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Major evolutionary transitions in individuality are characterised

by the formation of new levels of biological complexity from the

cooperation of previously independent lower-level units. The

evolution of superorganismality in insects is one such major

transition, and is characterised by an extreme division of

reproductive labour between ancestrally autonomous units, in

the form of queen and worker castes. Here, we discuss the

nature of plasticity in the emergence of castes across the major

transition to superorganismality in insects. We identify key

changes in plasticity which act at different levels of selection: a

loss of reproductivity plasticity at the individual level is matched

by a gain in plasticity at the colony level. Taking multi-level

selection into consideration has important implications for

formulating testable hypotheses regarding the nature of

plasticity in a major transition from a lower to a higher level of

biological complexity.
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Introduction
The evolution of life on earth has been shaped by a

number of major transitions in individuality [1,2]. Each of

these transitions has involved the formation of new, more

complex individuals from the cooperation of previously

independently replicating units [1,2]. Canonical major

evolutionary transitions include the transition from inde-

pendently living unicells to multicellular organisms [3,4],

the formation of the eukaryotic cell from the conjunction

of prokaryotic cells [5,6], and the evolution of highly
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cohesive superorganismal insect societies from solitary

ancestors [7��,8��].

Despite having played a large role in the evolutionary

history of life, major evolutionary transitions in individu-

ality have proven difficult to study. Transitions such as

the formation of the genome and the formation of the

eukaryote cell occurred in the distant past, and probably

only once each. By contrast, the transition to complex

insect sociality has occurred more recently, and multiple

times independently, in the corbiculate bees, termites,

ants and vespine wasps [7��,9]. Superorganismal colonies

are easily decomposed and manipulated, and, therefore,

provide excellent models with which to study major

evolutionary transitions and unravel the proximate and

ultimate foundations that underlie major shifts in indi-

viduality [8��].

Here, we review the role that reproductive plasticity has

played in the transition from a solitary to a superorga-

nismal lifestyle. A fundamental aspect of each major

transition is the functional differentiation and division

of labour among the lower-level units that together con-

stitute a new higher-level unit of individuality [1,2]. The

evolution of multicellularity, for example, has involved a

transition from phenotypically flexible unicells to higher-

level organisms with an obligate division of reproductive

labour between germ and somatic cells [3]. This is mir-

rored in the transition to insect superorganismality, which

is defined by a reduction in phenotypic plasticity and a

division of reproductive labour between reproductive

queens and non-reproductive workers [7��,8��].

We argue that the emergence of a fixed reproductive

division of labour does not so much represent a loss of

reproductive plasticity among lower-level units but a

transfer of plasticity between levels of selection — from

the individual to the colony. We review the proximate

mechanisms that may underlie this shift and the ultimate

pressures that may have driven it.

Social organisation and reproductive
plasticity
Insect sociality covers a broad spectrum of social sys-

tems of varying levels of social complexity. While a

range of classification systems have been proposed

[7��,10,11], most insect species broadly fall into one

of three categories (Box 1). Solitary breeding is
www.sciencedirect.com
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Box 1 Levels of insect sociality

(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Solitary insect species (a-b), in which individuals reproduce independently and rely heavily upon direct reproduction to pass on their genes,

comprise the majority of all insects. Solitary breeding is the basal state for all insect lineages.

Cooperatively breeding insect species (commonly referred to as ‘primitively eusocial’ species, c-d) are those in which individuals form cohesive

groups with division of labour between reproductive and non-reproductive individuals. Within such species, some proportion of individuals are

reliant upon indirect fitness gains from altruistic behaviour directed towards relatives. However, commitment to reproductive roles within such

societies is not complete: individuals retain the plasticity to switch between non-reproductive and reproductive roles. Model examples of

cooperatively breeding insects include halictid bees, paper wasps and many ‘lower’ termites.

Superorganismal insect species (commonly referred to as ‘complex eusocial’ species, e-h) are those in which reproductive roles are irreversibly

determined during development, resulting in extremely cohesive groups in which the majority of individuals are morphologically distinct workers.

Superorganismal species include honeybees, vespine wasps, most ‘higher’ termites, and the large majority of ant species.

Not all species will fit squarely within these categories: some insects may facultatively switch between solitary and cooperatively breeding social

systems dependent upon prevailing ecological conditions, for example in the case of carpenter bees and sweat bees [44�]. Nonetheless, the

majority of species possess a social structure that is approximately described by one of these three broad categories and there are clear

adaptations that differentiate the three groups from one another, most notably the presence of reproductive division of labour and the subsequent

obligate fixation of that division of labour [38,45]. As such it is possible to make meaningful predictions about the proximate and ultimate factors

that have contributed to the evolutionary transition between each category.

www.sciencedirect.com Current Opinion in Insect Science 2019, 34:40–47
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It is well-established that the transition to superorganismality represents a major evolutionary transition in individuality [1,2,6], but disagreement

exists regarding the exact nature of this transition. It is possible to conceptualise the major transition as spanning the entire range of sociality from

solitary to superorganismal species [45], with cooperatively breeding species representing stable but approximately intermediate stages within this

transition. A recent set of publications have argued against this view, proposing instead that there is a unique and qualitative evolutionary

discontinuity between cooperatively breeding and superorganismal species [7��,46,47]. Within this model, the transition to cooperative living is only

a difference of degree, whereas the transition to superorganismality is a difference of kind: as such, only the latter is a true major evolutionary

transition in individuality.

In this paper, we have employed terminology that reflects this latter model, referring to ‘cooperatively breeding’ and ‘superorganismal’ species to

emphasise a qualitative distinction between the two systems. Nonetheless, it should be noted that the continuous model of insect social evolution

remains significantly more prominent in the social insect literature than the discontinuous model that we have advocated here. Descriptors that

imply a continuous scale of social complexity, such as simple (or primitive) and complex (or advanced) eusociality, are, therefore, widely employed

in the literature at present. Regardless of which model best describes the true nature of this major evolutionary transition, species must necessarily

pass through a cooperatively breeding stage with plastic castes before they can reach the point of obligate, irreversible caste differentiation, so we

consider all three stages here.

Photo credits, clockwise from top left: A: Ammophila nigricans ã Judy Gallagher; B: Andrena sp. ã Judy Gallagher; C: Lasioglossum sp. ã Katja

Schulz; D: Polistes dominula ã Dimitri Dresde; E: Apis mellifera ã Phin Hall; F: Vespula vulgaris ã S. Rae; G: Atta sp. ã Gordon Milligan; H:

Nasutitermus luzonicus ã Diaz Geo.
characterised by individuals that are able to reproduce

independently and represents the likely ancestral state

for all social lineages. Cooperative breeding involves

the formation of social groups with division of repro-

ductive labour but in which most individuals retain a

significant degree of reproductive  flexibility. Finally,

superorganismal species exhibit an irreversible division

of reproductive labour, cementing the colony as the

unit of selection. Here, we outline the broad trends in
Figure 1
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reproductive differentiation and reproductive plasticity

across the major transition from cooperative breeding to

superorganismality (Figure 1).

Shifts in reproductive plasticity across solitary
and cooperative breeders
Solitary breeding is the likely basal state (or ‘ground-

plan’) for all social insect lineages. Solitary insects per-

form reproductive tasks sequentially, switching
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www.sciencedirect.com



Plasticity across a major evolutionary transition Taylor, Reuter and Sumner 43
frequently between them in response to environmental

cues such as seasonal fluctuations in the availability of

resources [12,13] or expected mortality risk [14,15], as

well as in response to their physiological state. The

sequential execution of reproductive and non-reproduc-

tive tasks by the same individual, and the capacity to

modify their expression in response to external and

internal conditions, imply high reproductive plasticity

at the level of the individual. This, however, comes at

the cost of trade-offs when the optimisation of the phe-

notype to the opposing selective demands of each task is

limited by the time and energetic costs of continuously

remodelling traits [16,17]. These costs will be particularly

large in unpredictable environments and for traits that

take a long time to modify [18]. The need to facultatively
Box 2 Proximate mechanisms of plasticity across the spectrum of so

Although every social lineage has a unique evolutionary history, there are 

reproductive differentiation at each level of insect social evolution. As rep

breeding to superorganismality, we predict that more stable (‘committed’)

become increasingly important relative to more changeable mechanisms (

bioinformatic and molecular assays is now making it possible to test this 

differentiation and molecular commitment, and the evidence for their roles

Hormonal regulation

As hormones can be produced quickly and are relatively short-lived, horm

most prominent in solitary species that must switch frequently between repr

that endocrine regulation remains highly important at all levels of sociality. 

solitary insects [48,49�], including in progressively provisioning wasps that

appears to be maintained in both cooperatively breeding and superorgani

cooperatively breeding bees [52], termites [53] and wasps [54,55]; and like

mediator of reproductive differentiation across insect lineages of all degre

lineages additional mechanisms will be necessary to stabilise the express

DNA methylation

Methylation offers a stable means of altering gene expression levels. Draw

epigenetic modification increase with increasing cell differentiation) Patalan

transition to insect sociality ought to be associated with increasing eviden

potential role of methylomic degeneracy in producing functionally divergent

in social insect differentiation has been the topic of extensive research [62

association between methylation and social complexity [65�,66]. In cooper

caste in some species of wasps [65�] and bees [67]. Two separate studies,

the cooperatively breeding paper wasps P. canadensis [68] and Polistes d
methyltransferase gene. Whether this loss of epigenetic machinery is a linea

remains unknown. In superorganismal ants, several papers have linked ca

other methylation studies has been called into question [73].

Histone acetylation

Histone acetylation alters the accessibility of chromatin, and thus joins DNA

To our knowledge there is no evidence of a role for histone acetylation in 

species. The discovery of histone deacetylase inhibitor (HDACi) as a compo

in superorganismal reproductive caste determination [74], as does the rec

present early in honey bee development [75�]. Royal jelly also contains non

[76]. Histone acetylation additionally appears to play a role in the determin

this mechanism is suited to the generation of stable phenotypes.

Genetic differentiation

In general, allelic variants that bias individuals towards either a reproducti

reproductives have a clear advantage over non-reproductives in passing o

become known in both ants [79] and superorganismal termites [80]. Such ex

biasing variants and are unlikely to be widespread mechanisms of caste d

www.sciencedirect.com 
switch between reproductive modes should be reflected

in the mechanisms of reproductive differentiation in

solitary species (Box 2).

Intriguingly, among the solitary insects with the most

pronounced sequential division of reproductive labour are

progressively provisioning Eumenid (e.g. Synagris cornuta
and Zethus miniatus) or Sphecid wasps (e.g. Ammophila
pubescens), which are likely to represent the ancestral state

of the social wasps. After laying eggs, females in these

species go through extended periods of brood care and

provisioning while having diminished ovaries, in effect

cycling between distinct periods of reproductive and non-

reproductive labour [19–21,22�]. It has been proposed

that the uncoupling of reproductive and non-reproductive
ciality

likely to be broad commonalities in the mechanisms that underpin

roductive roles become less flexible across the transition from solitary

 mechanisms of differentiation (such as epigenetic modifications) will

such as hormonal regulation). The development of more sophisticated

prediction [8��]. Several possible mechanisms of reproductive

 across the transition to superorganismality, are reviewed below.

onal regulation of reproductive differentiation might be expected to be

oductive modes. In practice, however, the weight of evidence suggests

Juvenile hormone (JH) is the primary regulator of reproduction in basal

 may represent the basal state for wasp sociality [50,51]. This role

smal species. JH is associated with reproductive differentiation in

wise in ants [56,57] and honeybees [58,59]. It thus appears that JH is a

es of sociality. However, we predict that in less reproductively plastic

ion of reproductive and non-reproductive phenotypes.

ing comparisons with mammalian development (in which levels of

o et al. [60] have proposed that reduced reproductive plasticity in the

ce of methylation, while Maleszka et al. [61] have emphasised the

 castes from a single genome. In the last decade, the role of methylation

–64], but it has proven difficult to establish a consistent pattern of

atively breeding species, methylation appears to be associated with

 however, have found no significant reproductive role for methylation in

ominula [69], and indeed both these species appear to have lost a key

ge-specific trait or rather a more general signature of social complexity

ste to levels of methylation [70–72], but the methodology of these and

 methylation as a possible stable source of reproductive differentiation.

reproductive differentiation in solitary or cooperatively breeding insect

nent in the royal jelly of honey bees suggests a role for this mechanism

ent finding that caste-specific chromatin modification patterns are

coding microRNAs (miRNAs), another possible reproductive regulator

ation of ant worker subcastes [77,78], strengthening the evidence that

ve or a non-reproductive role should become fixed or lost, since

n their genes directly. Several exceptions to this rule have, however,

amples probably represent a form of evolutionary ‘cheating’ by queen-

ifferentiation.
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phenotypes in solitary insects such as progressively pro-

visioning wasps has acted as a ground plan for the division

of labour that occurs in cooperative insect societies

[21,22�,23,24].

A prerequisite for this major transition is the transition

from solitary to cooperative breeding, which involves a

shift from sequential to parallel task execution in the form

of a division of reproductive labour: cooperative groups

are able to divide reproductive and non-reproductive

tasks between multiple individuals. Thus, cooperatively

breeding insect groups typically contain one (or a few)

dominant individual(s) that performs the vast majority of

reproductive activity on the nest, and a (usually larger)

number of non-reproductive individuals that perform

most foraging, nest building and offspring care. This

parallelisation of roles likely represents an efficient solu-

tion to the trade-offs between reproductive and non-

reproductive investment [25,26], although it also entails

a source of potentially costly conflict in fitness interests

between reproductive and non-reproductive specialists.

Reproductive and non-reproductive phenotypes within

typical cooperatively breeding insect societies are signifi-

cantly more stable than those expressed within the life-

time of a solitary individual; yet, substantial task plasticity

persists in these societies. Non-reproductives are capable

of upregulating reproductive traits in response to the loss

of a dominant reproductive across cooperatively breeding

bees [27,28], wasps [29,30] and termites [31]. Nonethe-

less, the rate at which individuals are able to transition

between roles appears to be limited. While behavioural

changes may be apparent within days [27,28], time to

physiological upregulation of reproductive tissues

appears to be on the order of weeks or months [30,31].

Additionally, there is evidence that non-reproductive

individuals may experience a loss of reproductive plastic-

ity as they age, for example in Polistes canadensis [32] and

Metapolybia cingulata [33] paper wasps. The transition

from solitary to cooperative breeding thus appears to

involve some loss in reproductive plasticity, but of a

minor degree: the majority of individuals in a coopera-

tively breeding society will remain reproductively totipo-

tent for the majority of their adult lives. This should be

reflected in the proximate mechanisms underlying plas-

ticity at this level of sociality (Box 2).

Transfer of plasticity from the individual level
to the colony level in the superorganismal
society
The major transition from cooperative breeding to super-

organismality is itself defined by the evolution of obligate

and irreversible differentiation of reproductive pheno-

types and non-reproductive phenotypes, cementing the

reproductive division of labour [7��,8��]. Superorganismal

castes are determined during development, after which

non-reproductive individuals are unable to transition to a
Current Opinion in Insect Science 2019, 34:40–47 
fully reproductive role. This reduction in reproductive

plasticity commits non-reproductives to indirect fitness

strategies and shifts the target of selection from the

individual to the colony. Selection will then favour traits

that maximise indirect fitness gains, opening the door for

strong task specialisation. Accordingly, superorganismal

castes are typically morphologically differentiated,

exhibit a reversal of the usual negative trade-off between

reproductive activity and longevity [34], and may even

include specialised phenotypic subdivisions of the non-

reproductive caste. Relative to reproductively plastic

organisms, the mechanisms that underpin reproductive

differentiation in superorganismal species are expected to

include a significantly larger role for high-stability molec-

ular mechanisms (Box 2).

Adult individuals in superorganismal colonies are much

less reproductively plastic than adult individuals in coop-

erative species, which themselves are somewhat less

reproductively plastic than solitary individuals. It is,

therefore, tempting to infer a relatively straightforward

pattern of decreasing reproductive plasticity across the

spectrum of insect sociality from solitary to cooperatively

breeding to superorganismal insect species. Such a pat-

tern only holds, however, when one focuses exclusively

on a single level of individuality, namely that of the

individual adult organism. The nature of a major evolu-

tionary transition is that it results in the generation of a

higher level of individuality: reproductive plasticity must,

therefore, be considered at both the level of the individ-

ual organisms that constitute the superorganismal society

and the higher level of the superorganism itself.

There are significant analogies between the organisation

of complex multicellular organisms and the organisation

of superorganisms: the queen is the reproductive tissue of

a superorganism, while workers are its somatic tissue

[35,36]. Just as a solitary multicellular organism can be

said to possess reproductive plasticity if it is able to

facultatively vary its investment into reproductive and

non-reproductive traits, the superorganism is reproduc-

tively plastic if it has the capacity to facultatively vary

investment into the production of workers and sexual

offspring. The ability of a superorganism to engage in this

kind of plastic response is a function of its sociogenome, a

composite of the genetic traits of all individuals that

together constitute the superorganism and the interac-

tions of those traits to produce colony-level feedback

loops [37,38].

Sociogenome-mediated interactions between constituent

individuals allow superorganisms to plastically mediate

reproductive investment in much the same way that

multicellular organisms do. Though the individuals

within a superorganism are not perfectly analogous to

the cells of a multicellular individual – the latter being

fully clonal and, therefore, almost entirely insulated from
www.sciencedirect.com
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internal reproductive conflict, while the former retain the

potential for conflict since workers are usually not clonal

and are often capable of producing males despite having

limited fertility – the high degree of task parallelisation

and specialisation has facilitated similar adaptations in

each system. Like multicellular organisms, superorganis-

mal colonies may upregulate investment into reproduc-

tion (i.e. the production of sexuals) in response to sea-

sonality and may store energy within non-reproductives

to later transfer to sexual brood [39,40]. Both multicellular

organisms and superorganisms typically transition from

somatic to reproductive investment having reached some

growth threshold [41�]. Ant colonies appear to possess a

form of terminal investment, switching to the production

of sexuals in response to queen mortality [25,42]. Hon-

eybee colonies respond to the loss of a queen by rearing

replacement queens [43]. Thus, while superorganismal

colonies lack the individual-level reproductive plasticity

necessary for non-reproductives to directly replace repro-

ductives, at the superorganism level these colonies are

able to plastically respond to the loss of a queen.

Viewed at a single level of selection, the transition to

superorganismality might be generalised as a simple

reduction in reproductive plasticity, producing individu-

als that cannot adapt their reproductive roles in response

to changing environments. However, such an approach

would overlook the opposing patterns of plasticity at the

different levels of selection. Specifically, we highlight

here that the transition should be viewed as a transferral

of plasticity from the lower-level organism to the higher-

level superorganism. Just as it would be meaningless to

argue that an adult mammal lacks phenotypic plasticity

because it largely comprises unipotent cells, so too must

we recognise that the transition to superorganismality can

only be understood by considering the superorganism as a

unified whole that is the greater than the sum of its parts.

Conclusions
The major evolutionary transition to insect superorga-

nismality is one of our best models for understanding the

way in which lower-level units are able to come together

to form new (higher) levels of biological complexity.

Here, we highlight that the current view of the process

of the major transition to superorganismality overlooks

the effects of multi-level selection. We have briefly

summarised how the shifts in reproductive division of

labour have made this radical shift in complexity possible.

The patterns of differentiation involved in this transition

are likely to be of general relevance to other shifts in

individuality, such as the transition to multicellularity. In

order to fully appreciate these commonalities, however,

social insect researchers must embrace the status of the

superorganismal colony as an individual in its own right.
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1. Szathmáry E, Smith JM: The major evolutionary transitions.
Nature 1995, 374:227-232.

2. West SA, Fisher RM, Gardner A, Kiers ET: Major evolutionary
transitions in individuality. Proc Natl Acad Sci U S A 2015,
112:10112-10119.

3. Hanschen ER, Shelton DE, Michod RE: Evolutionary transitions
in individuality and recent models of multicellularity.
Evolutionary Transitions to Multicellular Life. Dordrecht: Springer;
2015, 165-188.
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