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15 reGULAR AND cHAOTIC
ROTATIONS OF A SATELLITE
IN SUNLIGHT FLUX .

V. V. Beletsky and E. L. Starostin

Three-dimensional motion of a symmetrical satellite about its centre of mass under the solar
radiation torques is considered. The satellite has an axially symmetrical solar stabilizer and a set
of reflecting paddles arranged like a windmill. The equations in evolutionary variables are studied.
The phase-space structure is investigated. By means of numerical computation of Poincare maps,
the phase trajectones are built, The regular (resonant and quasi-periodic), semi-regular {intermittent)
and chaotic trajectories are distinguished. The evolution of phase portraits with change of
parameters has been traced.

15.1 INTRODUCTION

Small Space Lab (SSL) is the basic spacecraft for the REGATTA missions. One-axis sun-pointing
attitude orientation and stabilization, as well as spin-rate control are planned using solar-
radiation pressure. For this purpose, the spacecraft is equipped with an axially symmetric
solar stabilizer made from thin films and eight mirror-like solar paddles mounted symmetrically
like windmill vanes (Figure 15.1).

SSL spacecrafts are intended for a variety of scientific experiments related to such fields
as astrometry, plasma physics and planetary exploration.

The centre of mass of the spacecraft is assumed to move in a circular heliocentric orbit.
We study the three-dimensional motion of a symmetric statellite about its centre of mass
under the solar-radiation torques. No control of the motion is considered in this chapter.

152 MODEL AND EQUATIONS

For such a satellite, we can use the following model of radiation-pressure torque (Beletsky
1966; Beletsky and Starostin 1991):
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Solar stabilizer

Solar paddles
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Figure 15,1 General view of Small Space Lab.
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a, = p (Ro/RY (a0 + a,, cos &, +a., cos’e, + ..,
a;=const, a,=0 1=01...,

f. = 2aSynom, p,(Ro/RY.

Here, R, and R are the fixed and the current orbital radius, respectively: e, is the unit vector
in the direction of the orbital radius vector R; e.. is the unit vector along the satellite’s axis
of symmetry z'; £,= £ (e, e.); a is the distance between the centre of a paddle and the
axis of symmetry; ng is the cosine of the angle between the normal to a paddle and the axis
of symmetry; n, =./1—n; 5, is the total area of the paddles; p, is the solar-pressure
constant (for the Earth orbit R, = 1.496 % 10''m and p, = 4.64 x 10 °Pa); a, and a, arc
the positive coefficients of the model torque; y, ¥ and y" are the projections of e, on the
principal axes of inertia of the satellite.

First, we put a,o = b5 >0, a,; =0, j = 1 2,..., where b is the distance between the centre
of pressure and the centre of mass of the satellite, both the centres lying on the axis of
symmetry: S is the satellite’s characteristic section area.

The torque of equation (1) consists of the ‘conservative’ part (the cross-product) and the
‘propelling torque’, projections of which are written onto principal axes of inertia of the satellite
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Figure 15.2 Angles 3, ff and 4.

We employ the first-order approximation equations of motion in evolutionary variables:

{ = f(cos> 3 — a)cos f,
dt

R = —[sin9c059cos[3.
dt l
dp = —&sind + Jf’(at — 3sin*W)sin fi, (2)
dt !
& = —tcot fecosd + : cos 3,
drt I

f= (no+n|)2a5""°"', g=_"1 p= Loy yR'

bS ﬂo+a] bspsRD

where 1= L/L, is the dimensionless module of the angular momentum vector L of the
[ spacecraft, L, is a fixed value of the angular momentum module; 3= / (L, e..); fi= £ (e, L);
4 is the angle between the normal to the orbit plane and the projection of the vector L on
the plane orthogonal to e, (Figure 15.2); T is the dimensionless time, T = v, v is the true
anomaly of the orbit; « is the design variable; g is the gravity constant of the Sun.

15.3 ANALYSIS OF EQUATIONS

In equations (2) the term (1/f}cos 3 describes a conservative effect, the terms ~ f describe
an effect of ‘propelling’ due to the screw-symmetrical paddles, and the terms with 4 are due
to the orbital motion.
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The conservative effect reduces to precession of the angular momentum vector (at small
& approximately around the direction to the Sun with rate dA/dt ~ (1/))cos9,). The
propelling effect causes profound modulations of the angular momentum vector orient-
ation with respect to this direction (i.e. the modulations of the angle f); at the same time,
the variables / and 8 exhibit similar modulations (Figures 15.3 and 15.4). The combination

{
10.

; ; : ; : ;
1+ . i —————t ——t—————t———

" 0. 3. 10. 15. 20. 29, 0. »

Figure 15.3 Angular momentum module [ versus true anomaly v. f=0.15, £ =0,01; 2 =03, 4,=0.0,
= 2.38.
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Figure 15.4 Angle 3 versus true anomaly v, corresponding the previous figure.
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Fifure 15.5

of these two effects results in the peculiar picture of ‘pulsing’ precession of the vector L
around the radius vector direction (Figure 15.5). The most interesting fact is the abrupt jumps
from the motion in the vicinity of the direction fo the Sun into the motion in the neighbourhood
of the direction from the Sur. Such jumps are often difficult to predict. This stochasticity
is inherent in the dynamical system (2) and it can be represented clearly in the appropriate
phase space.

The primitive integral gives:

leot*3sin3 =C. (3)

This enables the system order to be reduced to three, by elimination of the variable
I, and to two by employing 4 as a new independent variable. The second-order system
obtained is non-autonomous and periodic in 2. In the phase space (3, f§), with C fixed, the
motion may be generally described by the complex regular and chaotic trajectories, revealed
by the numerical implementation of the Poincaré mapping. The plane (3, B) is chosen as a
surface of section and A-mapping over 21 is studied.

For some values of the parameters, the set of trajectories may comprise only regular
ones. Such cases are said to be completely integrable. An autonomous system of the
third order is completely integrable if it admits of only one primitive integral.

Let us fix the parameters o and C. Then system (2) has two free parameters, f and &.
Consider behaviour of system (2) for extreme values of f and &, remembering the following
from integral (3).

1. if &7 ' =0, another integral exists:
sin® B cos*Acos 9 tan** 9 = C,.

and system (2) is completely integrable. There are no chaotic trajectories.
2. If =0, then for £« 1, it can be seen from the last of equations (2) that 4 is the fast
variable and equations (2) can be averaged with respect to 4, the.averaged system (2)
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having the primitive integral
sin® B cos $tan** 9 = C,. (4)

and being completely integrable. The initial (non-averaged) system (2) is close to the
completely integrable system; the absence of chaos (or weak chaos) can be predicted.
3. When [=0, the system (2) has first integrals

I=L, 3=3, asinﬁcosl+llc053‘,cosﬂ=¢, (5)

o}

and all its trajectories are regular. )
4. When f~' =0, the term £sin4 in the third of equations (2) may be neglected. Integral
(4) exists. The system is close to a completely integrable one.

It is worth noting that the consideration of items 2 and 4 may be expressed in mathematical
terms.

When considering the question of whether the angle 4 is a monotonic function of time
or not it is noted that this condition does not always hold; i.e. the phase trajectories may
be tangent to the chosen section plane (3, f). Hence, when constructing the Poincare map,
the possibility should be taken into consideration that a trajectory, having come out of a
point of the section A =0, may retum and intersect the same plane once more, having not
reached the section 4 = 2x {or A = — 2n).

To examine the mechanism of this in more detail we consider the system (2) when f=10
once again by examining the third primitive integral (5) ®(ly, 35: fi, A). Locating the critical
points of the function @ treated as a function of two variables, angles B and 4, the first
partial derivatives can be calculated as:

o

o8 =acosﬁcosl—ltcos.‘}osinﬂ,
L)

o - = —gsin Bsin 4.

04

Both the derivatives become zero in two cases when:

1) f=m, i=0,+1,+2...;

A=n/2+ nk, k=0 +1%2...; {6)
2) =+ +mm m=0+1+2,...;

A=, n=0+1+2..; {7)

where f* is a root of the equation (d4/d7)|; =0 =0.

If one calculates the second partial derivatives @; and finds det @, then it will tum out
that in case (6) det ®,; = — 1 and it can be shown that in case (7) det &, > 0. Therefore,
case (6) corresponds to unstable critical points of the function @ {(saddles) and case (7} to
stable centres. The trajectories that originate from the section A =0 in the vicinity of the
stable point, never reach the neighbouring section A= 2n (— 2m) {Figure 15.6).
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Figure 15.6  Angle 4 versus angle f§ for various initial values ofangle fl. f=0,:=1, § = n/4, Ca=,

When computing the Poincars map of the section =0, a trajectory of system (2) is traced
until it intersects any of the sections 2 = 0, + 2r. By numerical integration when a trajectory
is about to intersect the section plane A =0 (mod 2x), system (2) is substituted by an
equivalent system with independent variable A, This is done in order to find the intersection
point with precision,

At f = 0 the stable critical points (7) constitute a curve in the (3. ) plane ~ the derivative
d4/dt vanishes on this curve. Similar curves exist in the general case, too, marked by 5-S
in Figures 15.9-171,

154 POINCARE MAPPING

A global analysis of the phase space was carried out and the evolution of surfaces of section
were traced out with a variation of the parameters. The results obtained make it possible to
specify design conditions for SSL. For astrometrical studies, the predictability of the spacecraft

and in those cases chaotic rotation may be very desirable.
The following values were taken: ot = 0.3 (for all the following pictures except Figure 15.12),
and C=1,,
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Figure 15.8 Surface of section for f=0.15, =442 x 107"
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Figure 15.13  Periodic motions in the case a,, > 0, @, =07=02_,f=015¢c=00La= 0.3. 4, = 0.0,
lp = 2.38.

Figure 15.7 is displayed for f=0.15 &£=00. There is no stochasticity detected. In
Figure 158 (f=0.15, £ = 4.42 x 10 ®) one can see some curves splitting and chains of
islands appearing. The stochasticity layers are thin and separated.

It should be noted that boundaries 3=0 9=n/2 fi=q, B=mn play the role of
separatrices of the family (4); therefore, stochasticity should be expected near these boundaries
first, and the ‘centre’ of the region is less affected by stochasticity. Figure 15.9 confirms this
(f=0.15, £=0,01).

Figure 15.10 (f=10.105, £ = 0.1) exhibits development of the chaos, One can observe
regularization of chaotic trajectories near the curve 5-5. The nearer to the curve 5-S the
trajectory approaches the slower the point moves along it. Therefore, these trajectories exhibit
intermittent behaviour,

Figure 15.11 (f= 1.05, £=2.0) reveals that the motion becomes almost completely
regular. On the other hand, strong stochasticity takes place for f=15, £=0.14 and
&= 0.4225 (Figure 15.12). Only one trajectory is presented in this figure. As a increases,
global stochasticity occurs.

Let us now revert to the radiation-pressure torque expression (1). Put a,, >0, a, =0,
J=0,2,... (Beletsky et al. 1992). Then the last of equations (2) is found to be

dd

= —¢cotfcosd + I(issz— I)cos f.
dr !

Numerical experiments reveal that in this case all trajectories fumed out to be periodic
(Figure 15.13). No stochasticity was found at any set of parameters. The motion of the
satellite is easy to predict.
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