is formed
if we perform replacement 2 twice, and then replace-
ment 3 twice.

Property 6 reflects the fact that the satellite orien-
tation angle & (see Fig. 1) is determined to within 27
(let us recall that ¢ = 24).

Property 5 means that the period of eqn (11) is
equal to 2=, i.e. to the synodic period of the satellite
revolution.

The sense of replacement 3 consists in rotation of
the satellite by an angle n. Due to the third property
there is no need to consider the case £ < 0. Obviously,
the stability chart for 4 < 0 is the mirror reflection of
the stability chart for A > 0 with respect to the axis
h=0.

Property 2 is equivalent to the rotation of the
satellite by angle 7/2; here, in addition to the time
shift, the sign of the gravitational parameter changes
due to actual redistribution of moments of inertia.
Property 2 immediately enables us to find out the
existence of periodic solutions which are analogous to
¢,, ¢, and ¢, but shifted by =; their stability chart is
the mirror reflection of the chart in Fig. 9 with respect
to the axis w? = 0. The new shifted solutions will be
designated, respectively, by ¢, ¢, and ¢,;.

All the periodic solutions obtained from the odd
solutions ¢,, ¢, and ¢, by the above replacements
have obviously the property that they are sym-
metrical with respect to ¢ = 7k, k € Z, i.e. the satellite
oscillates symmetrically either with respect to its
radius vector or with respect to the tangent to orbit.
However, a whole set of solutions of the boundary
value problem (11) and (12) is not exhausted by the
oscillations that have the above property.

5, THE SATELLITE DYNAMICALLY
RESEMBLING A SPHERE

Let us consider again eqn (11). We replace the time
by 7 =2t and introduce a new dependent variable

y =(¢/2) —t —(n/2) =& + a. The angle y is an angle
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between the line directed to the Sun and the plane
of plate S (Fig. 1). We also designate ¢ = — ?/2.
Equation (11) written in the new variables has the
form

2

g-Z-f-}z]sinylcosy =€ sin(t — 2y).

dr? (14

The boundary conditions (12) for eqn (11) are trans-
formed into the ones

dy = dy
7(0) =y(4n) — 2z, E(O)“E?W) (15)

for eqn (14).

The function Q(y) =#A|sin y|cos ¥ in eqn (14) is
2z-periodic by its argument and has the zero average
value on period.

Let us determine the potential

VEJQ(Y)d? =h/2|siny |sin y

and the energy E = {(dy/d7)* + V.

We shall consider eqn (14) with small values of ¢:
le| «1. It corresponds to the satellite which dynam-
ically resembles a sphere. If ¢ = 0 the problem has the
integral of energy E = const.

We introduce the rotation phase

¥ =Qn/To)yt + Y, ¥, = const.

The T,(E) is the period which can be calculated by
the formula

2r d')’
To(E) = f )
’ o V2AE -V ()]

The boundary value problem (14) and (15) corre-
sponds to the resonant rotational regime of motion
with the period

T,(E) =4x. 16)

When studying this regime we shall follow[10]. The
meaning of eqn (16) is that its root is such an energy
level at which 4n-periodical rotation (15) exists.

In (14) we shall pass from the variables T, 7, dy/dr
to the new variables T, E, . Equation (14) written in
these new variables is equivalent to the system

dE
o7 =€8(E,y,1),

dr
dy 2n ,
E—.TT(ES'FGW(E! ?aT), (17)
where
€= /2AE — V(y)sin(z — 2y)
and

The linear operator Flxl, x = x(E, y) is determin
as follows:

o /2IE — V()]
LA ydy ) f ’ dn
- _T“<ﬁ V2AE =V Jo J2AE — Vi)

Introducing the variable
Y=1=2 =1(l —4n/Ty) — 2,

allows one to pass from (17) to the new system:

dE
rp =66(E: Y.y +2W):
dr

Y AB)-2¥ B,y + ),

dy 2z 18
E_*TO(E)+6W(E,y,y+2¢)a (

where
A(E)=1—4n/Ty(E).
Obviously (16) is equivalent to the equation
A(E)=0. (19)

We average eqns (18) by y along the trajectory
of the degenerated system (€ =0), y =y(E, ) with
E = E,. For convenience of computations we choost
a representation of the solution y = y (E, ) such that
')’(E H] %) =0.

Let us average the right-hand part of the firsl
equation of (18):

Yo+ 2n
@) =g [ e E .y + 2000

1

T,(Ey)
T + To(Ep) 2
&\ E,, Ey, ——1 +|,(/):
><fro (0 7’( ’ To(Eo) ’
4r
+ T + 24, ) dr. 20)
Y TaED ""’)

Along the trajectory of the degenerated system
we have dt = {2[E, — V(y)]} -1~ dy. By taking into
account the last relation we obtain from (20)

1 2n 47
f é’(Eo, VoV + o
0

I N To(Ey)

J‘? dn ) dy
x .
0 /2AEy— V(1)]/ /2[E, — V(1))

The equation for y = Yo corresponding to the
stationary resonant regime is

&(E,,y)=0. (21

Thus, by solving first (19) and then (21) we can
determine values of both E, and y,.
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Now we shall engage ourselves in determining
specific forms of functions 4 and &. By introducing
the function

b d’))
SE, )= | ——
(E.7) L\/z[E—Vw)]

and taking into account (16) which can be rewritten
in the form

22)

209

The rotation phase corresponding to the stationary
regime is § =17/2— y*/2. Then we obtain that for
h = h* there is a continuum of solutions of the
boundary value problem (14) and (15) that differ
from each other by a shift of time .

In order to answer the question if there is a critical
value h* we should first write down (22) for S(E,v)
in an expanded form by substituting an explicit
expression for ¥(y) into (22). By virtue of validity

3 = 4 b 23 -
S(E, 2m) 1: @3 of the relation S(E, y + 2mn) = nS(E, 2n) + S(E.,v),
we transform (21) to the equation neZ, it is sufficient to find S(E,y) only for
2 y €[0,2n]. Omitting intermediate calculations we
. sin(y + S(&,7)—2y)dy =0. (24) give the final formula for the function S(E,y):
(k. n
——F(y,k,), 0<y<—,
k. A
_\/72 RK(k,) - F(x -y, k)], Z<y<nm
S(E,y) = <
(&.7) k 3n 3n
ﬁK(k+)+\/_ Kk_)—F —2——y,k_ ) n<y<—2—,
k_ 3 3
© K(e,) + [K(k )+ F(y i k)] o y<om. @n
. \//7 Vi 2 2

We designate

a =a(E0)Ef

2n

cos(S(Eo, y) —2y) dy,
0

2n

b =b(E)= J sin(S(E,,7) — 2y) dy.

0
Then egn (24) can be written as

asiny +bcosy=0. (25)

If a? + b2 3 0, there is a unique series of solutions (25)
y0=y())'l+7zks kezs

b
—arctg—, a#0,
a

> a=0. 26)

From a definition of the variable y with involve-
ment of (16) the relation y, = — 2y, follows. Hence,
it is easy to obtain that in a general case, i.e. when
a*+ b? % 0, the rotation phase is determined to
within £ /2: ¢ =(z/2) — (¥¥/2) + (n/2)n,n e Z. From
the last equality it is seen that a series of stationary
phases (26) corresponds to the shift of time ¢ by #n,
n € Z. The shift of t by = is equivalent to replacement
2 from point 3. The shift by 2z (replacement 4)
changes, in fact, nothing. Therefore, we can conclude
that if @ + »% # 0 there are two different stationary
rotations (they correspond to symmetrical solutions
¢, and ¢y).

We have not yet considered the possibility of
simultaneous vanishing of @ and b for a certain A (it
means also E,). So let there exist # =h* such that
a=b=0. Then any y = y* satisfies eqn (25).

AA 19/3—B

Here k2 =h/2E, k* =h/(2E + h); the moduli k,
and k_ are connected by the relation:

Lk — 1k =1; Fca,k)=f—-—‘?—"i———~—
0 /1 —k?sin* 8

is an incomplete elliptical integral of the first kind;

s
K(k)= F(E,k)

is a complete elliptical integral of the first kind.
The rotational motions of interest exist when
E > h/2 (with € = 0). Then k% <1, k% < 1/2. Hence,
expressions (27) are correct.
Note that eqn (23) can be written in the form:

2n/h =k, Kk,)+k_K(._).

Knowing the function S(E,y) we can calculate
numerically the functions a(h) and b(h) (Fig. 10).
It is seen that there is a unique resonant value A*
(at least for not very large h) for which a =b =0.
The critical value #* can be calculated with high
accuracy: h* = 0.90833. It is the value of 4 for which
the stability zone boundary of solution ¢, (and ¢,;)
crosses the axis . Indeed, let us consider the problem
of stability of the obtained stationary regimes.
According to[10] the stationary resonant regime (19)
and (21) is stable if the conditions

di 33’ :
o oy
5 (v y0) za(ﬁo,yo <0 (29)

are valid.
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Fig. 10. Integrals g and b as functions of light parameter A.

The averaging of ¥ is carried out similarly to the
function &.

With appropriate calculations we can show that
the expression in the left-hand side of (29) vanishes
and, hence, condition (29) is not satisfied, i.e. the
approximation constructed is not sufficient for deter-
mining stability. However, if we add an arbitrary
small viscous friction in the original eqn (14) then
condition (29) will prove to be satisfied. As for
condition (28), we can show, first, that always
dA/dE, <0 and, second, that §& [0y = (a cos y, —
b sin y,)/Ty(E,). By comparing (28), the last inequal-
ity and relation as well as the expressions for a series
of solutions (26) we conclude that the passage
through the critical value A* leads to a change of
stability of solutions ¢, and ®.1, which agrees with
the chart in Fig. 9.

However, from this figure it is seen that the stabi-
lity region boundary crosses the axis / at the critical
point A* not along the normal. By taking into
account that for 4 = A*, 2 = 0 there is a continuum
of solutions and we should expect that this set can be
found outside the axis w?=0. It was found and
studied by using numerical techniques similar to
those described in point 3. These algorithms are
different, however, in that the two-parametric
boundary value problem of searching for arbitrary
periodic oscillations instead of a one-parametric
boundary value problem of searching for odd solu-
tions was solved.

The stability chart of the solutions under consider-
ations, constructed by such a method, is given in
Fig. 11. The boundaries of the stability and instability
regions are determined not only for small values of 2
but over the whole interval of variation of gravi-
tational parameter as in Fig. 9 (due to the symmetry
property of solutions it is sufficient to consider the
region w* > 0). Let us begin describing Fig. 11 from
the bifurcation curve 5—a boundary of the stability
region of solution ¢, (cf, Fig. 9) that crosses the point

2.0 2.5 3.0 3.5

w?=0, h = h*. The bifurcation curve B, —a mirm
reflection of the curve B (Fig. 9) with respect to i ]
axis A—is a boundary of the stability region o
solution ¢,,. In the triangular region bounded by |
these curves, in addition to symmetrical solutions ¢, |
and ¢, there are nonsymmetrical ones which haw
been found at the point w?=0, 4 = h*. These soln
tions have the stability region adjoining the bifurcs
tion curves B and B,. The nonsymmetrical solutions
are similar to nonsymmetrical eccentricity oscillations
of the satellite described in[11].

Let us introduce a new characteristic of th
periodic solution—the average value over the period:

_ 1 2n
557_1:"; ¢ (o) do.

Now we shall see how this value varies with 4 if 1
w? is constant. Let 2 = 0.098. Figure 12 shows the |
function ¢(h) obtained numerically for nonsym
metrical solutions. The curve is symmetrical with
respect to the axis h. At the point B, that belong
to the boundary B (see Fig. 11) a pair of nonsym
metrical solutions is generated from the solution &
their average value moduli increase with h. At th
point B, corresponding to the curve B, this pair
disappears. The straight line &3,,, = 1 corresponds to
the solution ¢,,.

The existence and stability regions of all solu
tions obtained are shown in the vicinity of the
resonant point w?=0, 4 = h* in the form of a three
dimensional diagram in Fig. 13. The diagram some-
how combines Figs 11 and 12.

6. EXAMPLE: A PLANE UMBRELLA

As a specific example we consider a satellite model
that in size and mass characteristics is close to a usual
umbrella against rain or sun.

Let the satellite be modelled by a plane disk
with the radius R, the mass my and the orthogonal
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Stability regions of
E-| solution 4

Ry solution ¢, 4

lm]l nonsymmetrical solutions

0.4

w?

0.2

==,

Fig. 11. Stability chart for symmetrical and nonsymmetrical solutions.

homogeneous rod of mass m, that is fixed at the the rod is calculated by the formula

centre of the disk (Fig. 14). We assume that the centre 1 1/m Im

of mass of the system is located at the distance r from B =—myrk +myr’+ -—(—s ri+ —f(3r)2)

the disk centre, while the length of the rod is 4 r. Let 2 3\ 4 4

th'e moment of inertia of 1ihe disk (and the satellite) =Lmgrd +1(7 M — 4my)r.
with respect to the rod axis be 4 = myrk, where rx

is the inertia radius of the disk. Let us give the following numerical values:

The satellite’s moment of inertia with respect to R =045m, r=0.16m, r,=029m (the inertia
the axis crossing its centre of mass and orthogonal to  radius of the homogeneous disk r, . = R/ﬁ,

e

€l
o

0.9 1.0

. )

Fig. 12. The average angle ¢ as a function of light parameter A for nonsymmetrical solutions at w? = 0.098.
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Fig. 13. Three-dimensional diagram of existence and stability regions for all solutions in the vicinity of
the resonant point w2=0, 4 = s*,

rex=032m, ie. ry,=029m corresponds to a
slightly inhomogeneous disk).

A total mass of the satellite M = my+m, is
taken equal to M =0.476 kg while the disk mass
my = 0.4kg. Then 4 = 3.364 x 10~2kgm?, B =3.160
x 1072 kgm?. Gravitational parameter is 2=
7(1— A/B) = —0.048. The light parameter is calcu-
lated by the formula A =3(p./WR3(Sr/B)(1 —¢,),
where u is the gravitational constant (for the
Earth u=3.986 x 10" m?/c?), R, is the radius of
the satellite orbit, S = nR? is the area of one side

of the disk.
/‘G

Fig. 14. A plane umbrella as an example of the satellite.

We assume that the satellite orbit is geocentric
circular of the R,=15,078 km, and the reflection
coeflicient of the disk surface €. = 0.97, i.e. the disk is
almost mirror-like. Under these assumptions the light
parameter 4 = 0.964,

The periodic solution for such parameter values
is shown in Fig. 7. As it is seen from the chart in
Fig. 9 this solution is stable despite the fact that the
satellite oscillates in such a way that in its average
position the axis with a maximal moment of inertia
is directed along the radius vector. In the absence of
light perturbations the oscillations of that kind are
unstable[3].
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