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Appendix

In this appendix, we provide a description of our model predicting the dynamics of CI-

infections in structured populations. Infection is modelled as a two-state variable, with each

individual being in one of the two states: “infected” or “uninfected”. We designate by p the

frequency of infected individuals among hosts in the population (hereafter referred to simply

as the “infection frequency”). Because selection depends on mating frequencies and thus on

the interaction between the sexes, we distinguish infection frequency in females, designated

by pf , from that in males, designated by pm. We assume that infection is purely maternally

transmitted and that organisms are diploid; since the sex-ratio is even we have pf = pm.

Therefore, the change in frequency of infection is sufficiently described by the average change

in frequency of infection in the population among female hosts, pf , which can be written as

∆pf = E
[
wijpf(ij)

]
− pf , (1)

where wij is the expected number of successful offspring of female i reproducing in deme

j, pf(ij) is the frequency of infection in this female (0 or 1), and E [·] denotes the average

over all demes in the population and all females within a deme. Since the population is

assumed to be of constant size, the mean fitness is equal to one (E [wij ] = 1). To keep our

analysis simple, we assume that wij has a common form for all demes (i.e., the environment

is homogeneous) and that the number of demes in the population is very large.

The fitness wij of female i in deme j depends on its expected number of offspring produced

(i.e., fecundity), itself a function of infection frequency in female i and in males of deme j.

In order to obtain an explicit expression for fecundity, we extend the expression of parasite

fecundity for panmictic population given by Turelli (1994), and, without loss of generality, we

consider only the fecundity of individuals relative to the fecundity of uninfected individuals.

The relative fecundity of female i in deme j will be written as 1 + fij , where fij represents

the decrement of fecundity due to infection, composed of the effect of the genotype of the

female herself and the genotype of the males with which she has mated. According to our

life cycle assumptions (see main text), the relative fecundity is given by

1 + fij = 1− Cpf(ij) −B(1− pf(ij))pm(j), (2)

where pm(j) = 1
N

∑
i pm(ij) is the average frequency of infected males in deme j, and pm(kj)

is the frequency of infection (0 or 1) in male k from deme j. Averaging eq. 2 over all females
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within deme j gives

1 + fj =
1
N

∑
i

(1 + fij)

= 1− Cpf(j) −B(1− pf(j))pm(j), (3)

where pf(j) = 1
N

∑
i pf(ij) is the average frequency of infected females in deme j. Finally, the

average of eq. 3 over all demes in the population is

1 + f =
1
nd

∑
j

(1 + fj)

= 1− Cpf −Bpm +BE
[
pm(j)pf(j)

]
, (4)

where the number nd of demes in the population is assumed to be very large (nd → ∞),

and E
[
pm(j)pf(j)

]
is the probability of sampling an infected male and an infected female

from the same deme. Due to our assumption of an infinite number of demes, an average

fecundity over all demes, excluding a single focal deme, converges to the average fecundity

1 + f over all demes in the population. For notational simplicity, we will thus use in the

following calculations 1 + f for any average over all demes while excluding a single focal

deme.

We now have all the elements to evaluate the fitness function wij . A number (1−m)(1+

fij) of the offspring of female i from group j remain in group j and compete against an

average number (1−m)(1 + fj) of offspring produced in that group and an average number

m(1 + f) of immigrant offspring produced in different groups. A number m(1 + fij) of

the offspring of female i from group j disperse and enter in competition against an average

number (1+f) of offspring. Collecting all terms, the fitness of female i from group j becomes

wij =
(1−m)(1 + fij)

(1−m) (1 + fi) +m(1 + f)
+
m(1 + fij)

1 + f
, (5)

which is of the same form as the fitness function of previous and closely related models (Roze

and Rousset, 2003, 2004; Lehmann et al., 2007)

We now invoke weak selection, an assumptions that is often endorsed in social evolu-

tionary theory or population genetics (e.g., Hamilton, 1964; Nagylaki, 1993; Taylor, 1996;

Roze and Rousset, 2003, 2004; Kirkpatrick et al., 2002; Grafen, 2006), and implies that the

phenotypic effects of infection, C and B, are of small order δ, where δ can be thought off as



3

the largest of the two effects of infection on fitness. Therefore, fij , fj and f will also be of

order δ and recalling that for x small we have y/(1 + x) ' y(1− x), eq. 5 becomes

wij = 1 + fij − (1−m)2fj − (1− (1−m)2)f +O(δ2), (6)

where O(δ2) is a remainder of order δ2. Substituting the fitness function into eq. 1 yields

for weak selection

∆pf = E
[
{fij − (1−m)2fj − (1− (1−m)2)f}pf(ij)

]
+O(δ2)

= E
[
fijpf(ij)

]
− (1−m)2E

[
fjpf(ij)

]
− (1− (1−m)2)E

[
fpf(ij)

]
. (7)

Inserting eqs. 2-4 into this expression and noting that p2
f(ij) = pf(ij), the first expectation

appearing in eq. 7 becomes

E
[
fijpf(ij)

]
= −Cpf (8)

while the second expectation in eq. 7 is given by

E
[
fjpf(ij)

]
= −CE

[
pf(j)pf(j)

]
−B{E

[
pm(j)pf(j)

]
− E

[
pm(j)pf(j)pf(j)

]
}, (9)

and finally

E
[
fpf(ij)

]
= pf

(
−Cpf −B{pm − E

[
pm(j)pf(j)

]
}
)
. (10)

Substituting the last three terms into eq. 7, the change in infection frequency becomes

∆pf = −C pf + (1−m)2
(
C E

[
pf(j)pf(j)

]
+B{E

[
pm(j)pf(j)

]
− E

[
pm(j)pf(j)pf(j)

]
}
)

+ pf

(
1− (1−m)2

) (
Cpf +B{pm − E

[
pm(j)pf(j)

]
}
)
, (11)

where the expectations of pairs and triplets of infection frequencies are probabilities that

pairs and triplets of individuals carry the infection. These probabilities will be evaluated

by following the rationale usually employed for evaluating probabilities of identity between

homologous genes in the infinite island model of dispersal, where two infection strains sam-

pled from different demes are considered as genealogically independent, and thus bear no

identity by descent (e.g., Perrin and Mazalov, 2000; Whitlock, 2002; Cherry and Wakeley,

2003; Roze and Rousset, 2003). For simplicity, we will also use the notation pf = pm = p.

We start by evaluating identities between pairs of infection statuses. The probability

E
[
pf(j)pf(j)

]
that two females randomly sampled with replacement from the same deme are
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both infected comprises two events. First, the two females can have inherited their infection

from an infected common ancestor. In the infinite island model this implies that, when

looking backwards in time, the ancestral lineages of the two females’ infection strains have

always stayed in the same deme and coalesced in a local ancestor. If we call the probability

of this happening FR
ST, the probability of sharing an infection by descent is FR

STp, where the

weight of the infection’s frequency in the population, p, expresses the probability that the

common ancestor carried the infection. Alternatively, the two females can have inherited

their infections independently. This event occurs with the probability of non-coalescence

between the two females’ infection strains, 1 − FR
ST, weighted by the probability of two

independent individuals sampled at random from the population being infected, p2. Hence,

the total probability that both females share the same infection statuses is

E
[
pf(j)pf(j)

]
= FR

STp+ (1− FR
ST)p2, (12)

where

FR
ST =

1
N

+
(
N − 1
N

)
FST. (13)

In this expression, 1/N is the probability of sampling twice the same female and FST is the

probability of coalescence of two distinct infection lineage that is given by

FST =
∞∑

t=1

(1−m)2t

(
1− 1

N

)t−1 1
N
, (14)

where (1−m)2t is the probability that the two infection lineages remained in the same deme

for at least t generations and its factor is the probability that the lineages coalesced precisely

at that time. In practice, it is more convenient to evaluate FST from recurrence equations

(e.g., Hartl and Clark, 1997; Perrin and Mazalov, 2000; Gillespie, 2004; Roze and Rousset,

2003), which is given at equilibrium by

FST = (1−m)2
(

1
N

+
(N − 1)
N

FST

)
, (15)

Following a reasoning along the same lines as those detailed above, we can calculate the

probability E
[
pm(j)pf(j)

]
that a randomly sampled pair of one male and one female both

bear the infection. This probability is given by

E
[
pm(j)pf(j)

]
= FSTp+ (1− FST)p2. (16)

We now turn to the evaluation of the identity between triplets infection statuses. The

probability E
[
pm(j)pf(j)pf(j)

]
that one male and two females sampled with replacement from
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the same deme all bear the infection comprises three events. First, with probability FR
3 p the

three individuals share their infection statuses by common descent because all three gene

lineages coalesce in a local common ancestor (with a probability called FR
3 ) who bore the

infection strain (with probability p). Second, the three individuals can all be infected because

two of them share their infection by common local descent while the third individual is part of

an immigrant lineage of the infected type. This occurs with probability (FR
ST+2FST−3FR

3 )p2

where FR
ST is the probability of coalescence of genes in two females sampled with replacement

in a deme and FST is the probability of coalescence of two gene, one in a male and one in a

female. The probability FR
3 has to be subtracted in order to exclude cases in which not only

one pair of strain lineages but all three coalesce. Third, with a probability complementary

to the two just described, the three strains lineages do not coalesce, in which case they all

bear the infection status with probability p3. Thus,

E
[
pm(j)pf(j)pf(j)

]
= FR

3 p+
(
FR

ST + 2FST − 3FR
3

)
p2

+
(
1− FR

ST − 2FST + 2FR
3

)
p3, (17)

where

FR
3 =

1
N
FST +

(
N − 1
N

)
F3, (18)

is the probability of identity by descent between three strains, two of which are sampled

with replacement and

F3 = (1−m)3
(

1
N2

+
3(N − 1)
N2

FST +
(N − 2)(N − 1)

N2
F3

)
. (19)

is the equilibrium probability of identity between three strains sampled without replacement

from the same deme after dispersal.

Inserting all the probabilities of identity in state (eq. 12, eq. 16 and eq. 17) into the

equation of infection frequency change (eq. 11), we obtain after simplification that

∆p = p(1− p)
[
−C(1− FST) +B(1−m)2

(
FST − FR

3

)
+ pB{1− g(N,m)}

]
. (20)

where

g(N,m) = 2FST + (1−m)2(FST − 2FR
3 ). (21)

From these equations we can express the condition for infection to spread when rare (p→ 0)

in terms of the cost-to-benefit ratio as

C

B
< (1−m)2

(
FST − FR

3

1− FST

)
. (22)
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